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The history of nonequilibrium statistical operator method is pre-
sented.

The history of appearance of new ideas is a complex and an instructive
process. Ideas of the theory of nonequilibrium processes are original and
complicated for comprehension. Difficulties of the theory of nonequilibrium
processes were formulated very clearly by R.Peierls in his lecture “Some
simple notes on the basis of the transport theory” [1]. “In each theoretical
analysis of transport problems it is important to imagine clearly the place
at which irreversibility was carried in. If the latter isn’t carried in the
investigation is mistaken. Description in which the reversibility in time
remains can yield both the zeroth and infinite results for conductivity, If
we don’t see clearly where the irreversibility is carried in, then we don’t
understand what we are doing.”

In this lecture I will not make attempts to present the history of develop-
ment of the theory of nonequilibrium processes starting from pioneer papers
by Gibbs. One can find it in many books and reviews including my own
book “Nonequilibrium statistical thermodynamics” [2]. I want to tell only
about my way to understanding nonequilibrium statistical mechanics that
led me to construction of noneqrilibrium statistical operator (or functional).

For a long time I believed together with many physicists-theoreticians
that general theory of nonequilibrium processes, based on the sole method
like Gibbs equilibrium statistical mechanics [3], doesn’t exist now and will
not apear in the future and each problem needs its own method, for example,
that of solving the kinetic equation (a consequent theory of kinetic equations
on the basis of Gibbs method was worked out by Bogolyubov in 1946 [4]).
The kinetic equation is unappliable to liquids and therefore there is no
realistic theory of fluids. These ideas are clearly expressed in the book by
L.Hurevich “The principles of physical kinetics” [5] and in the course of
statistical physics by L.Landau and E.Lifshitz [6].

After papers by H.Green (1952-54) 7] on the statistical mechanics of lin-
ear dissipation processes and by R.Cubo (1957) [8] on the theory of linear
response of statistical systems to external perturbations, in which excel-

lent Green-Cubo ! formulae were obtained for kinetic coefficients in terms

'In 1961 these formulas were known as “Kubo formulas.” At present the more exact.
title was accepted “Green-Kubo formulas.” The theory by Green M. was further developed
in papers by Mori 1958-1959 [9], who proceeded from a local equilibrium distribution on
the basis of Gibbs grand canonical distribution that is more convenient to use.
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of space-time correlation functions of flux densities of quantity of parti-
cles, heat and momentum, a hope arised the united general method existed.
These formulae are a brilliant achievement of the theory of nonequilibri-
um processes. Existence of such relations lead to the natural idea, that
Green-Cubo formulae are only a part of expansion of some nonequilibri-
um distribution function or statistical operator and they correspond to the
nonequilibrium statistical ensemble. The ideas appeared in my mind in the
spring of 1961 in holiday home “Solotcha” on Oka-river when I tried to
generalize a review on the theory of two-time Green functions, published by
me in 1960 in “Uspiekhi Fizicheskih Nauk” [10]. In that time I wasn’t able
to include in the review the theory of linear response of statistical systems
to “thermal perturbations” in convincing form. It is impossible to repre-
sent such perturbations as a result of external field action. It seeemed to
me the problem of generalization of Green-Cubo formulae was interesting
to a great extent but rather hopeless one, since, on the contrary to the
eqrilibrium case, I have not had clear physical principle for construction of
the nonequilibrium statistical ensemble and at the same time the induc-
tive way using high approximations for Green-Cubo formulae seemed to be
very complicated. The main idea of solving the problem came into being
quite accidentally: powerful spring flood on Oka-river isolated our holiday
home from railvay Ryazan-Moscow on which briges were destroyed and the
only exite way out appeared to be an indirect narrow-gauge line through
Spas-Klepiki. The train left in the evening and I had to spend a night in
a small car of narraw-gauge line so that I could sleepless not even lie down
on a bench. That night I got desire to think about realization of the idea
in which I trusted weakly. But it was that moment when the idea of gen-
eralization of Gibbs distribution for nonequilibrium case with the help of
quasi-integrals of motion was originated.

I am going to present thisidea in the form in which it arose. Quasi-
equilibrium statistical operator for a stationary state of spatially inhomo-
geneous system has a form

0= Q5 exp {~ [ 6(2)(H(2) - w(o)n(a))da }, 1)

where (z) = ﬁ, T(z)is a temperature, u(z) is a chemical potential, H(z)
is the operator of energy density, n(z) is the operator of particle density.

At constant temperature and chemical potential (1) transforms to the
statistical operator for the grand canonical ensemble of Gibbs:

00 = Qg exp{ - B(H - uN)}, (2)

where H = [H(z)dz, N = [n(z)dz are the integrals of motion. On the

other hand, H(z) and n(z) are not the integrals of motion, since they don’t

commute with H, [H(z), H] # 0, [n(z), H] # 0. The question appears ifit is
possible to find such operators A;(z) and A;(z) corresponding to H(z) and

n(z), that thay should commute with H: [A;(z), H] = 0, [Ax(z),H] =0

and that statistical operator

0e=Q" eX§ {—'/ﬂ(w,)(Al(w) - u(é)Az($))dw} - )

should commute with H and could describe correctly stationary nonequi-
librium processes.
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Operators H(z) and n(z) written in the Heisenberg reprezentation

H(z;t) = e_%H(w)e%Tt, n(z;t) = e—%n(z)e%
satisfy equations of motion
O (eit) = L[H(zit) H] = —divi,(zi0),
ot ith H (@)
d 1 o
Zn(@st) = —[n(z0), 8] = -divi(;),

where j , (z; t) is the density of energy flux and j(z;t) is the den31ty of
particle flux in the Heisenberg reprezentation

Natural idea appears that for construction of integrals of motion one
has to add to H(z) and n(z) certain terms related to fluxes of energy and
substance. It is rather casy to quess that one can try to choose as these
quantities

Ai(z) = Hu)-/awAmoa
0

; (5)
Ax(z) = n(z) —/mw@nmt
0
Really in the Heisenberg representation
Mait)= H(ait) - [divi, (et +t)dh =
oo}
= H(z;t) —/diij(:c;t')dt’,
t
: (6)
Az(z;t) = n(z;t) —/divj(z;t—{—tl)dtl =
0
(oo}
= n(z;t) - /divj(z;t')dt.
14
It follows from these relations
0 0
EAl(:E, t) = 0, 'éEAz(I,t) =0 (7)

i.e. Aj(z) = A1(2,0) and Ay(z) = Ay(z,0) commute one with another.
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One can try to postulate the nonequilibrium statistical operator in the
form

0=Q 'exp { - /ﬁ(m)(H(z) - u(:c)n(x))dx+
o0 (8)
{-/dt/ﬁ(x)(diij(x;t)—u(z)(divj(:r;t))dw}.

After integration by part in the second integral of the exponent and omission
of surface integrals as boundary condition we obtain the final expression for
the statistical operator

0=q" exp{ - [ @)(8(z) - noyn(a))de+
y )
+//J'H(z;t)-vﬁ(z)-J'(w;t)-Vﬂ(w)u(z))dtdz}-

These greatest notes I made in a notebook during the sleepless night (I have
saved the notebook). It remained only to calculate kinetic coefficients and
verify their accorrdance with Green-Cubo formulae at small gradients 5(z)
and p(z).

After returning to Moscow I checked notes and got from (9) the linear
approximation for g at small VA3(z) and Vpu(z) and wrote down the corre-
sponding entropy production. But unfortunately I obtained not positive but
negative entropy production. In a stationary nonequilibrium state it has to
be positive and total entropy should increase since fluxes through the sur-
face, the latter is assumed to be removed to infinity, have been omited. I
didn’t find mistakes in my notes so it remained to suppose the only thing
that another solution should exist except the obtained one. Let’s notice that
anological situation is known in the radiation theory where two solutions of
Maxwell equation exist: retarding solution and leading one. To explain the
possibility of radiation one has to select the only retarding solutions by the
mean of Sommerfeld’s boundary condition for radiation which implies the
absence of waves coming from infinity.

It was really not difficult to guess that another solution exists:

0
A(z) = H(z) +/diij(z;t)dt,

- (10)
Ax(z) = () +/divj(:c;t)dt

and substituting this solution in the formula (3) we obtain the
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nonequilibrium statistical operator:

0= Q' exp { — | 8(e) (B (2) - ptene)) e

0 (11)
- / / (jH(a:;t) -VB(z) — 3(z;t) - Vﬂ(x)u(w))dtdx},

which leads to correct Green-Cubo formulae and to positively defined ex-
pression for the entropy production. After that I trusted in the idea of the
nonequilibrium statistical operator and started to develop it with my co-
workers and pupils; I deal with it so far. Now it seems to me that it is very
good I've obtained first leading solutions but not retarding ones. Othewise
an illusion could arise that it is possible to obtain irreversible equations
without additional hypothesis proceeding from mechanical equations.

After returning to Moscow I wrote quickly not large paper “Statistical
operator for nonequilibrium systems” [11], which was represented 11.04.1961
by academician N.N.Bogolubov, my teacher and scientifical guide, for pub-
lication in Reports of the Soviet Academy of Sciences. No reference was
needed for publication in Reports ..., the academician’s representation was
sufficient. I think it was the only way to publish the formulation of the new
principle in the paper that was not substantiated in full manner. The only
stationary case was considered in it and there was no concrete application.
The editors of the Journal of experimental and theoretical physics would
decline it undoubtedly. ‘

I’d not say the idea of the nonequilibrium statistical operator was ap-
proved by my friends. S.V.Tyablikov named it ironically Ryazan miracle.
Someone may remember that in 1961 Ryazan province overfulfiled the plan
of meat production fantastically after it had bought out a lot of cattle in
neighhbbouring provinces. The latter was kept back thoroughly. Successes
of the province caused canard in press. “The great achievement” was known
among reporters as Ryazan miracle.

In 1961 I had an invitation to the first summer theoretical school in
Odessa, organized by theoretical department of Institute of Theoretical
Problems and physics department of Odessa university. I think it was the
first summer school for theoreticians. In the future similar schools were
held oftener. Original investigations of authors were represented for reports
but their titles were not announced before. I decided to read the report on
the nonequilibrium statistical distribution of Gibbs because I was interested
in that how qualified physicists-theoreticians from Landau’s Moscow school
and Leningrad school of Institute of Physics and Technique would appreci-
ate my paper. When in Odessa I informed the chief of organizing commitee
Dr. 1.M.Halatnikov, that the title of my report is “The statistical operator
for nonequilibrium systems” he was astonished and asked me if I was not
mistaken but I confirmed the title. .

My short report as it was expected caused rather intensive discussion
at which except of sceptical treatment I heard also the valuable support of
Dr. L.E.Gurevich (Leningrad Institute of Physics and Technique) and Dr.
E.S.Fradkin (Moskow Physical Institute of the Academy of Sciences). I knew
works of Gurevich due to his book “Physical kinetics” but he doubted it was
possible to generalize the Gibbs theory for nonequilibrium states. (Besides
that there was a lot of interesting things for me in the book by Gurevich, in
particular, the theory of stationary nonequilibrium Onsager processes which
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had direct relation to my report). I was acquainted with Dr. E.S.Fradkin
in connection with his works on hot plasma theory because I dealt with
it earlier. Dr. Gurevich treated my report first with great interest and
approval but changed his mind a day later. Dr. Fradkin expressed an idea
in the discussion that in order to substantiate obtained distribution pne can
perhaps “introduce any €”. His proposal appeared to be correct and the
problem really was further in that how to introduce “any € — 0” and what
it meant. I tried not to take active part in the discussion personally since I
have told in my report already everything that I did then due to intuitive
guess and didn’t have new convincing arguments.

After Odessa school 1 had to think have inaccuracy and non-entire what
causes persuasiveness of proposed by me method for construction of the
nonequilibrium statistical operator for stationary processes.

Undoubtedly it lied in that after integration I{)y parts in spatial inte-
grals [ B(z)divy , (z; t)da: and [ B(z)p(z)divi(z;t)dz I omited integrals over

closed surface fﬁ( 3, (z;t)ds and [ B(z)u(z)j(z;t)ds, but in final results

when calculating average quantities, the volume V — oo at fixed N/V and
the surface comprising the volume V was gone to infinity. However at a
stationary process integrals over the surface are not infinitesimal at fixed
V3 and Vyu and they are equal to the entropy production in the system.
The question arises: what sense should one attach to the omission of fluxes
of energy and quantity of particles through the surface ? If not to treat it as
an elementary mistake then one wonders if there is a possibility to formulate
this process in a more accurate way with the help of two unpermutable lim-
its: V — oo at fixed V/N and the limit ¢ = 71,- — +0, considering it as the
boundary condition selecting retarding solutions to the Liouville equation.

It appeared to be very simple to introduce the nonequilibrium statistical
operator more rigorously with the help of introducing the infinitesimal .
Instead of relations (10) one can suppose

Ai(z)

0
H@) + [ etdivi,(@indt =e [ e Bzt
- (12)
0

5()

n(z) +/ etdivy(z;t)dt =« / en(z;t)dt,

— 00

where ¢ — 40 is introduced after the thermodynamical transition at calcu-
lation of averages with the operator

0c = eXP{ /ﬂ z) AE - u(z) §(z))d$}- (13)

The values All(z) , A5(z) have sense of densities of energy and quantity of

particles. Reall
‘ 0
/Ag(z) - /se”/H(z;t)dzdt: A,

-0

/A‘;(z) = /0 ae“/n(x;t)dmdt =N

(14)
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and also
lim = (A5) = (H(2), = (45) = (n(2)), . (15)

where averaging is done with the help of statistical operator satisfying the
Liouville equation. From (13) and (12) we obtain

lim
e—+40

0= Q" exp{ - [ 8@)(8() - n@In(a))da-
0 (16)
/ /estﬁ(z)(diij(z;t) - u(z)divj(z;t))dtdm}.

After application of the Green theorem and omission of the integral over
the surface we obtain the nonequilibrium statistical operator

0= Q" exp { - [ 8)(H(2) - neynta)) o+
0 (17)
[ [eiu(zit)- v8() - i(ait)- Vﬂ(z>u(z))dtdz},

which differs from (11) by the factor e only. The last one determines the

equality of expression under integration when ¢ — —oo, that means the

regularization of the integral. The index ¢ is omited for short notation.
The chemical potential u(z) depends on the temperature and pressure

u(T(x), P(m)) At constant pressure Vu(z) = 4 VT(z), and consequently

o=Q7" exp{ - /ﬁ(ﬂr)(H(m) - u(z)n(z))‘dz—
(18)

_—Z /e’tjq(x;t) : I-Tl(zjVT(z)dtd:c},

where _
aeit) = d(a0) - i(a ) (s ~ Tl (19)

is the operator of heat flux.
The stationary density of heat flux in the linear approximation with:
respect to the temperature gradient is

O / LQQ(z,z')T—z%E;SVT(z')dz', (20)

where

B8 0
Log(z,e") = %/ / e”<jQ(z)(jQ(x’;t+z'hr)—<jQ(z')>q)> drdt (21)
0 —o0 ‘ ] L
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is the Green-Cubo formula for the kernel of heat conductivity transport
where parameter ¢ — +0 after the thermodynamical limit. It A — 0 (21)
transforms into time averaged correlation function of space and time

Loa(e:) =3 [ (5a@)(ials' 0~ (ja=),)) . (22)

- 00

The heat flux (20) is related to the local entropy production

o(z) = / (VT%,-S : VT_(ngG) Log(z,a)) & /\(:z:)(VT(x))Z, (23)
where
/\(:E) = ‘T%/LQ,QI(x,x’)dx' (24)

is the heat conductivity coefficient.

Thus if to choose retarding local integrals of motion (12), the local en-
tropy production can’t be negative, as it is well-known from the nonequi-
librium thermodynamics [12].

The method considered above for construction of the nonequilibrium
statistical operator can be easily generalized for non-stationary case. The
simplest way is to formulate the selection of needed retarding solution im-
mediately by inserting into the Liouville equation the term depending on
the infinitesimal parameter ¢ — +0, which breaks the symmetry of equation
with respect to the reversal of time. It may be done in two versions.

The first version of the nonequilibrium statistical operator method pro-

ceeds from the Liouville equation for logarithm of the statistical operator:

2 Ino(t) + - [ne(t), ] =0, (25)

where in the right-hand part the term —E(ln o(t) —In gq(t)) is introduced

that breaks the equation’s symmetry with respect to the reversal of time.
This term is equal zero at p(t) = p4(t), ¢ — +0 after the thermodynamical
transition when to estimate averages

%m o(t) + 2—15 [1n o(2), H] = —¢(Ing(t) - In 04(1)). (26)

This version of the nonequilibrium statistical operator method is similarto
the method of McLennan [14] who corsidered the contribution into equation
(25) of entropy flux, which flows outside from the system on influence of in-
teraction with the environment, these interaction forces being non-potential
ones. Perhaps the nonequilibrium statistical operator method is simplier as
it doesn’t need an obvious introduction of the thermostat replacing it by a
boundary condition.
Let’s write down the equation (26) in the form

d
Ez(e“ In gs(t,t)) =eeln 04(2,1), (27)
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where
HT

In p.(t,t) = e~ In 0:(t,0)en, In g4(2,t) = e~ In o4(t, O)e!’-{'hl.

Integrating this equation in the limit —oco and ¢ and supposing that
tlim In g4(%,t) = 0 we obtain
——00

t

Inp.(t,8) =¢ / ee(tl"t)lngq(tl,ti)dt1
- (28)
0

=¢ / e In oy (¢ + 1, + t1)dt;.

—00
Hence the unknown nonequilibrium statistical operator has the form

YL NZNTNTNY O

0:(1) = p.(8,0) = exp{ In g4(2,0) }

0 . (29)
= exp {§ / e’ lngq(t + t1,t1)dt1} , v

— 00

where the wave line from above with the index H means the operation of ex-
traction of the operator invariant part In 04(t,0) relatively to the evolution
with Hamiltonian H mereover ¢ — 40 after performance of the thermody-
namical limit at calculation of operator averages.
~~~H

We have f(H)= f(H) evidently for any function of the Hamiltonian
H. The Gibbs distribution for the real gas of interacting particles is an
invariant part of the Gibbs distribution for the perfect gas that was shown
by. Prigogine [15] for a quantum case. He named the result, to a certain
extent conventionally, the H-theorem. :

t
The state of the system with given mean values <Pm(z)> corresponds
to the quasi-equilibrium statistical operator

04(1) = exp { 3(t) -3 / Fonlz: t)Pm(z)da:} , (30)
where : |
®(t) = InSpexp {— Z/]:m(x; t)Pm(z)dz} , (31)

is the Massier-Plank function, F(z;t) are parameters, conjugated with mean

values
(Pn(@))" = Sp(2(t)Pn(2)) (32)

and defined from the self-consistency conditions

(a(2)) = (Pul2)) = 5p(e(t)Pu(2)), e
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where p(t) satisfies the Liouville equation. :
Quasi-equilibrium statistical operator (30) under additional conditions
(33) leads to thermodynamical equalities for ®(t) and entropy

5(t) = —(Ingg)y = ~(lng,)". (34)
Really, we have
6®(t) _ t
F(zil) —<Pm(-'v)>q = —(Pn(2)),
__‘ﬁ(—t)—t = -rm(z';t)’ )

6(Pn(2))

t
i.e. the paratmeters Fp,(x,t) and <Pm(a:)> are conjugated.
For a multicomponent gas or liquid

Po(z) = H(z), Pi(z)=P(z), Pipa(z)=mni(z), (621), (36)
where H(z), P(z), ni(z) are the densities of energy, momentum and particle

number of components respectively. They are related to the conjugated
parameters

Folz;t) = B(z;t),
Fi(z;t) = =B(z; t)v(z; ), | (37)

me
Fun(ait) = Bla;t) (wilws1) - 503 (w30),
where m; is mass of particles, v(z,,t) is mass velocity.
This choice of parameters corresponds to the consideration in the coor-

dinate system at which the physically small liquid element moves with mass
velocity v(z;1)

0q(t) = exp {-q>(t) - / B(z;t)(H'(z) - u,-(a:;t)n,-(z))da:} ., (38)
where » ) )
H'(z) = H(z) - p(z;1) - P(2) + 50(2)v*(2;1) (39)

is energy density in moving coordinate system,
o(z) =Y _ mini(z) (40)

is mass density, that is independent of system’s motion.
From the extreme condition of Massier-Plank function with respect to
variation of mass velocity
600(z)

bv(z;t) (41)
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we obtain, that

v(z;t) = (42)

i.e. v(z,t) is really the mass velocity.
Quasi-equilibrium distribution (30) corresponds to the operator

S(t) = —Ing,(t) = 8(t) + 3 / Fin(238) P}z, (43)
the mean value of which is equal to entropy
(5())' =8+ Y [ Fu(a5)(Pn(z)) da (44)

and this is why it may be called an entropy operator.
Let us represent the nonequilibrium statistical operator (29) in the form

0
0:(1) = exp { ~~§&H } = exp {—S(t,O) + / e”lS'(t +t',t')dt'} . (45)

-0

where S(t) = S(t,0) and the operator

S(t) = §(¢,0) = S(t 0)+ = [S(t 0), H| =

(46)
= Z/ (f"m(:z:;t) (Pm(z) - <Pm(:c)>t) + fm(a:;t)Pm(z))d:z:
may be called an operator of the entropy production. Really
($@) E / Fn(;1)(Pu(2)) da. (47)
It is convenient to write down the operator (46) in the form
S = / (2:) (P(2) = (Pn(2)), )+
(48)
t)( P b (z)) ) )d
+ Falz;t)(Palz) - (P, (:c)>q)) z
where we used the identity
(In gq,H]>q = 0. (49)

Values P,,(z) are equal to densities of motion integrals, hence

Pa(a) = =V -jn(2), ()
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where j,,(z) are the vector or tensor operators of flux densities. Taking into
account (50) the formula (48) takes form

50 =% [ (Fn@)(Put@) = (Pa(@)) ) = ¥ (Fule:8) (im(a)-

= (in(@), ) + (in() = (in(®)) ) : VFn(eit)dz  (51)

ans the total tensor convolution or scalar vector product.
Mean value of the operator of total entropy production is equal

(80) = =% [(Fal@n((in(@)' - (in(a)), )) o+
+;/ (@) - <jm(w)>q)  V Fo(2;1)dz

Here the first sum corresponds to the entropy flux through the surface of
the system, and the second one corresponds to the entropy production in

(52)

.\t
the system. If one remains the surface integral then <S(t)> = 0.

The second version of the nonequilibrium statistical operator method
proceeds from a usual Liouville equation for the statistical operator

2o(t) + o= a(t), ] =, (5)

where in the right-hand part the term -¢ (g(t) - gg(t)) is introduced that

breaks the equation’s symmetry with respect to the reversal of time. This
term goes to zero at ¢ — 40 after the thermodynamical limit transition

2 00(t) + = [0c0), ] = ¢ o(t) - 0(1). (54)

Keeping the normalization of g.(t) follows immediately from (54), since
Spo.(t) = Spoy(t) = 1. Besides that

F(E@) = (GP@) =V (@), (o)

because of self-consitency conditions (33) which are accepted also for the
second version of the nonequilibrium statistical operator

(Pa())’ = (Pnla), (56)

and the right-hand part of the equation (54) doesn’t contribute into the
equation (55) at any . This property is not possessed by other operators
of densities of physical values A(z) for which only

lim <A(m)>t = <A(z)>

Jm (57)

q
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Let us obtain now an obvious solution to the equation (54). For that we
write down it in the form S

d € £ | ‘
Zi‘t'(e th(t’t)) = €€ th(tat)v . : (58)
where |
0c(t,t) = e Woe(1,00e®,  gy(1,1) = e W (1,00

Integrating the equation (58) between the limit - co and ¢ and supposing
that lim e%'04(t,t) = 0 we obtain
——00

4

0
o:(t,t)=¢ / es(tl—t)gq(tlatl)dtl =¢ / e ot + 1,11 + t,t1)dty, (59)

—00 —00

hence the nonequilibrium statistical operator in this version of the method
has the form

0
~ean H
Qe(t) = gs(t, 0) :gq(t, O): £ / estl Qq(t + tl,tl)dtl. (60)

Explanations of a sense of extraction of the quasi-equilibrium part ~~~n~
were presented above after the formula (29). In the formula (60) ¢ — +0
after the thermodynamical limit transition, and dependence of parameters
of a quasiequilibrium distribution on time is defined, like in the previous
case, frome the self-consistency conditions (56). '

It is conveniently to write down the nonequilibrium statistical operator
(60) with the help of integration by parts in the form

0 1
0:(t) = 04(t) + / dt'es / dre ™S G(1 4 ¢ 1)eT-DSHY) (1)
—00 4]

where 5(t,0) is the operator of entropy production (51).

This version of the nonequilibrium statistical operator method was pro-
posed in papers by D. N. Zubariev and V. P. Kalashnikov [16] and by
D. N. Zubariev [17]. It is convenient for exact formulation of nonequilibrium
transport equations by the operation of projection of operators separating
their slow and rapid part and for the elimination of derivatives by time of
parameters F,,(z;?) to be considered below. The operation of projection
was used to construct equations of the generalized hydrodynamics in papers
by S.V.Tishchenko [18] and by M.V.Sergeyev [19].

The proof of equivalence of two methods of the nonequilibrium statisti-
cal operator was given by S.V.Tishchenko [20] and by M.I. Auslender (21].
The theory of nonequilibrium processes using the projection method was
developed in papers by Zwanzig [22], Robertson [23] and Mori [24].

The Liouville equation (53) one can write in the form :

Do) +iLe(t) = 0, G
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where L is a linear self-conjugated Liouville operator, defined by
1
Lo= — 63
ilo= e, H] (63)

(Poisson’s quantum bracket).
In case of the classic mechanics Poisson’s quantum bracket should be
replaced by Poisson’s classic one

do OH _ Do OH). (64)

ibe={e. 1} =2 (3asm, ~ 570,

Convenience of representation of the Liouville equation in the form (62) is
connected with its analog with Shrodinger equation.
Equation (54) in the Liouville representation takes form

D o)+ iL.(t) = ~<(0:(0) - 020), (65)

one can rewrite in the form

d/ . .
= (ete™t0c(2,0)) = ee™te oq(t,0). (66)

Integrating the equation in limits —oo and ¢ and supposing that
tlim eteltpy(t,0) = 0 we obtain
——00

0
o:(t, 0)=¢ / ettt QQ(t + t1,0)dt; =

- 00

(67)

0
- 9 .
= 04(t) - / etietlh (a—tlgq(t + t1,0) + Loyt + t1,0)) dt;.

-0

Evidently, this expression differs from (61) in only notation form.
Elimination of time derivatives of g4(t) with the help of projection
operators.
To obtain a full equation system for (P,,(z))* at any devitation from an

equilibrium it is convenient to use the projection operator method.
Let us pass to Fourier-transforms of operators

Pk = /e“i(k”)Pm(z)dz, (68)

where P = Pnt _ since Pp(z) are real. Let n means a set of indices

(m, k), Py = Pp. We accept for future that index n incorporates index m
determining the type of integral and wave number k. ' .
Let us write down the Liouville equation with infinitesimal sourse in the

form 8 )
(2 +in+e)=-(G+it) e, (69)
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where Ap(t) = p(t) — py4(t) is a deviation of the nonequilibrium distribution
from the quasiequilibrium one.

Operator g4(t) depends on time via mean values of (P,)* only or via
conjugated operators F,(t). Hence

g
'8_tgq(t) 6(P )
(70)

Z 04(t) {Sp(P iLAe(t)) + Sp(Ps ZLeq(t))}

n

Kawasaki and Gunton proposed to use for elimination of time derivatives
by time the projection operator :

Py()A = 0()SpA+ 3 g(é’;,it))t (Sp(APw) —SPA(RLYY), (1)

where A is derivative operator with finite trace or zero one. If SpA = 0 the
Kawasaki-Gunton projection operator coincides with the Robertson one [23]

Pr(0)A = S Sp(AP) D, (72)

The Kawasaki-Gunton projection operator is convenient because it, on con-
trary to the Robertson operator, transfers a nonequilibrium distribution
o(t) to a quasiequilibrium one

Pq(t)Q(t) = Qq(t) (73)

and has the next properties

20 _ 2o (74)

By (71) we transform the Liouville equation (69) to the form

Po(O)Py(t') = Po(t),  Polt)——

0 . .
(E + (1-Pu0)iL + s) Ae(t) = (1~ Py(t))ile(t).  (75)
Solving this equation with the initial condition tlim Ap(t) = 0 we obtain
——00

t

Ap(t) = — / WY (1, ¢) (1~ Py(t'))iLog()dt!, (76)

where .
U(t,t') = éxp+ { / S) ’tLdS} t> t . (77)
tl

is ordered exponent.
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To obtain equation system for (P,)* one has to evaluate the right-hand
part of equation 5

E(Pny =5 (Png(t)) - (78)

where p(t) is the statistical operator defined by formula (76). Substituting
o(t) from (76) to (78) we find the system of nonlinear transport equations

LRy = (B + Y / dt165 Fon(t + 11) %
(79)

1
X <In(t)U(t,t+t1)/drg;(t+tl)Im(t+t1)gq‘T(t+t1)> ,
0

q

where I,(t) = (1 - ’P(t))Pn are flux operators, P(t) is Mori projection
operator [24], defined by the relation

' 8 Fn(t
P(t)A = Z n( )(A Po)(Pr — (P)Y) =
(80)
0+ Z 5P t(P P.)")
which projects any operator A on the space of operators P,. Really
PlE) = (P) + 3 Gt (Pa = (B2} = P (81)
Noticing that
2
ol o 2O _(p ), (82)

§(P) ~ 8(Po)i8(Pn)t

where (P, P)~! is the matrix, inversed to

8%y

(P, Pr) = 6Fn(t)8Fm(t)

/ dr (Pa0j(1)Pme; (), (83)

we can write down Mori projection operator in the form

P()A = (A)g + 3 (A, Pr)(P, P)r (P — (Pr)). (84)

m,n

Mori considered a particular case of action of projection operator (81) on
hydrodynamical variables - Fourier-transforms of operaters of densities for
energy, number of pa.rtlcles and momentum Hy, ng, P} for statistical equi-
librium system, when in (81) all the averages with quasiequilibrium distribu-
tion can be replaced by those with the Gibbs equilibrium distribution which
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are equal zero at £k = 0. In this case the action of P on a Fourier-transform
yields

PAx =Y (Ak, P_km)(Pry Poi) b P (85)

mn

evidently, that PPy, = Py

Equations (79) are exact. They contain the evolution in time not with
the evolution operator like in (77) but “reduced evolution” like in (77) and
that is why they are very complicated. ‘

(Tr;msport equation in linear case are a particular result of the formu-
la (79).

There are a lot of papers at present in which the nonequilibrium sta-
tistical operator method is applied to the theory of transport phenomena.
(see references in [2], [13]).For example this method was applied to transport
phenomena in dielectric crystals [26]. It was also used for liquid crystals [27]
to obtain equations of relativistic hydrodynamics and Green-Cubo formu-
lae for cerresponding kinetic coefficients [28] as well as for hydrodynamics
of non-classic liquids [29] and for hydrodynamics of superfluid *He, [30].
Besides that the method was applied to various generalizations of Boltzman -
kinetic equation [31-34], to the theory of “hot” electrons in semiconductors,
when electron distribution function differs essentially from the Maxwellian
one [35], to numerical problems of nuclear and electron magnetic resonance
[36-38] and to the statistical theory of nucleation, i.e. to the kinetics of new
phase center formation [39]. Recenly the nonequilibrium statistical operator
method was also applied to the theory of nonlinear hydrodynamical fluctu-
ations, when it is naturally to use the Fokker-Plank equation in terms of -
functional derivatives. The similar approach was applied also in the theory
of hydrodynamical turbulence.
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