The convergetice of this iteration scheme is rather fast: about 15 dor 20
iteratibn loops are sufficient to obtain the solution with an accuracy up to
6 digits. . ‘ '
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TRIPLET CORRELATIONS IN FLUIDS

Six schemes for calculating the triplet correlation function of a fluid are considered.
Four are based upon density expansions and their resummation. The other two approximations
are based upon considering one or more of the particles to be the source of an inhomogeneity in
the fluid and then using the formalism of the theory of inhomogeneous fluids. In contrast
to the other approximations, the two approximations based on the theory of inhomogeneous
fluids are inherently asymmietric, although they ‘cin be symmétrized easily. A few thoughts
about the relative merits of the six schemes are given.

1. Imtroduction

Interest in the theory of fluids centers on the thermodynamic proper-
ties of the fluid and its structure, as described by the A-body correlation
functions, gi_» = g(r,...r;), where r,...r, are the positions of the 4 molecules.
The greater the value of h, the greater the computational difficulty and the
greater the difficulty in comprehending the results, if numerical, because of
the increasing number of arguments of g as k increases. For central forces,
812 is a function of one spatial variable while g5, and g4, are functions of
<hree and six variables, respectively. To this one must add the thermodynamie
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variables. If the forces are noncentral, the number of variables is even greater.
For this reason, interest is usually restricted to 4 = 2 or 3, and, occasionally,
k = 4. Our interest in this note will be similarly restricted . .

2. Density expansions
The pair and triplet correlation functions, g;, and gy, can be expanded

in power of the density, p = N/V (N is the number of molecules and V is the
volume). The result is .

812 = eu{l + CQiz + p? (d312 + 2d4,, + %—(0212)2 + —;‘ d512) + . "} (1)
and

gi123 = £12813853 {1 + 083193 - p? (ed1o3 + 24051 -+ €4312 + €5t 03 -+ e50teg +

+ £5%a1z +- e5B1og + £5Paat - eBPars + £612a + £6201 + 6313 + %(53123)2 +

1
+ 5 (Tu0) ) @)
where .
€2y, = S fraf s3drs, , &
d3y, == S Frofeaf sadr sd?' 4 4)
d4,, = S F1af 14 2al 3edrsdr,, (5)
d5,, = S f13f14fzaf24f34d"3d"4 . (6)
and ‘
03103 = S Fraf saf sadrs, ™
gdyg3 = S Frafaaf asfasdr idrs, ' ®
ebag; = Sf 1al2af3af 35l 35T drs, &)
523 = S f14f15f24f35f45d’°4d"s: ) (10)
861_23 = Sfl4f15f24f25f35f45dr4d"5’ (1
and : ,
€713 = S Fraf'sof safasf aaf asf ssdr drs. (12)
In Egs (1) — (12)
- eij = exp {— Pu (R:))}, (13)
u (R;;) is the pair interaction energy between molecules i and I
Rij=|r;—r;|, (14)
fii = eij—1, (15)

and f = 1/kT (k is Boltzmann’s constant and T is the temperature). Equa-
tions (1) to (12) are based on the assumption of pairwise addivity.

3. Calculation of the pair correlation
function

The above expansion of élz can be summed through the use of the Orn-
stein — Zernike (OZ) relation

hyy = cyp + p Shmczad"s)



where

‘ by =gy, — 1 ‘ (17)
is called the total correlation function and ¢12 is called the direct correlation

function. The OZ relation is just a definition of C15- However, an approxima-
tion, such as the Percus — Yevick (PY) approximation, ‘
i .

By — Cro = 3, — 1 ‘ (18)
or the hypernetted chain (HNC) approximation, ‘
hyy — 13 = Inyy,, (19)

where

Yis = gra/€15, . (20)

gives, when coupled with the OZ relation, an integral equation for gy, and
provides an approximate summation of Eq. @).

4. Superposition approximation and generalizations

In contrast to the situation for g,,, there is no agreed procedure for the
calculation of gyp5. In the remainder of this note, some schemes will be consi-
dered.

The simplest scheme is that of Kirkwood [1] who suggested that all the
terms beyond unity in Eq. (2) be neglected. Thus :
. | ' 8123 = £1:8138e3- 2n

This is the superposition approximation.
If we observe that the density expansion of hy, is

By = Frg+ -+ 22)
we may introduce the renormalized expansion
8123 = £128158.3 {1 + 063123}, 23)
where .
831 = | Hyghryghogdry. (24)

That is, 8313 is a renormalized 83,25 with the fy; replaced by hy;. Equations
(23) and (24) have been proposed by several authors. To the author’s knowledge
the earliest authors are Verlgt (2], Stell [3], and Blood [4]. Substitution of (1)
and (17) into (23) yields

8128 = g128158a3 {1 + 83123 + p? (edyo3 + edogr + edape -
~+ 513 + eBargs; - €5agiy) 4 - - - ). y (25)

Equation (23) yields some, but not all, of the diagrams of order p.

The next step, which is still computationally straightforward, is to include
a few more renormalized A-bond diagrams. For example, Henderson [5] has
proposed -

iz = glzglggza {1 + 963;23 + 92 (85,3;23 + 66;23 +
+ terms obtained by cyclic permutation of 123)}, (26)

where again the prime means that renormalized integrals involving A bonds
are ised. Substitution of (1) and (17) into (26) yields (2) with all but the
last two terms. Only the last term is difficult to compute. As will be dis-
cussed later, the squared term can be included without problem. Generally
speaking,the more highly connected the integral, the smaller its value. Hope-
fully, the last term, at least, should be small enough to be neglected safely.

3 31668 33



5. Approximatibhs for the triplet correlation function
based on the theory of inhomogeneous fluids

Recently, Lozada — Cassou [6] and Attard [7] have investigated the
calculation of g,,3 using the formalism of inhomogeneous fluids. The pair cor-
relation function of an inhomogeneous fluid can be calculated from the inho-
mogeneous OZ equation \ ‘

iy = 1+ { Paltracagdrs. (27)

Equation (27) must be supplemented by a relation between the pair and sing-
let functions. One convenient relation is that of Lovett et al {8] and Wertheim
191

dlnp; Opy )
or, _S ory C19dFs. (28)

Equations (27) and (28) must be further supplemented by some approximation,
such as the PY or HNC approximation.

Most applications of Eqgs (27) and (28) involve inhomogeneities in the
presence of large spheres. However, Lozada — Cassou and Attard have consi-
dered the source of the inhomogeneity to be one or more of the fluid molecules.
This permits the calculation of the triplet correlation function using a for-
malism developed originally for pairs. o

In Lozada — Cassou’s method, gis, the singlet function in the presence
of a pair of molecules is calculated whereas in Attard’s method gisss, the pair
function in the presence of a third molecule, is calculated. Holovko et all*®]
have also considered these types of approaches. The method is quite general
and can be applied to calculate higher-order correlation functions. For example,
gm,,t4h cguld be calculated from gz, gioss, OF gi2:. In Lozada — Cassou’s
metho S

123 = gug/ (29)
while in Attard’s method

8123 = 1382381273 (30)

If we employ Attard’s method, using the PY épproximation for sake of
explicitness, we obtain the expansion

g;2/3 =€), {1 + S p4f14/t24d"4 + S P;Pafm/xzsfud"a;d"s +
+ 2SP495fuf1$f25f45d’°4d"5+ . } . (629]

Substitution of : ¢ ;
| 0 (@) =0+ 0fsu +0* (1 + fan) { Fasfusdre+ -}, (32)
which results from (28), yields the f-bond expansion
8123 = £1381383s [1 4+ pO123 + p?(e4125 + &DBatigs + €5Pos +
-+ terms obtained by cyclic permutation of 123 + &6 -
-+ 6310 — ¢2,,63423) 4+ -+ -]. (33)

Thus, gyp3, in this scheme, is symmetric in 1 and 2 but not in 3. The appro-
ximation replaces last three terms in Eq. (2) by a spurious product of Cyp and
03,5. Attard, of course, was aware of the asymmetry and suggested symmet-
- rizing

1
23 = —- (813823812/3 -+ £1:8238312 + £128138231)- (34)

This results in'a symmetric triplét correlation functions but the weights of
€6:» are now incorrect and there are now three spurious terms.
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Proceeding in a similar manner, Lozada — Cassou’s scheme yields

8123 = 813813823 [1 + pB312s -+ p? (24123 + €5ay23 + terms obtained by
cyclic permutation + e5Ba1 + €5Bast + €bas1 — €2,,63125 — €2,36319) o - - - 1.
(35)

As known to Lozada — Cassou, this scheme is symmetric in 2 and 3 but not
in 1. It too can be symmetrized by an equation analogous to (34). Comparing
Attard’s and Lozada — Cassou’s schemes, Attard’s scheme includes more dia-
grams and fewer spurious diameters. Which approximation is more accurate -
in practice is, of course, not known at present.

The lack of symmetry in gy, is similar to the lack of symmetry in the
earlier prescription of Verlet [11]. In fact, Verlet's equation for gy, is the
same as that of Lozada — Cassou. If gy, is used only to calculate g2, 45 Was.
a vocated by Verlet and as was done in some of the papers of Attard, the asym-
ntetry is no problem. It is also no difficulty in applications to problems which:
are inherently asymmetric, such as inhomogeneities in the presence of one or
two large spheres. In any case, as we have indicated, the problem is removed
by symmetrization. :

6. A new approximation

One interesting thought is to use Eq. (23) and (24) but with bonds conlipo-
sed of Ay = &:iu— instead of h;;. For example,

i
_ 1 Liaa 1) (828 __
8123 = 13813823 [ +o S‘( 813814 )( &2383q 1) %

Q121 ]
X(m—l)dr‘l_;_,“]. (36)
If the superposition approximation is used, Eq. (36) becomes Eq. (23). Whe-
ther Eq. (36) is computationally convenient has not been investigated.

Equation (36) could be used with the i in the integral given by any
of the above approximations or full self consistency could be demanded. In
any case, to order p?, Eq. (36), using any of the earlier schemes to calculate
gi{/k’ ylields Eq. (2) with only the last two terms missing and with no spurious
integrals.

7. Some thoughts about the accuracy of the various
approximations

Even without numerijcal calculations, some thoughts can be given with
reasonable reliability. First the superposition approximation is too crude.
It is correct only at very low densities. Equation (23) is an improvement but
still includes too few diagrams. Equation (26) is no harder computationally
than Eq. (23) and, on expansion in powers of density, yields the approximation
for the p? term

(03123)% + €713 = S f1'4f15/c24f25f35 (1 /) drdr; = 0. 87

Equation (36) leads to the same approximation for the p® term but is more
difficult computationally. Equation (37) is rather like the equivalent PY app-
roximation

(€21)* + d5,, = 0. ‘ (38) -

Based on our experience with the PY approximation for &2, one might expect
tEq. (37) to be quite accurate for hard spheres, but less useful for other sYys-
ems. R .

The Attard prescription invoives (37) and the further approximation

€603 - €2,,63123 = Simfmfmfzafas(l + i) drydr; = 0. (39)
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This too may be a reasonable approximétion, at least for hard spheres. In Lo-
zada-Cassou’s scheme there are 5 missing integrals and 2 spurious inte-
grals. As a result it is difficult to pair terms and simple minded arguments,
such as that given above, are probably not informative.

8. Summary

Six approximation for g3 have been considered. The superposition app-
roximation and Eq. (23) are too simple, the Lozada — Cassou and Attard
_ approximations are more sophisticated but more difficult computationally.
Equation (36) is even more demanding computationally. Equation (26) may be
the best compromise between sophistication and ease of use.

All of the approximations which we have considered neglect (83,55)*. The-
re is no difficulty in including this integral. Each approximation can be cast
in a HNC version, rather than the PY version considered here, by considering
In gyo5 rather than g,,;. Probably the PY version would be best for hard spheres
but the HNC version might be preferable for other systems.
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. INTEGRAL EQUATIONS FOR THE CORRELATION
FUNCTIONS OF FLUIDS NEAR WALLS !

An iﬁtegral equations for the correlation functions of fluids near impenetrable wall are
cornisidered within the singlet and pair theory. The main attention is paid to the treatment
of the long-range Coulomb interparticle and particle-wall interactions.

1. Introduction

Despite recent progress in the description of the electrode — electrolyte
interface the theory of electric double layer is still not complete. Integral equ-
ations form a basis for studies in this area and a wide set of models within
different approximate schemes has been investigated.

In this article we have two goals. First, we should like to present a brief
but consistent general route of the integral equations application for the elec-
trolyte/wall problem. On the other hand we shall introduce some important
supplements which are helpful methodologically as well as necessary for the
numerical treatment. The singlet theory which provides the density profiles
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