PHASE TRANSITIONS IN SIMPLE MODELS OF SOCIAL DYNAMICS

Janusz Hołyst

Warsaw University of Technology
Various models of social dynamics will be presented and resulting equilibrium or non-equilibrium phase transitions will be discussed. It will be shown how a presence of a strong leader in a small community can effect in discontinuous and non-reversible jumps of opinion dynamics. It will be presented that a smaller but better organized social group can beat a larger one. Phenomenon of communities isolation will be demonstrated using a random version of the Chinese game Go.
References
  1. K. Kacperski and J.A. Hołyst, Opinion formation model with strong leader and external impact: a mean field approach, Physica A 269 511-526 (1999);
  2. J.A. Hołyst, K. Kacperski and F. Schweitzer Phase transitions in social impact models of opinion formation, Physica A 285, 199-210 (2000) http://arxiv.org/PS_cache/cond-mat/pdf/0004/0004026v1.pdf;
  3. Aleksiejuk A., Hołyst J.A., Stauffer D., Ferromagnetic phase transition in Barabasi-Albert networks, Physica A 310 (1-2), 260-266 (2002), http://arxiv.org/PS_cache/cond-mat/pdf/0112/0112312v1.pdf;
  4. K. Suchecki, Janusz A. Hołyst, Ising model on two connected Barabasi-Albert networks, Phys. Rev. E 74 (1): art. no. 011122 Part 1 JUL 2006, http://arxiv.org/PS_cache/cond-mat/pdf/0603/0603693v1.pdf;
  5. Krzysztof Suchecki, Janusz A. Hołyst, First order phase transition in Ising model on two connected Barabasi-Albert networks, http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.1499v1.pdf;
  6. Julian Sienkiewicz, Janusz A. Hołyst, Nonequilibrium phase transition due to social group isolation, http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.1984v2.pdf.

Personal webpage