This too may be a reasonable approximétion, at least for hard spheres. In Lo-
zada-Cassou’s scheme there are 5 missing integrals and 2 spurious inte-
grals. As a result it is difficult to pair terms and simple minded arguments,
such as that given above, are probably not informative.

8. Summary

Six approximation for g3 have been considered. The superposition app-
roximation and Eq. (23) are too simple, the Lozada — Cassou and Attard
_ approximations are more sophisticated but more difficult computationally.
Equation (36) is even more demanding computationally. Equation (26) may be
the best compromise between sophistication and ease of use.

All of the approximations which we have considered neglect (83,55)*. The-
re is no difficulty in including this integral. Each approximation can be cast
in a HNC version, rather than the PY version considered here, by considering
In gyo5 rather than g,,;. Probably the PY version would be best for hard spheres
but the HNC version might be preferable for other systems.
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. INTEGRAL EQUATIONS FOR THE CORRELATION
FUNCTIONS OF FLUIDS NEAR WALLS !

An iﬁtegral equations for the correlation functions of fluids near impenetrable wall are
cornisidered within the singlet and pair theory. The main attention is paid to the treatment
of the long-range Coulomb interparticle and particle-wall interactions.

1. Introduction

Despite recent progress in the description of the electrode — electrolyte
interface the theory of electric double layer is still not complete. Integral equ-
ations form a basis for studies in this area and a wide set of models within
different approximate schemes has been investigated.

In this article we have two goals. First, we should like to present a brief
but consistent general route of the integral equations application for the elec-
trolyte/wall problem. On the other hand we shall introduce some important
supplements which are helpful methodologically as well as necessary for the
numerical treatment. The singlet theory which provides the density profiles
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of particles near the wall will be discussed first. Then, a natural development
Jeads to the so-called pair theory which gives both the profiles and pair
functions of inhomogeneous fluid.

2. General theory at the “Singlet” level

At the beginning it is necessary to discuss briefly the models which will
be considered and their applicability. Most important is that this study is
restricted to those systems in which the ions interact via isotropic short-
ranged and long-ranged Coulomb electrostatic potentials. The ions possess
neither a dipole moment nor higher order multipole moments. So, the primi-
tive model of electrolyte solutions and the fused salts belong to this class.

As usual, this class of models can be described by a set of reduced dimen-

sionless parameters, i. e. the packing fractionn -= n 2] 0:d3/6, BT qg/leTadﬁ,

size and charge ratios, where g; and d;; are the charge and diameter of the par-
ticles respectively. Due to difference in dielectric constant e between the pri-
mitive model of an electrolyte solution and the fused salt case and corresponding
' temperature region, the strength of interactions (B;) is very different. Alt-
hough not especially important for an analytic treatment, it could cause se-
vere problems in the numerical procedures. The particle-hard wall interactions
are described by the single parameter £* = (kTd3) *E where E = 4ngle is
the electric field value on the wall and ¢ is the charge per unit area on the
wall.

Now, proceeding we define the singlet theory, in contrast to the pair theo-
ry presented in the following sections. This classification has been introdu-
ced not so long ago by Henderson et al. [1, 2] and discussed in {3]. At the pre-
sent, we merely state that the singlet theory is the one which does not utili-
ze the inhomogeneous Ornstein — Zernike equation to calculate the density
profiles and higher-order distribution functions of particles near a surfage.

In fact, the inhomogeneity in the singlet theory is created by the presence
of giant particles in the system which are at infinite dilution. This type of
theory has been developed first by D. Henderson, F. F. Abraham, J. A. Bar-
ker {4] and J. K. Percus [5]. We shall start this presentation from the Orns-
stein — Zernike (OZ) equation for the correlation functions of a many-sort
mixture. One of the species will be denoted by the index w and will be used
in the following derivation to create a wall

hw;(’lz) = Cui (12) T ; 01 S‘ drghi (r13) €1i (rg,). ' 2.1

In order to create a wall one has to take two limits in (2.1), namely the
infinite dilution of w particles and then increase to infinity their sizes. We
shall assume the first limit provided and so the sum in (2.1) does not con-
tain the w species. Rewrite now Eq. (2.1) in the bipolar coordinates to inte-
grate by the third particle -

’ 2
hoi (115) = Cwi (ry2) + ,J:Z ’

Lo Fiatr1s M
EI D1 S dryarisfier (713) s drgsrssCri (ray).  (2.2)

0 [ry2=~rysl
There is no distinction yet between cy: (r) and ci; (r). At this point we shall
restrict ourselves to the HNC closure for all direct correlation functions -

- cHNO(r) = — By (r) — Bgaqifer + hip (r) — a1 4 2y ()], (2.3)

where @;; () is the short-range part of the total pair interaction. Then, Egq.
(2.9) is

4 .
In[1 + hwi (r15)] = — BQui (r12) — BGiq/ery, +

o o0 rygFrs .
+ _f; 2 Pi S dryarshu (rq3) S dragra'gcll (r52) -
. i 0 Iria—rysl '
925t i o riatrys
-— Tiﬁ%‘ 21 P g drysryshe (r13) S dras, 2.4y
0 r1a="1q]
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where
¢t (1) = —Bui (1) + i (1) — In{1 + Ay (). 2.5
Now, the last integral in (2.4) can be transformed as follows
o ﬁqz o riztris
— 3 ZPIQJEd’13f13hwl(f13) S drg, =
. l 0 .

Ty2
lrie—r4sl

4 ﬁqi <
= . P pATIE gdflsflahml (r1a) +
12 { P !

22y, g, (dry, Lle=r) g ) (2.6)

Making use of the local electroneut'rality condition ‘
G = —4m 2;: P19 Sdff.zhm (g 2.7
then Eq. (2.4) is ’

IN[1 4 by (r10)] = — Bui (r1,) -+ "—,2%211'91 Sd"'xsrlshwl (r1s) X
0
ris47rss

) 4 7 Typ (F1g =
X [ drassen () + g Do [ dr, =m0 b 28

Jras—rusl Fis

where the Coulomb terms have been combined. At this step in our derivation
the wall is introduced. We write the variables e and ryg as ry, == R - x,
713 = R + ¢ and take the limit R — ob. Then, the Eq. {(2.8) becomes

In{l + Ay (X)) = — Ppw:(x) + 25 Z:J ) g dth: () X
X { drreg, )+~ Bas Dpuas |t — 1) hur 0, @9
124 : x !

where the direct correlation function is given by (2.5).

3. Some electrostatic considerations

Let us define the mean electrostatic potential YP (x) as follows

4 oo .
P = g Zpig, f dt (x — 1) ko (8. @.1)
Its derivatives are |
d an y ' |
_q%)i = : 2;4 019, Sdt'hwz ®, . (3.2a)
d2 4 . .
d";z(x) =— S“ §pzq1hwz (x) (3.2b)

and therefore 1 (x) satisfies Poisson’s equation.

One can extract the total potential difference across the interface. We
assume that the particle-wall interaction prevents penetration of particles
into the wall, which is situated at x =0, i. e.”

o0, x <0,

3.
¢(x), x=0. - ~ G4

P(x) =
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Then, Eq. (2.9) is | o
Il ()] = — B (6) — Parb (x) + 2n g, | dih, ()

7 , | 4 Y R
X g drreii (r) = —Bo; (x) — Bgib (0) — : Ba; ZI Piq, {OS dith, (t) +
x>
+xf dth,(t)} + 2 zl: o, | atny § dircii (), (3.4)
x —00 lx—t}

where the index @ is omitted here and in the following for a simpler notation.
Because the wall is impenetrable, “ _

: hi (x)=—1, x<0. 3.5)
So the last term in(3.4), denoted /; (x), can be transformed as follows

1i(x)=—2=n 2 p, S dt S drrey; (r)y + 2n gp, S dth, (£) S drrei; (r) = |
: 0 1t 0 1x—t}
. oo r—x ) ® o0
= — 20 Xp; (drre;, () S dt + 2n ;pi Sdth,(t) S drrey, (r).  (3.8)
! X I 6

x fx—¢)

The moments of the short-ranged direct correlation functions cij (r) will be
introduced ' :

F () =  drr"ciy (). | B.7)
With this notation the final form of Eq. (3.4) is
il 4 &y (x)] = — B, (x) — Pg,b (0) — 4n/elByg;) EI 0.9 [S dith, (1) +
: 0

+ x 5 dth, (t)J + 2x ;Pz S dthy () FP  x — ) — 25 },] 01 (7 (%) — x[) (x)).
x - 1] )
(3.8)

We shall summarize the derivation at this point. Eq. (3.8) comprises
HNC/HNC (wall/bulk) approximation for the model with an arbitrary short-
range particle-wall interaction and long-range electrostatic Coulomb interac-
tion. The bulk model also is flexible as for the short-range irteraction. The
model is to be solved in the HNC framework to provide the short-ranged
part of direct cotrelation ftinctions.

In accordance with Eq. (3.8) the contact value of the one-particle distri-
bution function is given as

8: (0) = exp {— B2 (0) — Parv(0) + 22 X, [ ath, (1) fll () —
0

— 21 ¥,/ (0)} : 3.9)
{
One can check the data given by (3.9) if recalls the relation
- , E? - -
B~ B O = -+ 5 b7 Do —17) (3.10)

obtained by Carnie et al. [5], where X is the compressibility of the blilk model,
and where

L = — d (x)/dx|emp = — 4it/E 2 Py S dth, (). - (3.11)
[}
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If the particle-wall interaction contains a soft-core repulsive term and short-
range attraction which give rise to a tail ¢, (x) for the case of a simple fluid

gg]’l ’;hen the contact value g; (x = 0) is given by the relation similar to
.10

B™"Zp:8: (0) = By [ dxgy (x) 0 (0)/0x -+ — (B Zp; +%7) + 2
' 0

.(3.12)

4. Pair theory for the correlation functions
of inhomogeneous fluid N
As we have already mentioned the singlet theory utilizes the homogene-
ous Ornstein — Zernike equation, i. e. the OZ equation which contains con-
stant density. On the contrary to the singlet theory, the pair theory consists
of the inhomogeneous OZ equation and additional equation which provides
coupling between the profile and pair distribution function. There are three
unknown functions hy; (ry, 1), cij (ry, ry) and p; (r) in this problem. For the
completeness, some kind of closure has to be applied. The closure comprises
the relationship between the inhomogeneous pair correlation function he (ry,
ry) and direct correlation function ¢;; (r,, r,), and besides that contains the in-
teraction potential. Let us write down necessary equations. The first is the
OZ equation for inhomogeneous system

hij(ry, ry) —cuy(ry, 1ry) = ; S drsp; () hij(ry, ry)cuj(ry, r,). . (4.1)
It has to supplemented by additional equation for the profiles and pair func-

tions. There are three equivalent possibilities to define this coupling, either
in the form of Lovett — Mou — Buiff — Wertheim (LMBW) equation [7, 8}

TV, Inp; (r)+ V.,V (r) + ; S dryp; (ry) het (ry, 1) VoV (r) =0 (4.2)
or i

Vilng; (r)) = — (RT) 7' ViV (ry) + 3 (dracu(ry r) Vop, (ry) (4.3)
or Born — Green equation

Valng; () = — (RTY V.V (r) — 67y 3 § dr, 200D gy

P; (ry
X (ry—ry), o (4.4)
where VP (#) is the external potential providing the inhomogeneity,
01 (ry, Ty) = p;(ry) p; (ry) [1 + hij(ry, r,)l (4.5)

is the inhomogeneous pair distribution function. The equation (4.3) is often
called the Triezenberg — Zwanzig equation [9].

So, the problem formulated consist of (4.1), any of the equations (4.3) —
(4.5) and the closure relation for inhomogeneous direct correlation function.
Let us rewrite the pair of equations which comprises the problem for the case
‘of planar geometry . :

hij (21, 235 Ryp) = cij (21, 250 Ryg) -+

+ ? S‘ dZ;;pl (23) S dRahil (21, 23, Rla) Cl]' (23, zz, R32)’ (46)
9 —1_ 9 yex )
7 Inpy (20) = — (BT 2= V™ (zy)
9p, (2,) ‘
+ :‘2 S dz, p(;z: S dRscir (21, 25, Ryy), @4.7)
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/

where all the integrations by R are two-dimensional. Now we shall recall that
the pair interparticle ‘interactions consist of short-ranged and Coulomb terms
and the external potential is

VEO (2) = 9 (2) — g;Ez. (4.8)
5. Treatment of coulomb interactions

Our target in the following derivation is to combine long-range Cou-
lomb terms in favour of the mean electrostatic potential. We shall deal first
with_inhomogeneous OZ equation and assume the following closure for the
inhomogeneous direct correlation function

cij (1, 2) :c;].(l,'Q)—ﬁqiqj/erw, (5.1)
where 7y, = [(z;— 2)? + R:)'”. Then the Eq. (4.6) is

o0

hii(ryy r) = ¢y (ray 1) + 20 32 [ day [ dRRypy (25) bt (11 19 €3y (02 1) —
P —oo Q0

A T K !
— Bg:9,/eRy — 2mg,/e 21" 4 S dz, S dR3R 30, (25) hus (ry, ra)“ﬁ - (5.2)
—o0 0 o
If the charge electroneutrality will be utilized ‘
9 =—2n Xq, | despi (z9) | dRRshut (ry, 1) (5.3)
—o0 0
then Eq. (5.2) is
hij(ry, ry) = ¢;;(ry 15) 420 274 S dzyp; (25) \ dRsRhii(ry, 1r5) X
—o00 0 .

X C;l' (I‘3, r2) - ﬁqiu’i (rl’rz)" (54)
We have introduced the function

SR ? 1 1
bty ) = 2ne 2ay | dagy o [dRRopurtrs, r) [y — 7]+ 69

Let us inspect the behaviour of ¢, (r;, r,) at distances z,, z, far from the elec-
trode. Actually we would like to look for a homogeneous analogue of ¥; (ry,
ry). So, if one assumes p; (z3) = p; and hy (ry, rs) = hy (Ryy), then (7.5) has
the form

¥ (Rus) = Zpsqie § dRshis (Ryg) [1/Rsy — 1/R ] =

00 RIS+R18
= 2n/eR,, ; P S dR 3R 151 (Ryy) | dR;, (1 — Rgs/Ryp) =
0 Rir'—Rwl o
= 4n/eR,, 12 019, g dR13R 13 (Ryy — Ryg) hur (Ryg). - (5.6)

R!2

Now, if one compare this expression with the last term of (2.8) and (3.1), it
becomes clear that y; (r,, r,) could be treated as a species dependent pair mean
electrostatic potential. It is evident that ; (r,, r,) is a more short-ranged
function than the input interactions. However, the detailed study of ¢, (r,
" #,) behaviour in the wall plane is desirable.

Let us consider now the treatment of Coulomb interactions in the LMBW
equation. Substitution of (5.1) into (4.7) leads to the equation

dinp,; (1) 9, (2;) ¢
oz, —+p oz, — — 631 (Bg1E2) = 2n IE Pz_.gm dz,0g, (2,)/0z, X
x | dRRali 2y, 25 R)—2npgife Dipgy § duidgy @)ioz, [ dR, (5.7)
0 —0 l2,—2,
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‘where p; (2) = pg; (2). The wall is impenetrable at z <0, hence the profiles
&: (2) has the formh g; (2) H (2), where H (2) is the step function. After trans-
formation of the last integral in (5.7) at z, << 0, we obtain from {5.7)

dlnp; (z)) 09; (21) T . N7 .08, (z2)
Al e ™ *ﬁqu“Q“%pl_idzﬁ 3z,

R Lod . QJ'Eﬂ'qi . oo
X S dRRcii (23, 25, R)— P Al‘:u 09,8, (0) S dR —
0 2
2nfiq, Todg) T
— Yo | dz, =L ' { ar. (5.8)
0 = 23—2,|

Let us transforrﬁ further the last integral in (5.8). Since Odg, (2,)/9z, =
= Oh; (2,)/02, at 2, >0 (h; (z,) = g; (z2) — 1), then integrating by parts one
o tains ’ '

2nfq T,oom ) T
— i gpthgdzz*éz—z S dR =

e 2

0 121—2,]
QRqu ’ e % o o --‘-
=— = ; 0.4, ;[hz (z“’).z é | dR} l + 0§ dz,h, (2,) 9102, . i |dR} =
2nfg, ] T i ) . T ‘
= ”i 12 i {— 2, (0) [ dr -+ { dz,hy (2,) 6102, { dR} . (5.9
& 0 les—2,t

- In (5.9) we have utilized the electroneutrality condition 2p,9; = 0and 6/0z, =
= —0/0z,. *

Substituting (5.9) into (5.8), the latter is -

dlnp; (z;) 9 9; (1) O . 08 @) T
L LA 2n12p,_gwdzz-—3¢g’i— 0§ dRRc;, (21, 23 R)—
a- ‘
~ Bgi—5— ¥ (), (5.10)
" where : ,
» .2 v % .
¥(z2)=—Ez + Tn ; P19, S dz,h (2,) S dR (5.11)
0 121—24|

can be treated as the mean electrostatic potential (see the Appendix).

Appendix

Consiider the treatment of Coulomd terms for the case of planar geométry
in the singlet theory. The HNC equation is

Infl + h; (2)] = — BV (2) + 2 §[] o | dth ¢ty § drrea(r), (A1)
. o0 I

22—t

with V™ (2) given by (4.8) and cu (r) by (5.1). Then, (A.1) is

In{1 -+ h; ()] = — Bgy (2) -+ Bg; E2 + 2n Yo, {amioy | arret (9 —
—s0 |2—¢| '
—2aPgife X pug,  dth, () 1im [L—[z— 1]l (A9

Let us define the function _

¥ (@) =2n/e Y pyg, lim L § athy )y —2mreSpq, { dat(1z—t])hy 6y —

— L2+ C', (A.3)
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where C’ is an arbitrary constant because the mean electrostatic potential
has arbitrary zero. The term proportional to L can be absorbed into the cor- -
stant C’ and (A.3)*looks then as follows

¥ (2) =—2n/e _Sl_,‘ 0:9; S dt(|z2—t]) b, (t) 4 4nz/e ; p,q,'S dth, (¢) 4 C.
— o0 0

| (A.4)
where C denotes arbitrary constant. Since
0
Sow. § dth, () =0
then |
. 0 :
¥ @) = —2n/e oy { ath i (jz—t)|—22) - C. (A.5)
At large z (z > oo) |
| W(z) = 2n/e ;‘p,q, \ dih, ()2 + 1)+ C. (A.6)
—d&o
" Thus, the constant ¢ can be determined
C =—2n/e ; oy | dt @+ R, (A.7)
Now,_ substituting (A.7) into (A.5) one obtains
N .
¥ (@) =—4nje X g, | dth, ()t —2), | (A8)

which is the mean electrostatic potential and coincides with 3.1).
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