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ANALYTIC SOLUTION OF THE WERTHEIM’'S PY
APPROXIMATION FOR THE SHIELDED
STICKY-POINT MODEL OF ASSOCIATING

LIQUID ‘

- |

The analytical solution of the Wertheim’s Ornstein — Zernike equation closed by the
Percus — Yevick (PY)-like approximation for the shielded sticky-point model of associating
tiquid is presented. This mode} generalizes the one-site dimerizing Wertheim model for the
«ase of associating liquids in which the bonding radius may be less than the core radius.
Our numerical analysis leads to the conclusion that the present PY-like approximation
provides satisfactory description of the system if the formation of associates does not change
substantially an excluded volume of the system. In addition a simple approximation which
relates the fraction of monomers (undimerized particles) and the strength of associative inter-
action is proposed. The predictions of this scheme agree well with nearly exact results of Zhou
and Stell for all values of bonding radius.

1. Introduction

There has been considerable progress in the statistical — mechanical
theory of associating liquids during the last decade [1—8). Much of the effort
has been focused on the development and application of the integral equation
theory of associating systems. Two alternative versions of the integral equa-
tions theory have been proposed. In the series of papers by Cummings and Stell
{1] the theory based on the Ornstein — Zernike (OZ) equation supplemented
by common closure conditions, i. e., PY approximation, mixed PY and mean
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spherical (MSA) approximation have been used. In the studies of Wertheimn
- 4] a new OZ-like integral equation supplemented by PY-like and hypernetted
chain (HNC)-like closure conditions has been proposed.

Most theoretical studies were carried out for so-called «primitive» models
of associating liquids [1, 4, 6]. Such a models are simple enough for theoreti-
cal treatment and at the same time are able to reproduce the most important
properties of this class of fluids, in particular — the formation of associates
with a certain geometry. The structure of associates is provided by the spe-
cial combination of the hardsphere repulsion and strong short-ranged att-
raction. The latter originates from the set of attractive sites embedded inside
the hard core region. For a number of such a models i. e., for shielded sticky-
shell mode! of chemical association introduced by Cummings and Stell |11,
for one-site dimerizing model of Wertheim [4] and for Smith — Nezbeda mo-
del of associating liquid [6] the above mentioned integral equations were solved
analytically {1, 7, 8.

The purpose of this study is to present an analytical solution of the Wert-
heim’s OZ equation closed by PY-like condition for the model which genera-
lizes one-site dimerizing model of Wertheim. This model has been proposed
recently by Stell and Zhou 12| and corresponds to the associating liquid in
which the formation of associates changes the excluded volume of the system.
The paper is organized as follows. In Section 2 the model to under considera-
tion is presented. Section 3 contains the Wertheim’z OZ equation together
with the PY-like closure condition and relation between the total and «moiio-
mer» densities. The Baxter functions for this system are obtained in Section 4.
Numerical results, their analysis and conclusions are given in Section 5.

2. The model

Following [2] we consider the model with the pair potential that can be
presented as a sum of two terms: ) :

U(12) =Uref (f) +Uass(12); . (1)

where 1 and 2 denote the positions r;, r, and orientations €, €2, of the partic-

les 1 and 2; r = | ry — r, |. The reference part of the total potential is chosen
to be: :

oo, r<<L,
Utei (r) = [ A L<r<o, (2)
0, r>co

while the associative part appears due to the off center attractive site:

Uass (X) - ’ (8), iiz, (3}’

where 4 > 0, & << 0, x is the distance between two attractive sites which be-
long to different particles

x =|r; 4+ d Q) —r, —d(Q)] (4)

and d and a are subjected to the restriction L << 2d |- a << L — (2 — V' 3) d.
This condition ensures that only dimers can be formed in the system.

To provide analytical treatment of the model we shall consider it within
shielded sticky-point limit [2], 1. e., we let a = 0, & — — oo first and then

take A — oo under the restriction that the volume integral K, ={d (1)d (2) X
X F (12) holds unchanged.

~ Here
F (12) == Cref (f) fuss (x)r €ref (f) = €Xp {%ﬁUref (f)}, }
fass (x) = exp {— BUass (12)} — 1, p=1/kT.
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3. Integral equation and closure condition

Extension of the Wertheim theory to the model under consideration is
straightforward and we shall therefore omit details. Similarly to (7], we con-"
sider an angle avereged version of the OZ-like integral equation which for the
model presented takes form:

, hij(rys) = cij(ryy) + %plm SI Cit (r13) bmj (r3y) drrg, (5)

where the functions h;; and c;; are the angle averaged analogues of the pair
and direct correlation functions respectively; the lower indices in hi; and ¢;;
take the values 0 and 1 and denote undimerized and dimerized states of the
particle, respectively (sée [4] for details). The matrix elements p;; are defined

as follows -
Pij = 8:06;0p -+ (81081 + 8:1610) Py, (6)

where §;; is the Kronecker delta; p is the total number density and p, is
the number density of «monomers» (undimerized particles).

The selfconsistent relation between the two densities and PY-like closure
are given by:

o= po+ 02 | yoo (N F () dr M
and , ‘ :
Yij (r) = hy; (r) 4 80:80jci; (r), . ®
where F is the angle average of F [2],
0, r<lL, :
F(r)y= (et B —1)(a+2d—r)2Q2a—2d+ r)/24d%, L<r<2d+a,
0, r>2d.
9

The background correlation functions (BCF) y; are related to pair correlation
Tunctions h;; as follows

s (1) + B0j80: = evet (1) s (1) + F (1) a0 (7) 81181, (10)
Relations (5), (7) and (8) form a closed set of equations for the «monomer»
density p, and individual correlation ' functions h;;. However, the structu-
rtal quantity of main interest is the total pair correlation function. It can be
.calculated using the partial pair correlation functions gij = hi; 1+ 80;00;

g (r) = Goo (r) + 2280, (r) + x%gy, (1), (11)
where x is the fraction of <monomers», x = pyp.

It turns out that the present PY-like approximation is not yet analy-
tically solvable. An explicit analytical solution can be obtained within the
shielded sticky-point limit [2], which leads to the following relation between
the densities

0 = po + 4nBL2y,, (L) 03, (12)
and between the correlation functions #;; and y;;
hi,' (r) + 60[60,’ = @ref (r) Yij (r) + 6516]'13!/00 (L) 5 (f — L) (13)

Here the function F containing the associative part of the pair potential

has been substituted by the Dirac delta function: F (r) — B8 (r =~ L), where
B = K,/(4nL?). o

4. Analytic solution of the Wertheim PY
approximation

For the model under consideration the pY approximation (8) and (13)
gives
¢ij(r) =0 of>r >a. (14)
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Hereafter, we shall assume that interpaticle separation is measured in units
of 0, i. ¢. 0 = 1. Since all direct correlation functions are finite-ranged, the
-factorized version of the OZ equation (5) can be used

1 .
—rhij (1) = q};(r) — 20 3 pmu g qim @) (r — ) hyj (|r—2])dt,  (15)
im, 'S

W l
—reij (r) = q;;(F) —2n ¥ p,, ai, Sqmt () g1 (r + 1) dt, (16)
) im 0

where for r > 1 and r << 0 the Baxter functions g;; are zero [7—9I.
From (15), considered in the interval 0 << r << 1, the set of differential
equations for the functions ¢;; follows

q;; (r) = 8j(a;r + b;) — Abj1 [qi0 (r + L) —~ go(r— L) —

— 8:18,1CLygo (L) 8 (r— L), , - an
where ‘ ‘
‘ 1 1
a; = 81— 2n1p { guo (t)dt — 2mp, { qu (9t (18)
0 0 ;

1 1

b; = 2np | quo(t) tdt + 2mp, § qu (1) 1dt, (19)
0 0

i

‘ A = 2npoL Byy, (L). /
From this set of equations the functions g, are immediately obtained
1 ‘
Gio () =Taif2+bgf+0i, (20)

where ¢; are the integration constants.
To find the functions ¢;: one should consider equation (17) separately for *

L <% and L >?12—. In both cases the total interval 0 << r<C I has to be di-
vided into three subintervals ,
I=1001 —L}, I,={1—L, L}, Iy=(L, 1l for L>—,

I,=100, L}, ILy=[L, 1—Ll, Iy=(1—L, 1] for L<-p
and (17) should be solved separately for each of this subintervals. We get
gii (r) = D{°r3 4 APr® + BPr + C1° for 11, @1

where the constant D{”, A and B{ at n =1 and n = 3 for any L, are re-
lated to the parameters of the function g; by

D™ =Aai ’1’6—2 , AP = A2_;_'L[(n__2)aiL+b,-],

Bi-’”=A(n—2)[-§—aiL+(2~n)biL+c,~ , for L>%by DP = AP =

— BP =0, and for L< 4by DP?=0, AP=— ALa, Bf=
— —9ALb,.

Here C™ are the constants of integration. The expressions (20) and (21) for
the Baxter functions g;; involve the value of the BCF yg for r = L, the «mo-.

nomer» density p, and the set of twelve constants a;, b;, ¢;, C{”. The problem
of solving the OZ equation has thus been reduced to that of determining these
parameters. Expression for y,, follows from the PY closure condition (8) in
which the expressions (15) and (16) for the functions 4;; and ¢;; have been used

yoo (L) = =~ €+ bo) + a0, (22)
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where .
= =2 o {5 @ (1~ D' [ an @+ b) + ] x

X (1= L + (b (bs + a1L) + cpa] (1 — L) + ¢, (@,L - by) (1 —1)}.

Expressions for a and b (18) and (19) form a set of four algebraic equations
for the above fourteen unknown parameters. Additional equations needed ari-
se from the conditions imposed on the functions g,

it (L) — qu (L") = 84BLy,, (L),

gu(1 — L") —gu(1—=L7) =0,

g:; (1M) = 0. | .
We have now arrived at a closed set of fourteen nonlinear algebraic equa-
tions which after some algebra can be present as a set of twelve linear equa-
tions, :

Z+M =R (23)

and two algebraic equations

T — 14V 1 1608y (L) L%p
Po= 5By, (D) L3 24)

and (22). In (23)

Z= (@1, @yyy boys 041, Co1» C11» C((Jll)y Cgll)v Cl()zl)’ Cﬁ)» CI(JSI) C(lsl)),
anid the elements of the matrices M and R along with details of the numerical
solution are given in the Appendix.

Knowledge of ¢;; enables one now to calculate &i;- To obtain g;; for r > 1
one may use the iterative scheme of Perram [10], but its direct application to
(15) is not convenient. A form more appropriate for numerical calculations
is obtain from (15) after carrying out some algebra:

1

r8ij (1) = Py (1) + 200 3, pum { qus (8) gmy (r — 1) dt +-
im 0 .

+ BpoL8j1gio (r — L) yoo (L), (25)

where P;; has the functional form of the function gq;; for r € I;.
Appljcation of Perram’s iterative scheme requires the knowledge of the
contact values of g;;. The latter follows from (25)

gii (1) = 8o; (a; + b;) + 67 Aqu0 (1 — L). (26)
5. Results and discussion

The main quantities of interest, obtained from the solution given in the
proceeding section are the pair correlation functions gi; (r) and the fraction of
«monomers» x = py/p (or the fraction of «bonded» particles @ = 1 — x). The
seliconsistent relation between the densities (7) contains the contribution from
the pair correlations in the form of the integral with integrand involving the
BCF yyo. In the shielded sticky-point limit this integral is substituted by the
value of the function yy, at r == L (12). Experience has shown that usual PY
approximation give salisfactory prediction for the BCF of the hard sphere sys-
tem only for r =2 1, while in the rest of the overlap region the results appear
to be unsatisfactory. On should expect therefore that the preserit PY-like
approximation will give the BCF y,, with the same accuracy. To extend the
applicability of the present PY approximation to the case of intermediate and
small L we combine the integral equation theory with the thermodynamic
perturbation theory (TPT) [4], appropriately modified. The latter is used to

approximate the density of «monomers» p, & p§. For this purpose g (L)
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in (12) and (13) is substituted by the value of the BCF ge.s, (L) of the corres-
pondent reference system. In the usual TPT theory one should use as a refe-
rence system just the system of hard spheres with the density which is equal
to the density of the original associating system. However such a reference
system does not take into account the changes in the excluded volume due to
the formation of associates. The importance of this effect increases with the
decrease of the value of L. In the present study the hard sphere system with

the total density pg.r, which is related to the monomer density p§*® and L by

3
, Pret = 0D (0 — pfN) V4 27
is used as a reference system. Here Y, is the volume of the dumbbell with
elongation L.
The BCF of the reference system yre; is calculated using the theory of
Ballance and Speedy [11]

‘ Yrei (1) == Yrei (0) €xp [— AV (r) (o) + @yr)], (28)
where yrei (0) = exp (Auas/kT), Aups is the excess chemical potential of the
hard sphere system;

) l | 1 1 3
AV (r) = 73-n|4—3(1 — (1 — Trz)_(1 — 57 J
and the constants a; and e, are obtained from (28) and from the following two
exact results

—air—h'l Yref (f)i =— 67]1-efyref (1), Pl(pretkT)y =1 + MrerYres (1).
r—>0

Here 1t = %presz and we have used the Carnahan — Straling equation of

state [12].

We have now arrived at a closed set of two nonlinear equations (12) and
(28) for two unknowns p, = o' and Yoo (L) = Yret (L). Thus the initial
problem of solving the coupled set of equations (5), (8) and (12) reduces to the
- solution of the OZ equation (5) closed by the closure condition (8) were the
«monomer» density p, and BCF y,, (L) are previously obtained as a solution
of the set of equations (12) and (28). )

InFig. 1 and 2 we present the fraction of «dimerized» particles o = -
= 1 —py/p as a function of total density p for different L and K,. We compare
our results with those of Zhou and Stell [2], which were obtained using an
exact relation between the usual BCF for associating system and a.. The BCF
for associating system was calculated from the very accurate Boublik equa-
tion of state [13]. Zhou and Stell [2] have considered the binary
mixture of hard spheres of equal size and associative interaction only
between the particles of different sort. As was shown in [14] description of
such model reduces to the description of the model discussed in the present
study but with the value of K, equal half of that used in [2]. One can see, that
agreement between the results of the modified TPT and nearly exact results
of Zhou and Stell is satisfactory for all L and for all K,. This demonstrates
the importance of the correct accountment of the effects appearing due to the
changes in the excluded volume of the system.

In Fig. 3—10 we show the pair correlation function for different values
of L, K, and total density p predicted by the present PY-like approximation
and by its combination with the modified TPT (MTPT). In all cases the la-
beling is the same: the results of Wertheim PY approximation are shown by
the solid line, while the results of the PY/MTPT are given by the dashed line.
To verify the theory we compare our results with those obtained from the nu-
merical solution of the RISM equation (dotted line) for the mixture of hard
spheres and dumbbells with elongation L. The hard sphere density pus, and
the density of the dumbbells p; of this two-component mixture follows from
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Fig. 1. The fraction of dimerized particlesx =1 — x as a

funiction of the reduced density po? for Ko=1; L= 1, 1/2,
I and 0 from the bottom to the top at po® = 0,6. The solid line

presents o obtained by using modified TPT of Wertheim, the

dashed line shows the results of Zhou and Stell [2]. For L = 0.

-both theories gives indistinguishable results :

o T 0[73 T 0]'6 PGI

Fig. 2. The same as Fig. 1 for L = 1/2 and K, = 1,5 and 25

from the bottom to the top. Notations are the same us those
used in Fig. 1.
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Fig. 3. Angle everaged pair correlation function for the shielded sticky-point model in the

full associated limjt (K, — o0) at L = | and pod = 0,8 (a), 9,4 (b). The solid ling repgesents

the results of the Wertheim’s PY approximation. The dotted ling is the RISM results for
correspondent system of dumbelis

Fig. 4. The same as Fig. 3 for pa® = 0,823 (a}, 0,412 (b), 0 (c) and L = 0,8. In a,ddhtipn, the
squares represent an exact results for the site-site pair correlgtion function for po® — 0 (Ref.
. 16)

[

the MTPT
— 1
Ph.sp = pgef), Pg = ~§.piref‘).

The pair correlation function, which is presented in the figures, is related to
the set of the site-site correlation functions by g (r) = (1 — x)% gss (r) +
+ 2% (1 — X) Gns (r) + %°gmm (r), where s and m derote the site and the mo-
nomger (undimerized hard sphere), respectively. In addition to that in the case
of the full association limit (K, — oo, Fig. 3—6) we compare our results with
the predictions ‘obtained from the computer simulation [15] by the Monte-
Carlo (MC-squares) method.

We shall first analyze the case of full association limit. Since the present
integral equation theory is based on the consistent diagrammatic analysis the
PY approximation of Wertheim, in contrast to the RISM equation, correctly
reproduces the low density behavior of the pair cofrelation function for all
values of L (Fig. 4¢, 6¢). With the increase of the density the results of the
present theory remains satisfactory for the elongation L close to the unity.
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Fig. 5. The same as Fig. 3 for po® = 0,893 (a), 0,446 (b) and L = 0,6. Here the squares is the
results of the MC simulation (Ref. 15)

Fig. 6. The same as Fig. 5 for pa® = 0,765 (a), 0,510 (b), 0 (¢) and L = 0,4. Here the squares
in (c) denote an exact result for the site-site pair correlation function for po® — 0 (Ref. 6)

The discrepancy between the predictions of Wertheim’s PY approximation
and MC results in the high density region increases with the decrease of L
(Fig. 3—6). For all values of the density p and elongation L the pair correla-
tion function, obtained from the present PY approximation, and that which
follows from PY/MTPT in the full association limit coinside. :

Similar as in the previous case in the case of partially associated system
the predictions of PY and PY/MTPT remains satisfactory for all densities and
all degrees of association at L =2 1 (Fig. 7, 8). With the decrease of L the
results of the PY approximation for the high and intermediate densities be-
come unsatisfactory. At the same time the combination of PY and MTPT
gives rather good prediction for the structure of the system at low degree of
association (low K,, Fig. 9a, 10a).

The above analysis and short discussion lead to the conclusion that the
present PY approximation gives satisfactory predictions for the structure of
shielded stickypoint model of associated liquid if the formation of associates
does not change substantially an excluded volume of the system. For the pre-
sent model the excluded volume decreases as the parameter L decreases from
unity and therefore for intermediate and small values of L one needs more so-
phisticated closures. Appropriate closures for that case are now under study
and will be reported in due course.
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Fig. 7. Angle everaged pair correlation function for the shielded sticky-point model at K, =
= 0,01 (a), 1 (), po® = 0,8 and L = 1. The solid line represents the: results of the Werteim's
PY approximation. The dotted line is the RISM results for the correspondent mixture of hard
spheres and dumbells; the dashed line corresponds to the combination of Wertheim's PY and
MTPT. On the scale of the figure the results of PY and PY/MTPT are indistinguishable

Fig. 8. The same as Fig. 7 for po® = 0,829 and L = 0,8

Fig. 9. The same as Fig. 7 for po? = 0,893
and L

g5

Fig. 10. The same as Fig. 7 for eos =

= 0,765 and L = 0,4
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Appendix

The nonzero elements of the matrices' M and R are

Muy =1+ —np + ndp, (1 — L) (+L— )L,

Ms1==nu[p + ApoL (L — 1)),

M5 =2n[p + ApL (1 — L)), M= nH—-p + TlApoL (L2—1) x

<1

2
M3,3:=—g—np——l+npoAL(-%-Ls_Lz+_1TL___31_)’

1

Mio=—,

My = A (—;—
(a). for L;—;

Mz, = 2np, (1 — L),
Mz = mp, (1 — L)?,

1
Mis—=—5 AL —1),

My = 2mp, (2L — 1),
Mg s = npe (2L — 1),

Mss =+ A(L2— 1),

Ms; = sufp - 2Ap,L (L — 1)},
M3.9=]; M5.9=l, M1,11=—;-A(L2-—L+_l_.)' .

3

*L) y Msiy =A, Myy=1, R, =1;

Mu.i = Mj,,
Mz = mp, (1 — LY,

Mss = A(L—1),

M5 =1, Mgs=—1, M1,7=%AL3,

M3z = — -;—ALz, M;; = AL, Mo7 =—1,

Re=0, Re=—BLy (L),

(b) for L<—-

M7,l = 2“PoL, Mg,j = 2.3'590 (2L - 1)’ M"ol = M7,I,

Mya = mpL?, Moz = —nip, (2L —1),  Mys = wpoL 2 — L),
Mys=— ALS, Mss =— AL, Mss = AL, |
Mos=—1, Mos=1, My = 4 A(L3—1),

Myg=-3 AL —1),  Msy=A(L—1), Moz =1,

Ry = — BLyy, (L), Ry =0,

We use an iterative method to solve the set (22), (23) and (24). The set is
first turned into a set of linear equations usifig ‘as an input estimates for Qo
and yo (L). We start from the high temperature limit which yields p, = p
and g (L)'= ypy (L), where g,y (L) is the usual BCF obtained from the regu-
lar PY gpproxirmation.

Solution of the set of linear equations (23) is used then to get a new es-
tirnates of yy (L) from (22) afid for p, from (24). -
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The convergetice of this iteration scheme is rather fast: about 15 dor 20
iteratibn loops are sufficient to obtain the solution with an accuracy up to
6 digits. . ‘ '
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TRIPLET CORRELATIONS IN FLUIDS

Six schemes for calculating the triplet correlation function of a fluid are considered.
Four are based upon density expansions and their resummation. The other two approximations
are based upon considering one or more of the particles to be the source of an inhomogeneity in
the fluid and then using the formalism of the theory of inhomogeneous fluids. In contrast
to the other approximations, the two approximations based on the theory of inhomogeneous
fluids are inherently asymmietric, although they ‘cin be symmétrized easily. A few thoughts
about the relative merits of the six schemes are given.

1. Imtroduction

Interest in the theory of fluids centers on the thermodynamic proper-
ties of the fluid and its structure, as described by the A-body correlation
functions, gi_» = g(r,...r;), where r,...r, are the positions of the 4 molecules.
The greater the value of h, the greater the computational difficulty and the
greater the difficulty in comprehending the results, if numerical, because of
the increasing number of arguments of g as k increases. For central forces,
812 is a function of one spatial variable while g5, and g4, are functions of
<hree and six variables, respectively. To this one must add the thermodynamie
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