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Introduced is a canonical formalism of quantum systems in far-
from-equilibrium state, named Non-Equilibrium Thermo Field Dy-
namics (NETFD), which provides a unified viewpoint covering whole
the aspects in non-equilibrium statistical mechanics, i.e. the Boltz-
mann, the Fokker-Planck, the Langevin and the stochastic Liouville
equations.

It is shown how the semi-free time-evolution generator of the quan-
tum Fokker-Planck equation for non-stationary situations is derived
upon a couple of basic requirements which are extracted from the fun-
damental characteristics related to the Liouville equation. With the
generator, it is demonstrated how to make a canonical theory for dissi-
pative quantum systems. The annihilation and creation operators are
introduced by means of a time-dependent Bogoliubov transformation.

It is shown that, within the formalism of NETFD, there are two
possibilities in the introduction of an external field. One is by an
hermitian hat-Hamiltonian, the other is by a non-hermitian hat-Ha-

miltonian. With the former hat-Hamiltonian, the S-matrix and the
generating functional method are introduced to give the relation be-
twe}eln the method of NETFD with the one of Schwinger’s closed-time
path.

With the latter non-hermitian interaction hat-Hamiltonian, the
general expression of the stochastic semi-free time-evolution genera-
tor is derived for a non-stationary Gaussian white quantum stochastic
process. The correlation of the random force operators are also derived
generally. With the generator, it is presented how a unified framework
of quantum stochastic differential equations can be constructed. The
stochastic Liouville equations and the Langevin equations of the sys-
tem, both of Ito and Stratonovich types, are investigated in a unified
manner.

Whole the framework of NETFD is mapped to a c-number space
by means of the coherent state representation within NETFD.

The system of stochastic differential equations is constructed also
upon the hermitian interaction hat-Hamiltonian. An interpretation of
the Mori formula is given within the framework of NETFD. A math-
ematical reformulation of NETFD is performed, where the stochastic
time-evolution generator is given in terms of a martingale. The Monte
Carlo wave-function methoi, i.e. the quantum jump simulation, is re-
viewed in terms of NETFD.
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1. Introduction

In this paper, we will introduce a canonical formalism of quantum sys-
tems in far-from-equilibrium state, named Non-Equilibrium Thermo Field
Dynamics (NETFD). This is a unified formalism which enables us to treat
dissipative quantum systems (covering whole the aspects in non-equilibrium
statistical mechanics listed in Table 1) by the method similar to the usual
quantum mechanics and quantum field theory which accommodate the con-
cept of the dual structure in the interpretation of nature, i.e. in terms of
the operator algebra and the representation space. The representation space
of NETFD (named thermal space) is composed of the direct product of two
Hilbert spaces, the one for non-tilde fields and the other for tilde fields.! It
was revealed that dissipation is taken into account by a rotation in whole
the two Hilbert spaces. The terms constituted by the multiplication of tilde
and non-tilde fields in the infinitesimal time-evolution generator take care
of dissipative (i.e. irreversible) phenomena. This notion was discovered first

when NETFD was constructed [1,2].2

Boltzmann tried to explain the irreversibility of nature based on the
microscopic and reversible Newton’s mechanics. It was revealed that he had
introduced a stochastic manipulation, which is called the molecular chaos,
without knowing it in the course of the derivation of the Boltzmann equation
(see [4] for a brief review of the irreversibility in statistical mechanics).
Besides the technical transparency of our new method, we expect that its
dual structure, as a quantum theory of dissipative fields, may provide us
with a breakthrough to realize Boltzmann’s original dream. The duality
was not recognized in Boltzmann’s days.

It is known that one can divide the fundamental aspects in non-equi-
librium statistical mechanics into four categories as shown in Table 1. In
category I, we deal with a one-particle distribution function (in the p-phase-
space within classical statistical mechanics) with the assumption of molec-
ular chaos or something similar which introduces an irreversibility. In cat-
egory II, we handle a density operator which describes the distribution of
the ensemble of a system under consideration. Within the terminology of

'In NETFD, any operator A is associated with its tilde field A (see Tool 1 in section 3.).

2Th‘is notion had not appeared in the formulation of the equilibrium thermo field
dynamics (TFD) [3] which is an operator formalism of the Gibbs ensembles. This is one
of the essential difference between NETFD and TFD.
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Table 1: Fundamental Aspects in Non-Equilibrium Statistical Mechanics

[ | Founder | Basic Fquations | Key Words ]
I ]| Boltzmann | Boltzmann eq. one-particle distr. func.
kinetic eq. molecular chaos
IT || Gibbs master eq. density operator
Fokker-Planck eq. ensembles
HT | Einstein Langevin eq. random force
dynamical variables
IV || Kubo stochastic Liouville eq. | random force
’ phase-space variables

classical statistical mechanics, we treat the assembly of points in the I'-
phase-space, each point of which describes a dynamical state of an element
.system of the ensemble. Irreversibility is introduced by a coarse graining in
I'-space. In category III, we study a path of a dynamical variable which is
generated by a stochastic equation with a specified random process. The
correlation of random forces introduces irreversible behavior of the system.
In category IV, we treat a distribution of the bundle of paths in the phase-
space [7,8]. For each time, one has patterns of flows in the phase-space
corresponding to an element of a random force (stochastic process) at the
time. Traversing the pattern, a point, which represents the dynamical state
of a system, evolves in time just the same as is described by the correspond-
ing Langevin equation. :

The framework of NETFD was constructed first [1,2] by, so to speak, a
principle of correspondence based upon the damping theoretical argument
within the density operator formalism [9]-[11] (see Appendices A and B).
It was reconstructed upon the seven axioms [12]. Then, the most general
expression of the renormalized time-evolution generator in the interaction
representation (the semi-free hat-Hamiltonian) was derived together with
an equation for the one-particle distribution function [13,14]. Therefore, we
see that it was started to build NETFD upon the fundamental aspects I
and IIin Table 1. Within these aspects, the canonical formalism of dissi-
pative quantum fields in NETFD was formulated, and the close structural
resemblance between NETFD and usual quantum field theories was revealed
(15,16]. The generating functional within NETFD was derived [17]. Fur-
thermore, the kinetic equation was derived within NETFD [21], and the
relation between NETFD and the closed time-path methods [18]-[20] was
shown. The extension of NETFD to the hydrodynamical region as well as
the kinetic region was started [22,23].3

The framework of NETFD has been extended [26]-[37] to take account of
the aspects /I and IV as well as I and II. Here again NETFD allowed us to
construct a unified canonical theory of quantum stochastic operators. The
stochastic Liouville equations both of the Ito and of the Stratonovich types
were introduced in the Schrodinger representation. Whereas, the Langevin
equations both of the Ito and of the Stratonovich types were constructed
as the Heisenberg equation of motion with the help of the time-evolution
generator of corresponding stochastic Liouville equations. The Ito formula

3‘Zubarev and Tokarchuk admired the method of NETFD, and they also started to
use it for the investigation of these regions [24] (see also [25] for the application to the

problem of the quark-gluon plasma).
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was derived for quantum systems.

In section 2., we review the density operator method of the Liouville
equation. We will extract a couple of fundamental characteristics related
to the Liouville equation. In section 3., technical basics and some funda-
mentals of NETFD are listed. The relation of the thermal vacuum to the
density matrix is revealed. In section 4., we will show how the semi-free
time-evolution generator of the quantum Fokker-Planck equation for non-
stationary situations is derived upon the basic requirements. The semi-free
generator is bi-linear and globally gauge invariant. With the generator, we
will demonstrate how to make a canonical theory for dissipative quantum
systems. The annihilation and creation operators are introduced by means
of a time-dependent Bogoliubov transformation. The two-point function
(propagator) is also derived. In section 5., we will show that there are two
possibilities in the introduction of an external field. One is by an hermi-
tian hat-Hamiltonian, the other is by a non-hermitian hat-Hamiltonian. In

section 6., the §-matrix within NETFD will be introduced. In section 7.,
the generating functional method is introduced, which gives us the relation
between the method of NETFD with the one of Schwinger’s closed-time
path. In section 8., the general expression of the stochastic semi-free time-
evolution generator is derived for a non-stationary Gaussian white quantum
stochastic process (non-stationary quantum Wiener process) by means of
the non-hermitian interaction hat-Hamiltonian. The correlation of the ran-
dom force operators are also derived generally. With the generator, we will
present how a unified framework of quantum stochastic differential equations
can be constructed, i.e. the stochastic Liouville equations and the Langevin
equations both of Ito and Stratonovich types of the system are investigated
in a unified manner. The relation among the Fokker-Planck equation and
the quantum stochastic differential equations is given in Fig. 1. In section
9., whole the framework of NETFD will be mapped to a c-number space by
means of the coherent state representation within NETFD. In section 10.,
we will try to construct the system of stochastic differential equations upon
the hermitian interaction hat-Hamiltonian investigated in section 5.. This
approach may be intimately related to the one by mathematicians for the
formulation of the quantum stochastic differential equations. In section 11.,
an interpretation of the Mori formula will be given within the framework
of NETFD. In section 12., the formulation derived in previous sections will
be applied to the case of stationary stochastic process which is equivalent
to the model of a damped harmonic oscillator. The Fokker-Planck equation
and the Heisenberg equation of motion for coarse grained operators are ex-
plicitly handled. The irreversibility of the system is investigated in terms
of the Boltzmann entropy. In section 13., a mathematical reformulation of
NETFD will be performed. The stochastic time-evolution generator will
be given in terms of a martingale. In section 14., the Monte Carlo wave-
function method, i.e. the quantum jump simulation, will be reviewed in
terms of NETFD. Section 15. is devoted to discussions. The open problems
and the prospect are also included. Appendices A-G are added in order to
make the paper self-contained. -

2. Liouville Equation

Let us remember that the system of the Liouville equation

%p(t) = —iLp(t), (2.1)
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can be treated formally as one of a canonical theory.
The Liouville equation has the following general characteristics:

D1. The hermiticy of the Liouville operator 7 L:

GL)' =L (22
D2. The conservation of probability (tr p = 1):

tr LX = 0. (2.3)

D3. The hermiticy of the density operator:
pt(1) = p(1). (2.4)

If the above characteristics were violated, the system of the Liouville equa-
tion may not describe the nature which should be treated by statistical
mechanics.

The expectation value of an operator A is given by

(A): = tr Ap(2). (2.5)
Substituting the formal solution
p(t) = e7p(0), - (26)

of (2.1) into (2.5), and using the property (2.3) of D2, we see that
(A); = tr Ae™'Ltp
= tr A(t)p, (2.7)

where we put p = p(0), and introduced a Heisenberg operator
A(t) = et ge™i I, (2.8)

This procedure of introducing a Heisenberg operator is similar to the one
in quantum mechanics and in quantum field theory.
It is easy to show that the Heisenberg operator A(t) satisfies the Heisen-

berg equation:
%Q = i[L, A(2)]. (2.9)

;From the above inspection, we understand that the system of the Liou-
ville equation can be phrased as if it had the structure of canonical theory.
Quite a lot of discussions related to various methods in non-equilibrium
statistical mechanics were formulated upon the above mentioned canonical
theory, e.g. the projector formulation of the damping theory [38]-[40],[9,10],
the Mori formalism [41] and so on. With the help of the canonical theory
of the Liouville space, one can indeed write down his formulation and/or
method transparently. However, at the moment when people tries to ap-
ply the formulation to solve a model, he usually knows that the method is
far from easy to use in contrast to the cases in quantum mechanics. For
example, people are forced to deal with complicated and nontransparent
calculations under tr.
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3. Technical Basics of NETFD

The canonical theory for dissipative quantum systems, will be presented in
the following, has been constructed essentially on the same fundamental re-
quirements given in the previous section, and has the merits overcoming the
above mentioned disadvantages in the application of the method. Among
the merits of NETFD are a straightforward and comprehensible treatment
of transient phenomena and a transparent algebraic structure (see, for ex-
ample, [42]-[47]). Furthermore, as will be shown in the following, this mer-
its of the method unified whole the aspects in non-equilibrium statistical
mechanics, i.e. the Boltzmann, the Fokker-Planck, the Langevin and the
stochastic Liouville equations. It admits us to deal with dissipative systems
hy algebraic manipulations similar to the usual quantum mechanics.

The formalism of NETFD is constructed upon the following fundamental
basics.

Tool 1. Any operator A in NETFD is accompanied by its partner (tilde)
operator A. The tilde conjugation ~ is defined by:

(A1A2)~ = A Ay, (3.1)

(c14; + c242)” = c’{/il + c;fig, (3.2)
(A)~ = A, (3.3)

(AN~ = AT, (3.4)

where ¢; and ¢y are e-numbers.

Tool 2. The tilde and non-tilde operators in the Schrodinger representation
are mutually commutative:

[Av B] =0. (35)

Tool 3. The tilde and non-tilde operators are related with each other
through the relation

(114 = (1)4, (3.6)
where (1| is the thermal bra-vacuum (see (3.10) below).

Tool 4. The expectation value of an operator A is given by (1|A|0) where
|0) is the thermal ket-vacuum (see (3.10) below). Observable operators
consist only of non-tilde operators.

Within the framework of NETFD, the dynamical evolution of systems
is described by the Schridinger equation (h = 1)

0 7
~-10() = —ifT Jo(2)), (37)

which is related with the Liouville equation (2.1). ‘
The basics D1, D2 and D3 in the previous section, related to the Li-
ouville equation, are termed respectively as follows:

B1. The hat-Hamiltonians H, an infinitesimal time-evolution generator,
satisfies

. (if)" = iA. (3.8)

This characteristics is named tildian. The tildian hat-Hamiltonian is
not necessarily hermitian operator. '
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B2. The hat-Hamiltonian has zero eigenvalue for the thermal bra-vacuum:
(11H = 0. (3.9)

This is the manifestation of the conservation of probability, i.e.

(1{0(2)) = .
B3. The thermal vacuums (1| and |0) are tilde invariant:
(™ = (1, 0)~ =0}, (3.10)
and are normalized as (1|0) = 1.

The Heisenberg equation within NETFD for an operator A is given by

d
A= i(H, A, (3.11)

(cf. the Heisenberg equation (2.9)).
Now, we introduce a set of states [48]

|m, 7)) = |m)|n) (3.12)

where |m) and |7) satisfy

a'ajm) = m|m),  &'a|#) = n|i), (3.13)

(mlata = (m|m, (dla'a = (f|n, (3.14)
the ortho-normality

(m|m') = 8t (AlR') = bpnr, " (3.15)

and the completeness
Slm)ml =1, A =1 (3.16)
We see that the ortho-normality and the completeness for |m, ) are glven
respectively by :
<m,'ft|m’, ﬁl) = 6m,m’6n,n’, (317)
> Im, a)(m, @] = 1. (3.18)

m,n

The matrix elements (k,f|A|m,#) and (k,£|A|m,7) with the operator A,
consist only of non-tilde operators, reduce respectively to

(k,f|Alm, &) = (k|A|m) (£]7) |
= (k|A|m)e,n, (3.19)
(k.| Alm,7) = (k|m) (€]A|7)

br.m (€| Aln)*
= k,m(n|AT|E), (3.20)
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Dissipative Q. Field Th.

VE VE
#*AQ) =1[H(1), A1) H10(t)) = —1H|o(t))

h 4

Heisenberg Eq. of Motion | Fokker-Planck Eq.

f 3

VE RA
(S) dA(t) = i[Hy(t)dt 3 A(1)] RA (S) dl0s(t)) = —ill s, dt 0 [04(t))
(1) dA(t) = s[H,(t)dt, A@®)]+--- (1) dlos () = —iFyedt |04(2))

Langevin Eq. Stochastic Liouville Eq.

) 4

(Ito & Stratonovich) N (Ito & Stratonovich)

Heisenberg Representation Schrodinger Representation

Figure 1: Structure of the Formalism. RA stands for the random aver-
age. VE stands for the vacuum expectation. (I) and (S) indicate Ito and
Stratonovich types, respectively.
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where we used the property
|7) = [n)~. (3.21)
Note that the state |m, ) satisfies
|m, 7)™ = |n,m). (3.22)
We can represent the thermal vacuums as

00) = 3 Pam (O, ), (3.23)

(1] = Z(n,n|. : - (3.24)

n

The normalization of (1|0(¢)) reduces then to
= (10(0) = 32 3 Pa (), 9
= Y Pos(t), (3.25)
k

where we used the ortho-normality (3.17). With the help of (3.22), we see
that the tilde-invariance of the thermal vacuum |0(t)) leads to -

Prn(t) = Pom(2),  (3.26)
as follows:
= ZP,:,mmln,mr
= E m(t)|m, i)
Z a(®ln, )
IO(t)) (3.27)

4. Semi-Free Hat-Hamiltonian

4.1. A Derivation of the Semi-Free Hat-Hamiltonian

The hat-Hamiltonian of the semi-free field is bi-linear in (a, @, at,at), and is
invariant under the phase transformation a — ae'?:

= gi(t)a’a+ g5(1)ala + gs(t)ad + g4(t)afa* + 90(1), (4.1)

where ¢(t)’s are time-dependent c-number complex functions.
The operators a, al, etc. satisfy the canonical commutation relation:

la, ab] = biepers [, i) = e - (4.2)
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The tilde and non-tilde operators are mutually commutative. Through-

out this paper, we do not label explicitly the operators a, af, etc. with a

subscript k for specifying a momentum and/or other degrees of freedom.

However, remember that we are dealing with a dissipative quantum field.
B1 in section 3. makes (4.1) tildian:

H; = w(t)(ata — ata) + 411, (4.3)
with .
I = e1(t)(ala + @'a) + co(t)aa + ca(t)atal + cq(2), (4.4)

where w(t) = Re g1(t) = —Re go(t), e1(t) = Sm g1(t) = Sm go(2), c2(t) =
Im g3(t), ca(t) = Sm ga(t) and ca(t) = Sm go(?).
With the help of Tool 3 in section 3. for A = a:

(lla = (13, (4.5)
B2 gives us relations
2e1(t) + ca(t) +e3(t) =0,  ea(t) + ca(t) = 0. (4.6)
Then, (4.4) reduces to
L, = 1 (t)(ata+ata)+ea(t)aa=[2c1(t) + ca(t)] a’al +[2¢1(2) + e2(t)]. (4.7)

Let us write down here the Heisenberg equations for a and a' (see (3.11)):

La(t) = ~iw(t)a(®) + a(Balt) - Gai(t) + a®)a"(),  @8)

%aﬁ(t) = iw(®)alt(t) = ex()ali(t) - ea(D)a(t). (4.9)

Since the semi-free hat-Hamiltonian Hy is not necessarily hermite, we intro-
duced the symboal {} in order to distinguish it from the hermite conjugation
t. However in the following, we will use f instead of ff, for simplicity, unless
it is confusing. By making use of the Heisenberg equations (4.8) and (4.9),

we obtain the equation of motion for a vector (1]af(t)a(t) in the form
d
2 tlat(a(n) = ~2n(O(Ula alt) + TS, (410

where we introduced x(t) and X<(t) respectively by

K(t) = Cl(t) + Cg(t), (411)
Z2(t) = i[2e1(2) + ea(2)). (4.12)
In deriving (4.10), we used Tool 3 in order to eliminate tilde operators.

Applying the thermal ket vacuum to (4.10), we obtain the equation of
motion for the one-particle distribution function

n(t) = (laM(t)a(t)|0) = (1la'al0(1)), (4.13)
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—tn(t) = —2k(t)n(t) + i Z<(2). (4.14)

The equation (4.14) is the Boltzmann equation of the system. The function
X<(t) is given when the interaction hat-Hamiltonian is specified.
The initial ket-vacuum |0) = |0(¢ = 0)) is specified by

al0) = fa'l0), (4.15)

with a real quantity f. Here, we are neglecting the initial correlation [49)].
The initial condition of the one-particle distribution function n = n(t = 0)
can be derived by treating (1|a@|0) as follows. In the first place,
(Llaall) = (1lafa'|0)

= £ ((Lla'al0) + (1/0))

= f(n+1), o (4.16)
where we used the tilde conjugate of (4.15) for the first equality, and the
canonical commutation relation (4.2) for the second. On the other hand,

(1|aal0) = (1]aal0)

(1la’al0) |
= n. : (4.17)

Here, for the first equality,.we used Tool 2, i.e., the commutativity between
the tilde and non-tilde operators, and, for the second equality, Tool 3 or
equivalently (4.5). Equating (4.16) and (4.17), we see that

n:I-f—f, (f— 1+n) (4.18)

Now let us return to the derivation of the semi-free hat-Hamiltonian.
Solving (4.11) and (4.12) with respect to ci(t) and cz(t), and substituting
(4.14) for £<(t) into (4.4), we finally arrive at the most general form of the

renormalized hat-Hamiltonian H, in the interaction representation [13,14]:

H, = Hsy - in(t) {[1 4 2n(2)] (a'a + a'a) — 2[1 + n(t)] & — 2n(2)a'a"}
——i%n(t)d“r‘“’ Y —12k(t)n(t)

= [w(t) — ix(t)] @*a¥ — i [% + 2n(t)] @n(t)a” + w(t) + in(t), (4.19)

where’® )
Hsy = w(t) (o'a - ata), (4.20)

*Throughout this paper, we confine ourselves to.the case of boson fields, for simplicity.
The extension to the case of fermion fields are rather straightforward.

5The following formulation is valid for the cases where Hs,; has non-linear terms within
the conventional treatment of damping operators. For their non-conventional treatment,
refer to [50]-[55],(43],[44].
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and £n(t) is given by (4.14). Here, we introduced the thermal doublet
notation: a*=! = q, a*=? = gt and a*=! = af, @=2? = -G, and the
matrices 74 : T = 721 =1, 712 = 722 = _1, and

—n(?)

n(t)™ = (1)a(t) a(£)4]0) = ( 12(;)@) ) ) (4.21)

The thermal doublet notation in the interaction representation was intro-
duced by a(t)*=! = a(t), a(t)*=2 = a(t) and a(1)= = aM(z), a(1)=2 =
—a(t).

4.2. Fokker-Planck Equation

We will call in the following the Schrodinger equation
d A
57100)) = —iH;*[0(2)), (4.22)

the Fokker-Planck equation for coarse grained systems. The hat-Hamiltoni-

an H{° consists of the semi-free hat-Hamiltonian (4.19) and an interaction
hat-Hamiltonian. Some general remarks on the interaction hat-Hamiltonian
will be given in section 5..

The equation of motion for the averaged quantity (1]A]0(¢)) is derived
with the help of the Fokker-Planck equation as

4
dt

The same equation can be also derived by means of the Heisenberg equation

(114jo(2)) = —i(1|AH"|0(1)). (4.23)

d -1 frtot
AW = (D), A() (4:24)
by taking its vacuum expectation:
-(j—t(llA(t)I()) = i(1[A(2), AQl0). (4.25)
Here,
A(t) = V() TTAVUY), (4.26)
»fltot(t) — Vtot(t)-dfittotvtot(t)’ (4'27)

are the operators in the Heisenberg representation, and V*°*(¢) is defined by

d - . A n ~ n
V) = i), (si1f)” = idf, (4.28)

with V*(0) = 1.

We would like to emphasize here that the existence of the Heisenberg
equation of motion (4.24) for coarse grained operators is one of the notable
features of NETFD. This enabled us to construct a canonical formalism
of the dissipative quantum field theory, where the coarse grained operators
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a(t) etc. in the Heisenberg representation preserve the equal-time canonical
commutation relation

[a(t), ') =1,  [a(t), a'(1)] = 1. (4.29)
Note that we hawve an equation of motion for a vector (1|A(?):

LQIA® = (UL, AW, (4.30)

in terms of only non-tilde operators with the help of the condition (4.5).
This equation will have some important meanings later on.

4.3. Operators in the Interaction Representation

The operators in the interaction representation, appeared in the Heisenberg
equations (4.8) and (4.9):

%a(t) = — [iw(t) + k(t)] a(t) + 1 Z<(2) [&“(t) - a(t)] , (4.31)
%aﬂ(t) = [iw(t) + x(1)] a®(t) - 26(t)a(t) + iX<(z) [a”(t) - &(t)](,4.32)

are defined by

a(t) = V-1 (t)aV(t), at(@e) =V 1(0)atv(), (4.33)
where
%V(t) = —iBv@e),  (if)" =if, (4.34)
d
with V(0) = 1. Since the semi-free hat-Hamiltonian H; satisfies
(11H, =0, (4.35)
(see B2 in section 3.), we understand that the semi-free operators satisfy
) = (1/a =)
(') = (a0, a@0) = 71 ra'O0),  (430)

(see (4.5) for the former, and (4.15) with (4.18) for the latter).

4.4. Annihilation and Creation Operators

Let us introduce the annihilation and creation operators, y(t)*=! = (),
7()#=% = 7¥(t) and F(1)*=" = v4(t), ¥(£)*=? = -4(2), by
v = B)*a(t)",  F(t)* = a(t)*B~ (1), (4.37)

with the time-dependent Bogoliubov transformation:®
v _ [ 1+a(t) —n(t |
B(t)* = ( () —n(t) ) . (4.38)

6Th_ere is a minor change in the normalization of the time-dependent Bogoliubov trans-
formation compared with the original definition given in [1,2], [12]-[14]. This change makes
the expression G(t,t'}*” simpler, and is essential in the formulation of the stochastic Li-
ouville equation introduced below.
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The annihilation and creation operators have the properties (cf. (4.36))
HO) =0, (1F¥0) =0, (4.39)

The equation of motion for the thermal doublet (2)# is derived as

L = POy 4 oy Laey
= —i ()6 — in(D)rE")2(0)", (4.40)

where 6*” is the Kronecker delta, pnd the matrix 74 is defined by ril =
—732 =1, 732 = 7' = 0. The solution of (4.40) has the property

(1) = exp { /t ds [ iu(s)6m - n(s)r_f:"]} (Y. (4.41)

4.5, Two-Point Function

The time-ordered two-point function G(¢,t')** has the form

G(t,¢) = —i(1|T [a(tya()"] |0}
[B-1(1)g(¢,4)B(#)] (4.42)

where

(1,0 = T bora 110 = (OG0T Gal ) ) )

3

with
GR(t, 1) = —i8(t — ') exp {/t,tds [—iw(s) — K(S)]} , (4.44)
GA(t,t') = i0(t' — t)exp {/t'tds [--iw(s) + n(sj}]} . . (4.45)

In deriving the above expression, we used the elements of the solution (4.41)
with some algebraic manipulations.

4.6. Miscellaneous

The representation space (the thermal space) of NETFD is the vector space
spanned by the set of bra and ket state vectors which are generated, respec-
tively, by cyclic operations of the annihilation operators v(¢) and F(¢) on
(1], and of the creation operators y¥(t) and 4%(z) on |0).

The normal product is defined by means of the a,?\nihilation and the cre-
ation operators, i.e. y*(2), 5%(¢) stand to the left of y(t), %(¢). The process,
rewriting physical operators in terms of the xnnihilation and creation oper-
ators, leads to a Wick-type formula, which in turn leads to Feynman-type
diagrams for multi-point functions in the renormalized interaction represen-
tation. The internal line in the Feynman-type diagrams is the unperturbed
two-point function (4.42). :
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5. Inclusion qf External Fields

5.1. Hermitian Interaction Hat-Hamiltonian

The simplest interaction hat-Hamiltonian may be
fit,:Htl_fIt,, (5.1)
with a hermitian interaction Hamiltonian

H; = i [a'b(t) - b(t)a (5.2)

where b(t) and b!(t) are operators in the external system and are assumed

to commute with the operators a, a! etc. of the relevant system. Note that
the hat-Hamiltonian (5.1) is hermite. The tilde and non-tilde operators of
the external system are related with each other by

(161(t) = (lb(2). (53)

Applying the bra-vacuum (1] for the relevant system on (5.1), we have
(L] = ~i(1] [op* () + a'B%(0)] . (5.4)
Here we introduced a new operator

B4(2) = bl(2) - b(e), (55

which annihilates the bra-vacuum (| for the external system (cf. (5.3)):

(18% = 0. | (56
If we apply the bra-vacuum (| on (5.2) in addition to (1|, we observe that
(11H] =0, (5.7)
where we introduced
(1= (-l (5.8)

The above investigation shows that a simple introduction of an interac-
tion hat-Hamiltonian of the form §5.1) violates the conservation of proba-
bility within the relevant system. It can be understood by considering the
Schrédinger equation ’

gﬂo(t)) = —i (B, + &) lo(2)), (5.9)

and apply (1|. Note that the conservation of probability is satisfied for the
total system, i.e., the relevant system and the external system, as can be
seen by applying (1] on (5.9).
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5.2. Non-Hermitian Interaction Hat-Hamiltonian

Let us consider if we can have an interaction hat-Hamiltonian which satisfies
the conservation of probability within the relevant system. We assume that
the interaction hat-Hamiltonian is globally gauge invariant and bilinear:

17 = i {h1a"b(t) + haa'B(2) + ha@ b(t) + haa B1(1)
+hsd'B(t) + healbl(t) + hra b(t) + hsa b1(1)},  (5.10)

where the quantities h’s are time-independent complex c-numbers.
The tildian (B1 in section 3.):

(iay)" = Ay, , (5.11)
gives us
hi =hs, hy =hg, h3=hs, hj=hs. (5.12)
The requirement that the Schrédinger equation

5 1000) = =i (Ho+ ) o(e), (519)

has the characteristics of the conservation of probability within the relevant
system:

(11! =0, (5.14)
leads us to the relations
hi+hs =0, hy+hy=0. (5.15)
With (5.12) and (5.15), (5.10) reduces to
iy =i[a*8(t) + te ], (5.16)
where we introduced -
ot = at -G, ' (5.17)
B(t) = hyb(t) + hzl;'f(t). (5.18)

Let us consider the moments
(BWA®) = (b + ha) {b1 (B1(0)0(0)) + A3 (b(e10)) } . (5.19)
(B)B(8)) = (i + h3) {h (' (b(1)) + b (B(BI())},  (5.20)

where we used Tool 2 and Tool 3 in section 3. for b(t), b1(¢) etc.. We are
using the symbol (---) = (|---|t) without specifying the dynamics which
determines the ket-vacuum |t) of the external system. For the present pur-
pose, the details of its dynamics are not required. With the further use of

the property Tool 2 of the commutativity, <ﬁ(t)ﬁ'(t)> = <[§(t)ﬂ(t)> , gives
us the relations .

(hy+ho)kf = (BT + h3)ha,  (ha+ho)hy = (A} + h)hg.  (5.21)
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which reduce to ' A
hiha = hihj = (h1h2)", (5.22)

and allow us to put
hy = pe',  hy = ve¥, (5.23)

where p = |hy| and v = |hsy}.
The vector (|3(t) is calculated as

(18(2) = (u+ ) (1b(2). (5.24)
The further requirement that the norm of (|3(t) should be equal to that of

(I6(2), i.e.
KB = Kle(2), (5.25)

leads us to the relation
L+v=1 (5.26)

This requirement indicates that the intensities of the external operators 5(t)
~and b(t) are same. Putting the phase factor e on b(¢) and b'(t), we have

the non-hermitian interaction hat-Hamiltonian (5.16) with ot defined by
(5.17), and

B(1) = pb(t) + vbi(t), (5.271) -

with the real numbers p and v satisfying (5.26). The creation operator ot
annihilate the ket-vacuum (1]:

(1]a* = 0. : (5.28)

The above requirement for the norm makes the operators 3%(t) defined by
(5.5) and B(t) in (5.27) canonical operators:

[8(2), B}()] = 1. | O (5.29)

5.3. Relation between the Two Interaction Hat-Hamiltonian

Note that the hermitian hat-Hamiltonian A} of (5.1) and the non-hermitian
one H{' of (5.16) are related each other by

H = A} —i|aph(t) + tel, (5.30)

where we introduced

o = pa+ vi', ' (5.31)

which forms a canonical set with o* in (5.17):

(e, o] = 1. | (5.32)
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6. S-matrix

Let us consider the Fokker-Planck equation (4.22):
4 > frtot |
2 ot) = —isii=o(o)). (61)

When the hat-Hamiltonian A}°* in (6.1) can be divided into two parts
as . L.
Hi = H, + H, (6.2)

we can introduce the thermal vacuum ket-vector in the interaction repre-
sentation as -
10())r = V=2 (1)]0(1)), (6.3)

with V() defined by (4.34). The Fokker-Planck equation (6.1) then reduces
to

0 A
5710001 = —iH'()[0(®)r, (6.4)
where we introduced ) N o
| H'(t) = VTI(OHV(2). (6.5)
This can be formally solved in terms of the state of the system at an initial
time tg as )
0(t))1 = 5(¢,20)10(t0)) 1, (6.6)
with ) o
5(t,to) = S(t)57(to), - (6.7)

where §(t) is specified by

d

25(1) = ~iH'1)3(2), (6:8)

with the initial condition $(to) = 1. The thermal vacuum |0(¢)) in the
Schrédinger representation can be expressed by means of S(t,1) as

10(2)) = V(£)5(t, 1)V ™ (t0)|0(t0)). (6.9)

Since H, should satisfy )
(11H, =0, (6.10)

the interaction Hamiltonian H’(t) in the interaction representation has the
property i
(1lH'(t) = 0. (6.11)

Here, in this section, the thermal bra-vacuum (1| is assumed to be of whole
the system (cf. subsection 5.1.). Then, (6.8) gives us

(115(2) = (115(to), (6.12)

leading to R
(1]5(2, o) = (1]. (6.13)
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This is a manifestation of the conservation of probability, (1|0(t)) = 1. Note

that the thermal bra vacuum in the interaction representation (1] becomes
the same as the one in the Schrédinger representation: A

(1] = (1V(2) = (1]. | (6.14)
The overlap (£, £|0(t)) is given by

(£, €10(2)) = D_(&,4V()5(t, 10)V ™" (t6)|n, i) Pa,n(to), (6.15)

n

where we put for the initial state
0(t0)) = 3, Panlto)ln, &), ' (6.16)
n

with

> Panlto) = 1, ' (6.17)
which is consistent with the normalizaﬁon (1/0(t0)) = 1. We see that |
;(UIO(t)) = ;Z(&ZIV(t)S’(t,to)V'l(to)ln,ﬁ)Pn,n(to)

= D _(US(t, 1)V 7 (to)ln, ) Prn(to)

= Z Pn,n(to)

=1, (6.18)
where we used (6.10), (6.13) and
(Am, &) = Y (£,4m,A) = b1mben = mn. (6.19)
¢ ¢ .

Although the interaction hat-Hamiltonian H/ has the structure (5.1):
A= H|- 0, ‘ (6.20)

the hat-Hamiltonian H, does not, in general. Therefore, one needs to cal-
culate the matrix elements

EAVDSt, )V Y (to)nyB), (6.21)

in order to obtain the overlap (6.15). Expanding the S-matriz S(¢,to) with
respect to the order of H/ as

S(t,t0) = Y S50t 10), : A (6.22)
n=0

we can deal with any order of processes induced by H !. See Appendix C
for the first order process (the linear response) as a mmplest example. For
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more complicated process such as the second order transient resonant light
scattering, see [47].

Note that when the hat-Hamiltonian H, is independent of time, and has
the structure ) _
A=H-H, (6.23)

in addition to A ;, the overlap (6.15) becomes the well-known form:

(€, 2l0(2)) = Z(EIS(t 10)|n) (€] 5(t, t0) ) P n(to)
= Z\(élS(t,to)|n>|”Pn,n(to), (6.24)

where we assumed that |n,#) is an eigen-function of H with an real eigen-
value E,;:

H|n,?) = Ep|n,7),  H|n,n) = Ey|n,#). (6.25)
In the case of (6.23),

S(t,t0) = S(t,0)S(t, o), (6.26)
where S(t, 1) contains only non-tilde operators and is an unitary operator.

7. Generating Functional Method
Let us treat further the Fokker-Planck equation (4.22) [17}:

0 - yrtot
5:10(2)) = —aH;”10(2)), (7.1)

with . X .
H° = H, + H}, (7.2)

where H, is given by (4.19), and H/ is defined by
Bl = R(a + K@) = By(F 7 + K0, (19)
(cf. (5.1)). The operators y# and ¥ are defined through
P =V, 7= Vaer ), (7.4)
(see (4.37)). The thermal doublet notation for the c-number external fields
has been introduced by K(t)*=! = K(t), K(t)*=* = K*(t) and K(@t)»=! =
K(t)*, K(t)*=? = —K(t). We see the relation
Ky(t)" = BO*E(1),  Ey(t) = K(t)"B7 ()", (7.5)

with (4.38) for B(t)*
The generating functional for the system is defined by

21K, K] = (118(8)l0), (7.6)
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where $(t) satisfies (6.8) with the initial condition $(0) = 1.

Taking the functional derivative of the generating functional (7.6), we
have

o 21K, K] =~ [@t SR, 0P + GOMSIL 0, ()

where (y(t)*) and (5(¢)#) are defined by

(1) = i g 2K, K1 = AT 3@ 10, (79)
(3 = gj‘—%)—l 21K, K= QT (@50 o). (1.9)

The equation of motion for (y(¢)#) [17]:

d N 14 14 v 3
7@ = = [w(®)é* + w(t)r5"]1 (7(1)") — K1), (7.10)
with the boundary conditions

(0= = (v(0)) =0, (@) = (3*D) =0,
FO= = (DY =0, (70 =-(3(0)) =0,  (7.11)

can be solved in the form
t
((0¥) = [dt g0y K ey, (712)

where G(t,t')*¥ is given by (4.43). The boundary conditions in (7.11) are
derived by the thermal state conditions (4.39).
Substituting (7.12) into (7.7), we finally obtain [17]

N
=

- N
=
r

= exp l:——i/ofdt Oidt'K'.,(t)“g(t,t')‘“’K.y(t')"]
= exp [—i/{dt :dt’l?(t)“G(t,t’)“"K(t’)”} ) (7.13)
0

This expression for an open system was derived first by Schwinger by means
of the closed-time path method [18] (see also [19,20]). .

The derivation of the generating functional shown in this section reveals
the relation between the quantum operator formalism of dissipative fields
(NETFD) and their path integral formalism [18]. Note that the existence of
a quantum operator formalism for dissipative fields had never been realized
before NETFD was constructed.



48 . T. Arimitsu

8. Stochastic Semi-Free Hat-Hamiltonian

8.1. Quantum Stochastic Liouville Equations
8.1.1. Ito Type

Let us derive the general form of the semi-free hat-Hamiltonian H 5¢ fora
stochastic Liouville equation

d|04()) = —iHydt |04(2)), (8.1)

which will turn out to be an Ito type [56] stochastic differential equation
later. The hat-Hamiltonian for the stochastic semi-free field is bi-linear in

a, at, dF(t), dF*(t) and their tilde conjugates, and is invariant under the

phase transformation @ — ae'®, and dF(t) — dF(t) . Here, a, a! and
their tilde conjugates are stochastic operators of a relevant system satisfying
the canonical commutation relation

[e, a'1=1, [&, &M =1, ‘ (8.2)

whereas dF(t), dF1(t) and their conjugates are random force operators. The
tilde and non-tilde operators are related with each other by the relations

(1lat = (113 (83)
(14F() = (dF(2) (84)

where (1| and (| are respectively the thermal bra-vacuum of the relevant
system and of the random force.

We will employ the characteristics of the stochastic Liouville equation
[5]-[8] of classical systems to quantum cases, i.e., the stochastic distribution-
function satisfies the conservation of probability within the phase space of
a relevant system. This means in NETFD that

(1j05(2)) = 1, (8.5)

leading to
(1|H s dt = 0. (8.6)

Here the thermal bra-vacuum (1| is of the relevant system.
;From the investigation in subsection 5.2. (cf. (5.16)), we know that the
- required form of the hat-Hamiltonian should be

Hyodt = Hydt + i {a*dW(t) n t.c.}, (8.7)
where H, is given by (4.19), i.e.
H, = Ag, + i, (8.8).
with |

i, = —k(2) (a*a + t.c.) + {2n(t) [n(t) + v] + %n(t)} atat. (89)
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We introduced a set of canonical stochastic operators”
o = pa + val, ot =af - g, | (8.10)
with p + v = 1, which satisfy the commutation relation '
[a, a%] = 1. ' (8.11)

The stochastic operators a, at, @ and &' are of the Schrédinger representa-
tion satisfying®
[a, af] =1, [a&, &']=1. (8.12)

The random force operators dW (t), dW(t) are of the quantum stochastic
Wiener process satisfying

(aw(@)) = (dW (1)) =0, | - (8.13)
<dW(t)dW(s)> = (dW(t)dW (s)) = 0, (8.14)
(aw()aw (s)) = (dW(s)dw (1))

= {Zm(t) [n(t) + v] + %n(t)} 0(t — s)dtds, (8.15)
with (---) = (|- --|), where the random force operator dW () is defined by
CdW(t) = udF(t) + vdFi(t), ~(8.16)

with p + v = 1. The original random force operators dF(¢) and dF t(t) are
of the non-stationary Gaussian white process, which is defined by '

(dF(t)) = (dF(t)) = (aFt(t)) = (dF'(t)) =0,  (8.17)
(dFt(t)dF(s)) = [2K(t)n(t) —n(t)] (t — s)dtds, (8.18)
(4F(H)dFY(s)) = {%(t) n(t) + 1] + -d—tn(t)}é(t— s)dtds, (8.19)

and zero for other combinations (see Appendix E for derivation). The one-

particle distribution function n(t) satisfies the Boltzmann equation (4.14).
Within the stochastic convergence, these correlations reduce to®

dW(t) = dW(t) =0, - (8.21)

"The expression of IT; was given here by means of a set of canonical stochastic operators
a, ot and their tilde conjugates.
8We use the same notation a etc. for the stochastic semi-free operators as those for the

coarse grained semi-free operators. We expect that there will be no confusion between
them.

?For equal time t = s, (8.23) reads

dW (£)dW (t) = dW (£)dW (t) = |iZ<(2) + 2vk(t) | dt. . (8.20)
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dW (t)dW (s) = dW(t)dW (s) = 0, (8.22)
dW(t)dW(s) = dW(s)dW(t)

= {2&(75) [n(t) +v] + %n(t)} 6(t — s)dtds
= [iZ(t) + 2vn(1)) 6(t - s)dtds. (8.23)

Taking the random average of the stochastic Liouville equation (8.1), we
see that it reduces to the Fokker-Planck equation (4.22):

0 .
5710(8)) = —iH:{0(2)), (8.24)
with |0(t)) = <|0f(t))>, if the condition

({a*dw(t) + t.c.} 0,0))) = 0, (8.25)

is satisfied. This indicates that the multiplication should be of the Ito type
[56] (see Appendix D). The random force operator dW (t) does not correlate
with the quantities at time ¢, i.e., [04(t)) in the case of (8.25).

8.1.2. Stratonovich Type

By making use of the relation between the Ito and the Stratonovich stochas-
tic multiplications (see Appendix D), we can rewrite the Ito type stochastic
Liouville equation (8.1) into the Stratonovich type as follows.

The relation (D.8) makes the term containing the random force operators
in the right hand side of (8.1)

{a*aw (1) + t.c.}10;(2)) = {tdW(2) +t.c.} o |04(2))
—% {ataw (1) + t.c.} dlos(1)). (8.26)

Substituting (8.1) into the last term for d|0f(t)) and using the relations

%8.21)—(8.23) for the multiplications among the random force operators, we
nally arrived at the stochastic Liouville equation of Stratonovich type in
the form .

d|04(t)) = —iH sdt 0 |04(2)), (8:27)

with
.ﬁf'tdt

Hsydt — in(t) (0fe + t.c.) dt +i [adW(t) + t.c] (8.28)
= Hsydt + [of (ido + [fsudt, a]) - e, (8.29)

where the flow operators da and da are specified respectively by

da = i[Hsdt, o] - k(t)adt + dW (1), (8.30)

and its tilde conjugate. We introduced the symbol o in order to indicate
the Stratonovich stochastic multiplication [57] (see Appendix D).

We can derive the Fokker-Planck equation (8.24) by taking the ran-
dom average of the Stratonovich stochastic Liouville equation (8.27) (see
Appendix F).



A canonical formalism of dissipative quantum systems . .. 51

8.2. Stochastic Semi-Free Operators

The stochastic semi-free operators are defined by
a(t) = V7' (0)aVi(t),  a"(t) = Vo 0)a Vi), (8.31)

where X R .
dVi(t) = —iHydt Vi(t), (8.32)

with Vf(O) = 1. Here, it is assumed that, at t = 0, the relevant system starts
to contact with the irrelevant system representing the stochastic process de-
scribed by the random force operators dF(t), etc. defined in (8.17)—(8.19).1°

The semi-free operators (8.31) keep the equal-time canonical commuta-
tion relation:

lo(t), a"e) =1, (a0, ate) =1, (8.33)
and satisfy Tool 3. in section 3.:
(lla”(t) = (1]a(t). (8.34)
The tildian nature N '
(i?‘zf,tdt) = 1M .dt, (8.35)

(see B2 in section 3.) is consistent with the definition (8.31) of the semi-

free operators. Since the tildian hat-Hamiltonian H;¢dt is not necessarily

hermite, we introduced the symbol i in order to distinguish it from the
hermite conjugation t. However, we will use { instead of {f, for simplicity,
unless it is confusing.

The stochastic semi-free operators and the random force operators sat-
isfy the orthogonality '

.<a(t)d‘.7-'1(t)> =0, etc, _ ‘K (8.36)

where the random force operator dF(t) in the Heisenberg representation'!
is defined by

dF(t) = V7 (t)dF (1) V5 (2). (8.37)

8.3. Quantum Langevin Equations
8.3.1. Stratonovich type
For the dynamical quantity

A(t) = Vi (1) AV (1), | (8.38)

1OWithin the formalism, the random force operators dF(t) and dF'(t) are assumed
to commute with any relevant system operator A in the Schrodinger representation:
[A, dF(t)] = [A, dF'(t)] = 0. ‘

U1 can be the interaction representation when one includes non-linear terms in the
hat-Hamiltonian, and performs a perturbational calculation. As we are dealing with only
the semi-free case in this section, we call the representation as the Heisenberg one.
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the quantum Langevin equation of the Stratonovich type is given by the
stochastic Heisenberg equation as [28,30]

dAQ) = ilH()di3 Q)] | (8.39)
= i[Hs(t), A(t))dt
+x(t) {[a}(t)a(t), AD)] + (G (1)a(t), A1)} dt
—{lo*(®), A®)] 0 aW(2) + [&*(2), A(t)] o dW (1)}, (8.40)
whgre
Hi(t) = Vi) Vi(t),  Hs(t) = V(0 Hs Vi(2), (8.41)

X()S Y()]=X(t)oY(t) - Y(t)o X(2), (8.42)
for arbitrary operators X (t) and Y(t). Use has been made of the fact that

V7L @)dW (1)V(t) = dW (1), (8.43)

since the random force operator dW(t) is commutative with V;(t) due to
the properties (8.22) and (8.23). Note that, using (8.40), we can readily
verify that

d[A(t)B(t)] = dA(t) o B(t) + A(t) o dB(t), (8.44)
for arbitrary relevant system operators A and B. This fact proves that the

quantum stochastic differential equation (8.40) is indeed of the Stratonovich

type.
The quantum Langevin equation of the Stratonovich type (8.40) is also
derived by the algebraic identity

dA(t) = dV; () o AVy(2) + V7 (1) A 0 dV4(2), (8.45)
with the help of |

dVy(t) = —ilsedt o Vy(t),  dV7(t) = V7' (t) o Hydt. (8.46)

8.3.2. Ito type

When dY(t) is dW(t), and X (¢) is constituted by the relevant operators
satisfying the quantum Langevin equation (8.40) of the Stratonovich type,
the connection formula (D.5) reduces to

X(t) o dW(t) = X(£)dW (2) — % [12<(2) + 2vn(t)] [a4(2) - a(t), X(2)] dt.

(8.47)
In deriving (8.47), we used the properties (8.23), and the fact that dW(¢)dt -
etc. can be neglected as higher orders.
By means of the connection formula (8.47) between the Ito and the
Stratonovich products, we can derive the quantum Langevin equation of
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the Ito type from that of the Stratonovich type (8.40) as
dA(t) = i[F;(2)dt, A)] | (8.48)
+{atlat0), AW]+ & @lat(1), AW} WD)
i[Hs(t), A(t)dt |
+x(1) {[e*(D)a(t), A@)] +[aF()alt), A)} dt
+[iZ< (1) + 2ws(0)|[6%(0), [o¥(2), A(D)]}dt

—{le* (1), AW (@) + [&*(2), AW (D)}, (8.49)
where Hy(t)dt = V7 () H 5,2tV (2). (8.50)

With the help of (8.49), we can find that the product dA(t)dB(t) has the
expression

dA(t)-dB(1) = [iZ<(t) + 2vm(t)] {[o*(t), A@)[&*(1), B(®)]
+[a*(1), AWlat(), B} dt, ~ (8.51)
which leads to the calculus rule of the Ito type '
d[A(t)B(t)] = dA(t) - B(t) + A(t) - dB(t) + dA(t) - dB(t), (8.52)

for arbitrary relevant stochastic operators A and B. This proves that the
quantum stochastic differential equation (8.49) is in fact of the Ito type.
Furthermore, since (8.49) is the time-evolution equation for any relevant
stochastic operator A(t), it is Ito’s formula for quantum systems as will be
proven in section 9..

Putting a and &' for A, we see that both (8.40) and (8.49) reduce to

da(t) = i[Hs(t)dt, a(t)] — x(t)a(t)dt + dW(t), (8.53)
da*(t) = i[As(t)dt, o¥ ()] + k(t)at (t)dt, (8.54)

which are written in terms of the original operators in the form

da(t) = i[Hs(t)dt, a(t)] — s(t)[(p — v)a(t) + 2val(t)]dt + dW(t), (8.55)
dat(t) = i[Hs(t)dt, ai(t)] — s(t)[2pa(t) — (p — v)al(t))dt + dW(t). (8.56)

The formal structures of (8.53) is the same as the flow operator (8.30)

appeared in Hy, of (8.29).

In the Langevin equation approach, the dynamical behavior of systems
is specified when one characterizes the correlations of random forces. The
quantum Langevin equation is the equation in the Heisenberg representa-
tion, therefore the characterization of random force operators should be
performed in this representation. This cannot be done in terms of dF(t)
etc., since the information of the stochastic process is masked by the dy-

namics generated by Hy(t) in these operators. Whereas, the specification
of the correlation between dW () etc. directly characterizes the stochastic
process owing to the relations in (8.43).
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8.4. Averaged Equation of Motion

Applying the random force bra-vacuum (1| to the Ito type Langevin equa-
tion (8.49), we have

d(LA() = i(1I[Hs(t), A@)dt+ s()(11A2) [+t dt
+iZ<()(L AR ()at (1)dt
H{1IA®) [o* ()W (1) + te . (8.57)

Applying further the bra-vacuum (| to (8.57), we can derive the stochastic
equation of motion of Ito type for the bra-vector state {(1|A(t) in the form

d(1]A(t) = i(1[Hs(t), A(t))dt
+x(t) { (1lla}(2), A(Da(2) + (La'(OIAQ), a(®)]} dt
HE<(0)(1a(t), [A(2), a'(t)])dt
+(UA®), a'W)dF () + (1lla(t), A@)FI(2),  (8.58)
where we used the property (|[dW (t) = (|dF(t) and (|dW(t) = (|dF1(1).

Whereas, the stochastic equation of motion of Stratonovich type for the
bra-vector state ((1|A(t) is derived similarly in the form

d((1|A(t) = i(1|[Hs(t), A(t)]dt
+~(t){((1l[a*(t), A(t))a(t) + <(1|a*(t)[{1(t), a(t)]}dt
+{(1|[A(2), a'(2)] 0 dF(t) + (1][a(t), A(1)] o dFt()(8.59)

These equations of motion for the bra-vector state may be intimately
related with the Langevin equations given by Gardiner and Collett [58].

Putting the random force ket-vacuum |) and the ket-vacuum |0) of the
relevant system to (8.58), we obtain the equation of motion for the expec-
tation value of an arbitrary operator A(t) of the relevant system as

%({A(t))} = i ([Hs(2), AQ)])

+r(t) (([a(t), A®]a(®) + (a'(B)[AQ), a()]))

+Z<(0){[a(2), [A(), a(t)T)), (8.60)
where (- -)) = (|(1]---|0)|), which means to take both random average and
vacuum expectation. This is the exact equation of motion for systems with

linear-dissipative coupling to reservoir, which can be also derived by means
of Fokker-Planck equation (8.24). Here, we used the property

(a(t)dW(t)) =0, etc., (8.61)

which are the characteristics of the Ito multiplication [56]. Note that (8.60)
was derived for general Hg including non-linear interaction terms.
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9. Phase-Space Method

Mapping (8.24) to the one in phase-space by means of the coherent state
representation for coarse grained operators, which is constructed just the

same process as (G.1)-(G.13) with respect to |0()) and P(##)(z,1), we
obtain the Fokker-Planck equation in phase-space [34]

%P(“”’)(z,t) = =i (2, 1) P2, 1), (9.1)
with (o)
PU)(2,1) = (P{*)(z,1)), (9.2)
and the coarse-grained generator

QW (21) = (=02 + 8.2%) EW)(2,8,1) + ik(t) (82 + Buz*)
+1 1 Z<(t) + 2uk(t)] B0., ' -(9.3)
where 8 = 8/0z, 8, = 0/8z"*. Note that the expression (9.1)foru =1, v =
0 is the same as (A.9) obtained by mapping the master equation (A.1) in
the density operator method by means of the coherent-state representation
in the Liouville space [59]-[61] (see e.g. [9]).
The quantum stochastic Liouville equation (8.27) of the Stratonovich
type is mapped as [34]

AP (z,1) = —i)(z,0)dt o PP (2, 1), (9.4)
with the stoéhastic time-evolution generator ‘

2Pz, 8)dt = (~07 + ,2") B)(z,,1)dt (9.5)
Fin(t) (82 + 0u2") dt — i [8 0 AW (2) + By 0 AW (1)),

mapped from H .dt, where (—0z+ 0,z*)EW¥)(2,0,t) is defined for Hs, by
means of (G.10) and (G.11) with the property

—zEW¥)(2,8,0)0 + 2 E¥)(2,0,1)8, = (—0z + 8.2%) EW)(2,8,1). (9.6)

Here, we are confining ourselves to the case where Hg; has the structure
like 37, gn(t) (aT)n a™, which leads us to

EW)(2,0,1) = Y Gpama(®) [P (27) 07O] + () 27070,
pfa=mtn
(9.7)

with real quantities g, ¢ mn(t). For a harmonic oscillator with frequency
w(t)’ E(M,U)(z, a’t) = w(t)'

The quantum stochastic Liouville equation (8.1) of the Ito type is map-
ped to the one in phase-space as

AP (z,1) = =i (3,8)dt P)(,1), (9.8)
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with
Q¥ (2,0)dt = Q2 1)dt — i (0 AW (2) + 8, AW (D)].  (9.9)
It is easily seen that (9.8) reduces to the Fokker-Planck equation (9.1) when

the random average 1s taken.

The quantum Langevin equation (8.40) of the Stratonovich type is trans-
formed to [34]

dAPH(1) = 4 [~E(“’”)(z(t),6(t),t)z(t)8(t) (9.10)
+ BE(a(2), 8(2), 1)2"(£)0.(1)] A1)t
—k(1) [2()8(2) + 2*(1)D.(2)] A¥M)(2)dt
+{[p()Aat(0)] 0 W () + [B.() A (2)] 0 dW*(1)}

where O(t) = 0/02(t) and 8.(t) = 8/82*(t), and E(#*)(2,d,t) is the adjoint
differential operator function defined by

| 5@ [-2E4(z,0,00 + 2" (2, 0,00.] ()
= / fa(2) [DEE(2,8,0)2 = 8.E%(2,8,02"] fu(z),  (9.11)
and use has been made of the property
—dEW)(2,8,1)z + 8, EW)(2,0,1)2* =

= —EW¥)(2,8,1)20 + EW¥)(2,0,1)2*0.. (9.12)

Using the connection formula between the Ito and Stratonovich products
in phase-space which has the same structure as (8.47) for quantum stochastic
operators, we can derive the Langevin equation of the Ito type as

dALP() = i [-EW(2(2), 8(2), £)2(8)D(2)
+ E(“"’)(z(t),8(t),t)z*(t)8*(t)] AH) (1)dt
—k(t) [2(£)(t) + 2*(£)0.(2)] AW (2)dt
+ [125(t) + 2vk(t)] B(2)B. (1) AWM (1)dt (9.13)
+{[pyat(n)] aw (1) + [a.() A (2)] aW (1)} .

This can be obtained also by mapping the quantum Langevin equation
(8.49) of the Ito type into the one in phase-space.
By making use of (9.10) or (9.13) for z(t), we have

dz(t) = —iEW)(2(t), 8(t), 1)2(t)dt — k(t)2(t)dt + dW(2). (9.14)
With the help of (9.14), we can rewrite (9.13) in the form

dAPM (1) = dz(£)B(1)APH(t) + dz* (1), (t) A¥M(1)
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+dz(1)d"(ABARHAPI (), (9.15)

where we used the relation .
dz(t)dz*(t) = dW()dW*(t) = [1Z<(t) + 2vk(t)] dt, (9.16)

which is proven within the stochastic convergence with (9.14) and the prop-

erties (G.15)~(G.17). The equation (9.15) is nothing but the well known

Ito’s formula for complex stochastic variable z(t). :
It is worthy to note that, with the definition of flow:

dze = —iEW)(2,0,1)2dt — K(t)zdt + dW (1), . (9.17)

being in the same structure as (9.14), the stochastic time-evolution genera-
tor (9.5) can be expressed in the form [34] '
Q) (2, t)dt = —i (0 dz + B, dz})
—E®¥)(2,0,1) (02 + 8,2") dt
+(=0z + 8u2*) EB) (2,8, t)dt. (9.18)

The latter two terms on the right hand side represent quantum effects. This

is an extension of Kubo’s generator for the stochastic Liouville equation [8]

to quantum systems. .
Taking average of (9.13) with respect to both the initial distribution

P}“'V)(z) and the random forces, we obtain the equation of motion for the

expectation value of an arbitrary observable operator A(t) of the relevant
system as .

G0 = ([ 400 [ (02 4 8.2 B49(2,9,0) (9.19)
(1) (97 + 8.2) + [E<(1) + 2wm(1)] 80, Pz, t)>
- / AP (2) [ (<82 + 9.2") B (2, 9)
+A(8) (92 + Buz") + [iZ<(2) + 2vn(t)] 00.] P (2,1),
where

{(4@) = < / A(”"‘)(z)P}“'”)(z,t)> = [Pz, (0:20)

(see (G.13)). Here, we used the properties
(z(0)dW (1)) =0, etc, ' (9.21)

which are the characteristics of the Ito multiplication [56] (see Appendix D).
The averaged equation of motion (9.19) can also be derived by making use
of the Fokker-Planck equation (9.1), as can be seen in the second expression
of (9.19). ‘
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We showed that the framework, including both the quantum Fokker-
Planck equation and the quantum stochastic differential equations con-
structed within NETFD, is compatible with the one of the classical Fokker-
Planck equation and of the classical stochastic differential equations. It was
done by mapping the entire framework of NETFD to the c-number phase-
space by means of the phase-space method in thermal space [62]. Note that
t1f1fe mapped framework in phase-space keeps the information of quantum
effects.

10. Unitary Time-Generation

Let us investigate what happens if we adopt the hermitian hat-Hamiltonian
of the form

Hyudt = Hsedt +i [o*dW(t) + tc] — i [edWH®) + ] (10.1)

for the stochastic Liouville equation (8.27) of the Stratonovich type where
we used (5.1), i.e. (5.30), as the interaction hat-Hamiltonian between the
relevant system and the random force system. In addition to the random
force operators dW (t) and its tilde conjugate, we introduced

dWH(t) = dFi(t) — dF(2), (10.2)
and its tilde conjugate which annihilate the ket-vacuum (|:
([dW(t)y =0,  (|[dW?(t) =0, (10.3)

(see (8.4)).
Since (10.1) is hermite:

(Hypedt)" = Ayt (10.4)
the generator V(t) defined by
dV-f(t) = —-if{f,t ) Vf(t), (10.5)
looks like a unitary operator satisfying
Vi) = V), (10.6)
within the Stratonovich calculation.

With the help of (8.17)—(8.19), we can find the new correlations among
the operators dW(t) and dW*(¢) and their tilde conjugate as

(awh()) = (aWH()) =0, (10.7)
(dW*(t)dw (s)) = (dW}(2)aW (s)) = 0 (10.8)

(dW(1)dw*(s)) = (dW(8)dWH(s)) = 2(2)é(t - s)dt ds. (10.9)
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Therefore, in addition to the relations (8.21)—(8.23), we have

AW (1)dWH(s) = dW(t)dW*(s) = 2k(t)é(t — s)dt ds,  (10.10)
AW () dW (s) = dWH(t)dW (s) = 0. ‘ o (1011)

By making use of the relation (D.8) among the Ito and Stratonovich mul-
tiplication, we can derive the hat-Hamiltonian for the stochastic Liouville
equation (8.1) of the Ito type in the form

Hypedt = Hodt +i [ofdW(t) +t.c] — i [adW (@) +tc].  (10.12)

Note that (10.12) is not hermitian, since H,dt is not. Note also that (10.1)
and (10.12) annihilate the ket-vacuum $(1| = (|(1| of the whole system, i.e.
the relevant system plus the random force system, but not the relevant
vacuum (1| only (see the discussion in subsection 5.1.).

With the help of (8.21)—(8.23), (10.10) and (10.11), we can derive the
Fokker-Planck equation (8.24) by taking the random average of the stochas-
tic Liouville equation (8.1) of the Ito type with the generator (10.12).

The Langevin equation of the Stratonovich type is given by

dA(t) = i[H(t)dt s A(?)]

i [As(t), A)] dt
~{lef(t), A®)] 0 dW(t) +[&*(21), A)] 0 DW(1)}
+{dWH(t) o [ot), A(R)] +dWH(D) o [(2), A(1)]},(10.13)

il

where we defined the operators
dW(t) = V71(t) 0 dW(t) o V(1) (10.14)
dWH(t) = V71 (t) o dWH(2) o Vy(2). (10.15)

With the help of the connection formulae (D.7) and (D.8), we can cal-

culate the commutation relation between Vy(t) and dW (t), dW*(t) etc. of
the Stratonovich type as

Vit s dw ()]

(750, aw (o)) + 3 [473(0), aw ()]

= r(t)adt Vy(1), . (10.16)
Vit awh(e)] = w(t)atdtVy(n), - (10.17)

and their tilde conjugates, where we used the property
[V5(t), aw (@) = [V5(2), awh ()] =, (10.18)

and its tilde conjugates within the stochastic convergence, which comes from
the characteristics of the Ito multiplication defined by (D.1) and (D.2):

(Vs(yaw (1)) = (Vy()awh()) = 0. (10.19)
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Using (10.16) and (10.17) for (10.14) and (10.15), we can derive
dW(t) = dW(t) — k(t)a(t)dt (10.20)
dWH(t) = dW (1) - k(t)at(1)dt. (10.21)

By the substitution of (10.20), (10.21) and their tilde conjugates, (10.13)

reads
dA(t) = i[Hs(t), A(t))dt
+x(t) {[a*(), A)]a(2) - a*(D)a(t), AD)]
+Ha* (), AWa() - at()lat), A1)}t
—{le*(), Ao dw () + [a4(2), A(t)) o dW (1)}
+{dWH) o [a(t), AD)]+dWH(t) o [6(2), A)]} (10.22)

Note that dW(t), dW*(t) etc. are not commutative with the operators at
time .

Use of the relation (D.5) and (D.6) to (10.22) leads us to the Langevin
equation of the Ito type in the form

dA(t) = i[Hs(t), A(t)]dt
+x(t) {[e* (1), A)]a(t) - o*[a(t), A(t)]
+at (1), A@)at() - a*(D)la(t), ()} dt
+[Z<@) + 2vn()][6F(1), [a*(2), A)])dt
— {la*(1), A@)aW(2) +[a*(2), AWV (1)}
+ {awHD)a(t), AW)]+dWH)at), AW]}. (10.23)

;From (10.22) and (10.23), we see that the equations of motion for the
ket-vector ((1|A(t) reduce respectively to (8.59) and (8.58). Therefore, the
averaged equation of motion reduces also to (8.60) in both cases.

11. An Interpretation of the Mori Formula

Let us consider a column vector

Ay
( . ) 1)
An

of a set of operators {A; (1=1,2,-- ,n)} corresponding to gross variables.
It satisfies the Heisenberg equation within NETFD:

d »
ZA() = ilH, A1), (11.2)
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(14t

- - (14

2(1)- (1]4

Figure 2: Schematic diagram of the thermal space decomposing the bra-
vector state (1|A(%) into two sub-spaces (1|4 and (1|A*.

where N .
H=H-H, (11.3)

with H being a Hamiltonian of the system under consideration. The hat-
Hamiltonian annihilates the bra-vacuum (B2 in section 3.):

(11H = 0. (11.4)

The Heisenberg equation is formally solved to give
A(t) = eflt de—iAt, (11.5)
We will decompose the bra-vector (1/A(t) in the thermal space into two
sub-spaces (see Fig. 2). One is the space spanned by {(llA,- (:=1,2,---,n)}

and the other is the space perpendicular to it. We will denotes the latter
space by (1|AL. Let us take

P = Ahoy- (11aAt)0)t - (1)4, (11.6) -

as the projector onto the sub-space specified by the bra-vector (1|A. We
assume that the ket-vacuum |0) satisfies

H|0) = 0. (11.7)

The equation of motion for the ket-vector (1JA(t) can be rewritten as

d I
Z(LAQ) = (LU, A()]



62 T. Arimitsu

= —i(1|A(t)H
= —i(1]AHe i
= i(1|[H, Ale~H
= (llAe_”’n
= iR(1|A() + (1| F(1), (11.8)
where we introduced i A
F(t) = et pe~iflt, (11.9)
with
F=A-i0A, A=, A, (11.10)
i2 = (1]AAT|0) - (1]AAT|0)". (11.11)

In deriving (11.8), we used (11.4). It is easily checked that F' satisfies

(1|/FAT0) = 0. (11.12)
Let us introduce

R(t) = ¢A-P) ()¢ He1-P), (11.13)

with
R(0) = F. (11.14)

Since
(11X (1 - P)AT0) = 0, (11.15)

we see that

(1| R(t)At|0) = 0. (11.16)

This shows that the vector (1|R(t) belongs to the sub-space (1|41. By
making use of the formula .

e~iHt(1-P) _ o~Ht | /wdseif](s—t)(l—P)iI”IPe—iI:Is, (11.17)
0

we can derive the relation between two ket-vectors, (1|R(t) and (1|F(t), in
the form

(1|R(t) = (1F(t) + /Ooodsl’(t— s)(1|A(s), (11.18)

with
I'(t) = (1| R(t)RT(0)[0) - (1]AAT|0) L. (11.19)

In deriving (11.18), we used (11.4) and (11.7).
Substituting (11.18) into (11.8), we obtain
%(llA(t) = 182(1|A(t) - / dsI'(t — s)(1|A(s) + (1| R(2), (11.20)
0

where 12 and I'(t) are defined respectively by (11.11) and (11.19). Note
that R(t) satisfies the orthogonality (11.16). The equation (11.20) may
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be intimately related to the Mori formula [41], and gives its reasonable
interpretation. '
With the help of the orthogonality (11.16) between the vectors (1|R(t)

and A'|0), we have the equation of motion for the correlation matrix

=(t) = (1|A(t)AN0) - (1]4410) 71, (11.21)
in the form
d (e e]
S2(1) = i02(1) + / dsT(t — 8)5(s). (11.22)
0
We see that 12 is related with Z(t) by the relation
i = i=(1z)’ (11.23)
dt™ " =0 )
Note that since
(1] A(2)|0) = (1] A]0), (11.24)

(see (11.4) and (11.7)), we can make Z(t) a second cumulant matrix by
putting (1}4[0) = 0. '

The Langevin equation (11.20) of the ket-vector states (1| A(t) may have
a deeper meaning in the sense of the rigged Hilbert space [63] where the bra-
vector states belong to the space conjugate to the ket-vector space which
is spanned only by a set of observable states generated on the ket-vacuum
|0). The conjugate space is wider than the observable ket-vector space,
therefore the sub-space (1|A* can have a rich variety. This variety may
take care of the jump in the re-interpretation of the Mori formula from
an ordinary differential equation to a stochastic differential equation. Its
detailed investigation will be published elsewhere.

12. Semi-Free System with a Stationary Process

For the cases of stationary quantum stochastic processes, we just need to
make the substitutions

1X<(t) = 2kn, w(t)=w, &)=k, (12.1)

in the formulae derived in previous sections.
Then, the Boltzmann equation (4.14) reads

d

En(t) = -2k [n(t) — 7], (12.2)

ith
wi 1

eﬂw—_I’ (12-3)

n =

where 3 is the inverse of the temperature 7' of the environment, i.e. § =
1/7. The Boltzmann constant has been put to equal to 1. The Boltzmann
equation (12.2) describes the system of a damped harmonic oscillator.

Substituting the Boltzmann equation (12.2) into the semi-free hat-Ha-
miltonian (4.19), we have [1,2,12]

A = w(dla-aa) (12.4)
—iK [(1 + 27) (a*a + &Ta) ~2(1+n)ad — Qﬁa'fa’f] — i2K7.
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This hat-Hamiltonian is the same expression as the one derived by means of
the principle of correspondence when NETFD was constructed first based
upon the projection operator formalism of the damping theory [1,2] (see
Appendix B).

The Fokker-Planck equation of the model is given by

0 5
=10()) = ~if|0(1), (12.5)
with (12.4), which is solved as
0(t)) = exp [[n(t) — n(0)]v*3*] [0, (12.6)

where v and 4% are defined by (12.12) below. The ket-thermal va,cﬁum,
|0) = 10(0)), is specified by (4.15) which can be expressed in terms of d

and d', which are introduced in (12.10) below, as
|0y = (n — n) d'|0). (12.7)

The attractive expression (12.6), which was obtained first in [64], led us to
the notion of a mechanism named the spontaneous creation of dissipation
(13,14], [65)-[67]. We can obtain the result (12.6) only by algebraic manip-
ulations. This technical convenience of the operator algebra in NETFD,
which is very much similar to that of the usual quantum mechanics, enables
us to treat open systems in far-from-equilibrium state simpler and more
transparent [42]-[47].
The hat-Hamiltonian (12.4) can be also written in the form

H

w(dtd - d'd) - ir (a'd + d'd) | (12.8)

w (47— ¥5) — in (1% + 55+ 2 [n(0) - 7] 743) , (129)

where d#=1 = d, d*=? = 4 and d*=! = d!, d*=? = —d are defined by
& =Q e, & =a'Q, (12.10)

with R
sz(i 12&) (12.11)

The annihilation and creation operators, 7#=1 = 7, = =7 tand 3= =
~%, §4=2 = —%,, are defined through the relation

ey = VeV, 3=V O7V ), (12.12)

where V(1) is sbeciﬁed by
%V(t) = —iHV(1), (12.13)

with the initial condition V(0) = 1.
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It is easy to see from the diagonalized form (12.8) of A that

d(t) = V=Ht) d V(t) = d e~ lwtm)t, .
dt() = V=1(2) df V(t) = dt e~ Gt (12.14)

On the other hand, it is easy to see from the normal prloduct form (12.9)

of H that it satisfies B2 in section 3., since the annihilation and creation
operators satisfy

7l0()) =0, (15t =0. (12.15)

The difference between the operators which diagonalize H and the ones

which make H in the form of normal product is one of the features of
NETFD, and shows the point that the formalism is quite different from usual
quantum mechanics and quantum field theory. This is a manifestation of the
fact that the hat-Hamiltonian is a time-evolution generator for irreversible
processes.

Let us check here the irreversibility of the system. The entropy of the
system is given by

(1) = = {n()lnn(t) = [1+ ()]0 [1 + n(0)]}, (12.16)

whereas the heat change of the system is given by

d'Q = wdn. (12.17)

Thermodynamics tells us that ‘
dS = dS, + dS;, s, = d'Q/Tr, - (12.18)
ds; > 0. (12.19)

The latter inequality (12.19) is the second law of thermodynamics. Putting
(12.16) and (12.17) into (12.18), for dS and dS., respectively, we have
relation for the entropy production rate [4] _ -

ds; _dS dS. _

B @]
TR T 2k [n(t) — @]ln >0 (12.20)

all+n(t)] =

It is easy to check that the expression on the right-hand side of the second
equality satisfies the last inequality which is consistent with (12.19). The
equality realizes either for the thermal equilibrium state, n(t) = #, or for
the quasi-stationary process, K — 0. :

13. A Mathematical Reformulation of NETFD

In this section, we will show a mathematical structure of the formulation
of NETFD. Here, for simplicity, we restrict ourselves to the case of the
stationary quantum stochastic process specified in the previous section.
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210(2)) = —iH|0(2))
H= Hs+i(17R+ 1713)

Fokker-Planck Eq.

J §

Y

DsVy(t) = =il V(1)

Forward Derivative Eq.

de (t) = —iﬂ]ygdtf/f(t)
Hyedt = Hdt + id M (1)

/

Stochastic Liouville Eq.

2V() = iV ()
(lo(t)) = V(#)|0))

dM(t)dM(t) = 20Ipdt

F-D Th. of the 2nd Kind

7 3

No diffusion term

fIp in Hf,t.

Stochastic Liouville Eq.

(Ito)

d|0s (1)) = —iHy,edt |04(t))
(lo4(t)) = Vz (#)]04))

(Stratonovich)

djog(8)) = —iHy.dt o |0(2))
Hj,tdt = (Hs + l'ﬁR) dt + idM(t)

Figure 3: A Mathematical Structure of Quantum Stochastic Equations
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13.1. Fokker-Planck Equation
Let us consider a system specified by the Fokker-Planck equation (12.5):
gt-|0(t)) = —iH|0(1)), (13.1)
with the infinitesimal time-evolution generator |
H=Hs+ill, (13.2)
where Hg is constituted by the system Hamiltonian Hg in the form
As=Hs - Hs. | (13.3)
We assume that the operator H has the tildian nature B1 iﬁ section 3.:
(i8)" =i, (13.4)

and has the property B2:
(11 =0, ‘ - (13.5)
which guarantees the conservation of prbba.bility.
For later convenience, we decompose the generator I into two parts as

IT = jIR + fID, . (13.6)

where IIr and IIp represent respectively a relazational and a diffusive time
evolution.
The formal solution of (13.1) is given by

0@ = V(1)l0), BN CEX )
with |0) = [0(0)), where V(t) is specified by (12.13).

13.2. Forward Derivative and Martingale
Now, let us examine a differential equation

DLVi(t) = —ilVy(2), (13.8)

given by the Fokker-Planck hat-Hamiltonian A and with the forward deriva-
tive

- X(t
Dy X(t) = HII(lJ Ey (X(t + Gz ( )) . (13.9)
The conditional ezpectation Ey is defined, for example, by
Et](X) = et]Xet] &® l[t’ (1310)

where

co=ly= [ il = [Tdine. s
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We are assuming that a thermal space for the stochastic operators, which
is constituted by a direct product of two Hilbert spaces, i.e. H ® M, can
be represented by an orthonormal complete basis {|7), —00 < 7 < o}
satisfying

[ auomri= 1, (rldu(r) = 6 - (). (18.12)

with an appropriate measure du(7). We see that the orthogonal projection
ey satisfies

eI] = ey, (13.13)
€5]€] = €1]€5] = €], for s < t. (13.14)

A generalization of Theorem 5.3 in [68] gives the solution of (13.8) in
the form

~ ~ t A A -~ ~
V() - Vi(s) = —i / At AV (1) + Mo(t) — Mo(s), (13.15)
s
where Mo(t) is a martingale satisfying
Eq (Mo(t)) = Mo(s). (13.16)
The equation (13.15) can be expressed as
dV(t) = —iHV;(t)dt + dMo(t), (13.17)

with the increment dV;(t) = V;(t + dt) — V;(t) and dMo(t) = Mo(t + dt) —
Mo(2).

13.3. Stochastic Liouville Equation
The equation (13.17) can be written as

de(t) = —iﬁf,tdtVf(t), (13.18)
with . A A
Hy.dt = Hdt + 1dM(2), (13.19)

where we defined the operator dM (1) by
dM () = dMo(t)V;(2). (13.20)
Note that the operator dM(t) has a property
Ey (dM(2)) = o, (13.21)

which is shown by the property (13.16) of martingale and by the definition
(13.20) of dM(1).
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In order that the generator H j,¢dt has a tildian nature and gué,ra,ntees
the conservation of probability, we require that for dM(t)

{amw}” = dM(t). (13.22)
We interpret the product dM(t)V¢(t) in (13.18) as
dAM()V3(t) = [M(¢ + dt) - B(2)] V; (), (13.23)
i.e. the time-evolution generator (13.19) is of the Ito type.

Since we will restrict ourselves, in the following in this paper, to the
case of Gaussian and white stationary quantum stochastic process (quantum

Wiener process), let us put the following conditions on dM(t):
dM (1) = O(Vdt), (13.24)

Introducing a stochastic thermal ket-vacuum |04(%)) by

105(2)) = Vs(1)105), (13.25)

with |0f) = |0£(0)), and by making use of (13.18), we obtain the stochastic
Liouville equation of the Ito type

d|0(t)) = —iH,d2|04(t)). | (13.26)

Note that, taking the conditional expectation Eq of (13.26), we can get
the Fokker-Planck equation (13.1) with the help of the property (13.21) and

the interpretation (13.23). In the course of the derivation, we passed the
process like

Eq (105(2))) = Eqi(Vs(t)I05) = V(£)I0} = [0(t)), (13.27)

since |0f) = |0). Equivalently, we see that
Eo(Hye) = H. - (13.28)

13.4. Fluctuation-Dissipation Theorem of the Second Kind

With the help of the connection formula (D.8) between the Ito and the
Stratonovich multiplications, we convert (13.18) into the equation of the
Stratonovich type as

dVi(t) = —iH p,dt o Vi (1), (13.29)

with 1
Hypdt = Hydt — 5icufl(t)dM(t), (13.30)

where we used the conditions (13.24).
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In order to derive the quantum Langevin equation of the Stratonovich
type, we assume that the term of dM(t)dM(t) cancels the diffusion term
Hp in Hj,dt:

dM(t)dM(t) = 20Ipdt. (13.31)
Then, H ,tdt becomes

Hyqdt = Hs + illg + idM(1). (13.32)

The relation (13.31) is the content of the fluctuation-dissipation theorem of
the second kind.

© The stochastic time-evolution equatign of the Stratonovich type is thus
given by

de(t) = —-ifff,tdt 0 f/f(t), (13.33)

with the infinitesimal time-evolution generator (13.32). Applying [0;) to

(13.33), we finally obtain the stochastic Liouville equation of the Stratono-
vich type in the form

d|04(t)) = —iH4dt 0|04(2)). (13.34)

The Fokker-Planck equation (13.1) can also be derived systematically
from the stochastic Liouville equation (13.34) of the Stratonovich type (see
Appendix F).

13.5. Langevin Equation
With the help of the algebraic identity

dA(t) = V71 (1) AV (1) + V7T AdV(1), (13.35)

of the Stratonovich stochastic multiplication with (13.33), and the equation
for the inverse of Vj(t):

AV () = V7 (t) o Hydt, (13.36)

we can derive the Langevin equation of the Stratonovich type for the dy-
namical quantity A )
A(t) = Vi1 (1) AVy (1), (13.37)

in the form o
dA(t) = i[Hs(t)dt o A(t)], (13.38)

where f;(t) and [X(t) ¢ Y ()] are defined respectively by (8.41) and (8.42).
The equation (13.38) indicates that the quantum Langevin equation of the
Stratonovich type is nothing but a Heisenberg equation with the stochastic

time-evolution generator H(t)d.
On the other hand, by means of the algebraic identity

dA(t) = AV (1) AVy(t) + V7 AdV (1) + dV 7T AdV (1), (13.39)
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with (13.18), and the equation of the inverse of V;(t) of the Ito type
V7 (0) = V7N (e) [Hygdt — idMI(0AM(1)],  (13.40)
we obtain the Langevin equation of the Ito type in the form

dA(t) = i [Hs(1), A(t)] (13.41)

4o (0) [asr (), A + % (A, dM()] i),
where H(t) is defined by (8.41) and dM(H)(2) by
dMB)(t) = Vi (0)dM(£)Vy(2). ‘(13.42)

The formula (13.40) can be derived by treating

d (V7 (V1) = o, (13.43)
in terms of the Ito differentiation.

13.6. Determination of dM(t)

There are at least two options for the determination of the general form of

the martingale dM.
One is derived with the condition

(1jaM(t) = 0, (13.44)

which ensure the conservation of probability within the relevant system. The
obtained infinitesimal time-evolution generator H;,dt has the same struc-
ture as the hat-Hamiltonian (8.7) for the Ito stochastic Liouville equation

(8.1) in section 8..
The other is derived with the condition

dM () = dM(2), (13.45)
i.e. hermiticy. The infinitesimal time-evolution generator has the same
structure as the hat-Hamiltonian studied in section 10.. This case may

be intimately related to those investigated by mathematicians [68]-[71]. Its
detailed report will be published elsewhere.

14. Relation to Monte Carlo Wave-Function Method

In this section, we will investigate the Fokker-Planck equation. (12.5):
a o
210(1)) = ~i o)), (4

in order to reveal the relation of NETFD to the Monte Carlo wave-function
method, i.e. quantum jump simulation [72]-[74].



72 T. Arimitsu

Let us decompose the hat-Hamiltonian (12.4) as

H=Ho+ Hy, (14.2)
with
Ho = w(ata-a'a) - in(2n + 1) (aa +a'a), (14.3)
I = 2ix (3 +1)ai+ na'al] — 2k, (14.4)
and consider an equation:
2 0o(0) = ~ifloloa(t))’ (14.5)

Note that fIlA contains cross terms between tilde and non-tilde operators.
We see that Hg and H, have the properties

(1|Ho = —2k (27 +1)(1|ala, | (14.6)-
(1|18, = 2ik (27 + 1) (1]ala. (14.7)

Introducing the wave-functions |3(t)) and |(t)) through |
100(t)) = [B(E)I(2)), (14.8)

we have from (14.5) Schrédinger equations of the form

lij .
S1(1) = —iHolp(1), (149)
and its tilde conjugate, where
Ho = wala — ik (27 + 1) ala. (14.10)

The Monte Carlo simulations for quantum systems are performed for the
Schrodinger equation (14.9) [72]-[74).

The time generation due to the hat-Hamiltonian Hy does not preserve
the normalization of the ket-vacuum, i.e. the normalized ket-vacuum |0(2)}
evolves for the time inclement dt as

(1]00(t + dt))’

Il

(f(1- iflodt) |0(1))
1 - dp(t), (14.11)

1

with
t dp(t) = 2k (27 + 1) n(t)dt. (14.12)

The recipe of the quantum jump simulation is that, for a time increment

dt,

1. When dp(t) < € with a given positive constant ¢, the normalized ket-
vacuum evolves as

0ot +dt)) |92+ dt)) (e +dt))

T 1-dp(t)  V1-dp(t)V1-dp(t)
(14.13)

o) — I0o(z + )
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2. In the case dp(t) > ¢, a quantum jump comes in:

—iH,dt|0(t))

(1 + 1) = =108

(14.14) .

The time increment dt should be chosen as the condition dp(t) < 1 being -
satisfied. :

Averaging the processes |0o(t)) and |01(2)) with the respective probabil-
ity 1 —dp(t) and dp(t) (i.e. these ket-vacuums looks like satisfying a certain
kind of stochastic Liouville equation): '

0(t-+d0)) = [1— dp(0)] 00t + d0) + dp(DlOn(e +d)),  (14.15)

we can obtain the Fokker-Planck equation (14.1).

15. Discussions

We showed that, by the success of the formulation of NETFD, we came to
be able to investigate dissipative quantum systems systematically upon a
unified stand point. The unified formalism for quantum systems covering
whole the aspects, I to IV in Table 1, was realized first by means of the
framework of NETFD.

The relation between the Langevin equation and the stochastic Liouville
equation is the same as the one between the Heisenberg equation and the
Schrodinger equation in quantum mechanics and in quantum field theory. ‘
Since they are the stochastic differential equations, there are two types
of stochastic multiplication, i.e. the Ito and the Stratoncvich types. The
Langevin equation (8.39) of the Stratonovich type has the same structure
as the Heisenberg equation of motion for analytical quantities. Whereas,

the Ito type (8.49) contains an extra term proportional to dW(t)dW(t)
due to the difference of stochastic differentiations. Although the stochastic
Liouville equations both of the Stratonovich and Ito types, (8.27) and (8.1),
have the same form, the latter is more convenient than the former to get the
corresponding Fokker-Planck equation (8.24) by taking random average. It
is because of the characteristics of the Ito multiplication. The equation of
motion for the dynamical variables taken both the random average and the
vacuum expectation value can be obtained by two paths, i.e. the one from
the Langevin equation directly by taking both the random average and the
vacuum expectation, the other from the Fokker-Planck equation by taking
the vacuum expectation of the operators corresponding to the dynamical
variables. It should be noted that the discovery of the stochastic Liouville -
equation is the key point for the construction of whole the unified quantum
canonical formalism (see Fig. 1). ‘
Note that whole the structure of the formulation is consistent with that
of classical one. For example, the Stratonovich stochastic differential equa-
tion contains the relaxation generator but does not contain the diffusion
generator, whereas the Ito equation does both generators. Note that this
consistency is violated for the approach given in section 10. with the her-
mitian interaction hat-Hamiltonian. Note also that this tradition seems to
* give us the fluctnation-dissipation theorem as shown in section 13.. The
relation of the present formulation with those of mathematicians and some
physicists [68]-[71],[75]-[79] would be an interesting future problem. For the
physical side, the difficulties related in the theories of quantum Langevin
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equation, claimed by Kubo [80], should be reinvestigated from the unified
stand point of NETFD [36]. The first claim is that the representation space
of the Langevin equation should be an extended Hilbert space which is
constituted by both the one for the relevant system and the one for the
random force (an irrelevant system). However, usually the equation of mo-
tion for the random force operator is not considered. The second is that
the correlations of random force operators for thermal ensemble do not sat-
isfy KMS-condition [81,82] in the case of the white process for quantum
systems. The third claim was how one can obtain the correlation of ran-
dom force operators for the Langevin equation which is compatible with the
master equation derived by the non-conventional treatment of the damping
theory [50]-[55),{43],[44], where the effect of non-linearity within a relevant
system on its relaxation behavior is taken into account (see [55] for the last
claim).

The correspondence of the equation of motion for the ket-vector (1| A(t),
~ (8.58) and (8.59), to the Langevin equation in [58] is an attractive future
problem in connection with the interpretation of Mori formalism given in
section 11.. For spin systems, there is a similar correspondence between the
equation of motion for ket-vector and the Langevin equation in [83]. An
investigation related to these correspondences may give us a deeper insight
for the derivation of the stochastic differential equations from a microscopic
point of view. The problem of the representation space within NETFD,
e.g. a foundation of the concept of the spontaneous creation of dissipation
[13,14], should be studied with the help of the rigged Hilbert space [63]. In
this connection, we expect that the mathematical approach in [84]-[86] will
provide us with an attractive view point. Upon the unified formulation of
NETFD, we may be able to give a further understanding of the quantum
jump within the Monte Carlo wave-function method [72?—[74], and also of
the quantum-state diffusion method [87]-[89].

With the help of the hat-Hamiltonian for the Fokker-Planck equation,
we can construct the Heisenberg equation for coarse grained operators. As
was mentioned before, the existence of the Heisenberg equation of motion
for coarse grained operators enabled us to construct the canonical formalism
of the dissipative quantum fields. It is quite interesting that for somewhat
artificial values of u, v,i.e. p =1+ @i, v = —n, we can obtain directly the
coarse grained equations of motion (4.31) and (4.32) for the stationary case:

%a(t) = —iwa(t) - & [(1+20) a(t) — 2081 (1)} , (15.1)

%af(t) = iwal(t) + |1+ 20)al() - 201+ B)a()],  (15.2)
by taking the random average of the Langevin equations (8.55) and (8.56).
For this case, (8.47) tells us that the Stratonovich and the Ito multiplications
are identical, and (8.15) gives

(dW (£)dW (s)) = (dW(5)dW (1)) = 0. (15.3)
The latter indicates that
7 (dF(8)dF'(s)) = (1+7) (dF(s)dF (1)) (15.4)

This is nothing but the KMS-condition [81,82]. The physical meaning of
this artificial case is still to be investigated.



A canonical formalism of dissipative quantum systems . . . 75

The above mentioned future problems are now under investigation, and
will be reported elsewhere in the near future.

Let us close this paper by mentioning about those which were not in-
cluded in the above sections. It was shown that the divisor method of the
canonical quantum field theory can be generalized to the present dissipa-
tive quantumn field theory [15,16]. The derivation of the generalized kinetic
equation within NETFD were studied [21]. Note that most of the studies by
means of NETFD were those in the kinetic stage. Thermal processes in the
hydrodynamical stage has started to be investigated by means of NETFD
[23]. There, the concept of non-equilibrium thermodynamics, especially that
of the local equilibrium, is tried to be interpreted in terms of the concept of
quantum field theory. There were several applications of NETFD to opti-
cal systems [42]-[47] and spin relaxation [43]. Dynamical rearrangements of
vacuum in the thermal space were investigated [64] for the boson transfor-
mation and the BCS model. The cases of fermion were not investigated in
this paper. It is somewhat straightfoiward to extend whole the framework
to the case of fermion fields.

We expect that the present unified framework of NETFD may open a
new field of dissipative quantum field theory which will provide us with a
deeper insight of nature from the stand point of quantum coherence and
dissipation for example.
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A Density Operator Method

Here, we show how we had been dealing with the model within the density
operator formalism before NETFD was constructed. The master equation
for a damped harmonic oscillator is given by [9]

gros(t) = =i (HE +3l1) ps(0) (A1)

with the symbol HfX = [Hg, X], where Hg is the Hamiltonian of the
system we are interested in:

Hg = wala, w=¢€— U, (A.2)

with € and p being the one-particle energy and the chemical potential, re-
spectively, and where IT is the damping operator:

X = x{[aX, '] +[a, Xa']} +okiifa, [X, al)),  (A.3)

with 7 being given by (12.3), and

K = Re g /0 Tty ([Ru(t), RY(O)]), € (A.4)
k
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Here, we have introduced the average, (--*)r = trR - - - pR, where the density
operator for a reservoir is given by pp = Z};le‘ﬁHR,' Zp = trg e PHr,
The coupling constant g represents the strength of the interaction between
the damped harmonic oscillator and the reservoir whose temperature is
T = p~1. We see that the one-particle distribution function, defined by
n(t) = tr alaps(t), satisfies the Boltzmann equation (12.2).

The above master equation (A.1) can be obtained by pro jecting out the

reservoir by means of the damping theory [9]-[11], starting with the Liouville
equation:

a .
5:P(t) = —iHp(), (A.5)
with the model given by the Hamiltonian
H=Hg+ Hp+ Hy, (A.6)

where Hj is the Hamiltonian describing the interaction between the system

and the reservoir:
Hi=g) (aRf +hec), (A.7)
k

with RL and Ry being the operators of the reservoir, and Hg is the Hamil-
tonian of the reservoir the explicit form of which needs not be specified to
get the master equation (A.1). The coarse-grained density operator pg(t)
is defined by pg(t) = trr p(2).

Introducing the boson coherent state representation of the anti-normal
ordering [59]-[61] through

pst) = [ L2 pstoya)e, (A8)

with the boson coherent state |2), defined by a|z) = z|z), we can map the
master equation (A.1) into a partial differential equation for the c-number
function fg(t) as [9]

%fs(t) = [—iw (0.2* — c.c.) + K (0.2" + c.c.) + 26n8.0)] fs(t), (A.9)

where we have introduced the abbreviation, 8 = 8/8z, 8. = 8/8z*. This is
nothing but a Fokker-Planck equation.
The Fokker-Planck equation (A.9) is transformed into

%F(t) =2 ({35 + % + ﬁacEC"e) F(t), (A.10)
with the help of the relation

F(t) = (32299 fq 1), (A.11)
where £ = |z|?, and §; = 8/8€. We can solve {A.10) in the form

F(t) = Ez15.3—»5/“0), (A.12)
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with the initial condition F(0) = fs(0) = le=¢/". - Here, n(t) in (A.12)
satisfies the Boltzmann equation (12.2). In deriving the solution (A.12), we
have used the Laguerre polynomials . '

1
Lo(§) = 56t (~0¢€de) e ™, (A.13)

and the relation .

©1 o, exp—é(z/(1- 1))

;:ﬂLdﬁz-— - : (A.14)

=0 )
Substituting (A.12) into (A.11), and putting the obtained fs(t) into (A.8),
we have 2

1
ps(t) :;(—t—S/Tze_lzlzln(’)lz)(zl. (A.15)

This density operator contains the same information as the thermal ket-
vacuum log)) given by (12.6). . :

It may be worthwhile to note that the relation of the operator algebra for
a harmonic oscillator within quantum mechanics to the Hermite polynomials
is very much similar to the relation of the operator algebra for a damped
harmonic oscillator within NETFD to the Laguerre polynomials.

B The Principle of Correspondence
With the principle of correspondence [90,1,2]:
ps(t) — 10(t), (B.1)
Aps(hAs —  AAT00)), (B.2)

the master equation (A.1) reduces to the Schrédinger equation (12.5) with
the hat-Hamiltonian (12.4). It was noticed first by Crawford [91] that the
introduction of two kinds of operators enables us to handle the Liouville
equation as the Schrodinger equation.

C Linear Response of Material Systems
Let us consider the linear response to the external field of the system spec-

ified by H.
Since the deformation of the thermal vacuum is given by

§10(t)) = e~ 5 (1, 10)e'H10|0(to)), (C.1)

with .
ﬂ%m@:q/aﬁﬁ%‘ (C.2).

to

the linear response of an observable

Q(t) =X Q) + hec, (C3)
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is given by
t
5Q) = -3 /0 4t By 1 (1, 1) Re (g1, (C.4)
k
with
Sqx(t,t') = i(1][Qq(t), af(t)]0) + c.c.. (C.5)
Here, we assumed that the state of the external field is the coherent state
defined by
bi|z) = 2|2), (C.6)
and that the field is given by
Re gr2k(t) = Re grzi(t) = |92k cos(wit + ¢). (C.7)

D TIto and Stratonovich Multiplications

The definitions of the Ito [56] and the Stratonovich [57] multiplications are
given, respectively, by

XE(t). ay®() = XE(1) [yE (e + dt) - Y D(1)], (D)
dXE(t) . y®(t) = [xH(t +dr) - x| YD), (D.2)

and
X002 a0 = T dtz) LA [y (e +dty - Y ()]
(D.3)
dX(H)(t) 0 Y(H)(t) = [X(H)(t +dt) - X(H)(t)] YHE)(t 4 dtz) + Y(H)(t)’
(D.4)

for arbitrary stochastic operators X(#)(t) and Y(H)(t) in the Heisenberg
representation. From (D.1), (D.2) and (D.3), (D.4), we have the formulae
which connect the Ito and the Stratonovich products in the differential form

X0(1) 0 dy (1) = XE(1)dyY (1) + 24X (1) - ay®)(e), (D.5)
X1 0 YD) = ax (1) - Y (1) 4 5dX W (e) - Y ()(D.6)

The connection formulae for the stochastic operators in the Schrédinger
representation are given, in the same form as (D.5) and (D.6), by

X)) 0 dY (1) = XO(0)dY (1) + %dX(S)(t) dY®)(), (D7)
XS (1) o Y1) = dXE)(1)- YO (1) + %dX(S)(t).dwﬂ(t), (D.8)

where the operators X (5)(t) and dX(5)(t) in the Schrédinger representa-
tion are introduced respectively through X (F)(¢) = Vf_l(t)X(S)(t)Vf(t) and
dX (@) = V7 (0)dX () Vy(2).
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E Correlation of Random Force Operators

The random force operators are of the Wiener process whose first and second
cumulants are given by real c-numbers:

(dr@) = (dFt() =0, (E.1)
(dF()aF(t) = (dFt@)drt) =0, (E.2)
<dF(t)de(t)> = [a real c-number],
(E.3)
<dF*(t)dF(t)> = [areal c-number],
where (---) = (| - - -|) represents the random average referring to the random

force operators dF(t).
The random force operators satisfy Tool 3 in section 3.:

([dF(t) = (|dF(2). (E-4)

Applying the connection formula (D.8) to the multiplications, for ex-

ample, dW (t)V;(t) in the right hand side of the equation (8.32), we have
the equation of motion for the time-evolution generator of the Stratonovich
type as '

dVi(t) = —iH j4dt o V3(2), (E.5)

where H 7.4dt is the stochastic semi-free hat-Hamiltonian of the Stratonovich
type defined by

Hjsdt = Hydt - ia® & dW(@)AW () +i [a*dW(2) + t.c|
= w(t)(a'a ~ ata)dt — in(t) o} (ba + na') + t.c.] dt
+i [atdW (1) + tc . (E.6)
In deriving the expression (E.6), we demanded that the Stratonovich time-

evolution generator should not depend on the diffusion terms, which leads
to

dW ()dW (t) = {2n(t) [n(t) + 7] + %n(t)} dt. (E.7)

This expression is compatible with the assumption that the process is white.
Let us put the subscript F on £<(t) in the Boltzmann equation (4.14) in
order to remember that it is due to the interaction with the random force
dF(t):

%n(t) = —2x(t)n(t) + 1 Z5(2). (E.8)
Making use of (E.7) and (E.8), we have
1Z5(t)dt = —2k(t)ndt + dW (t)dW (t)
~2x(t)pdt + (dF'(£)dF (1))
+v{(aF@)dF' (1)) - (aF'(HaF(B)}.  (B9)
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where (8.16) has been used within the stochastic convergence, and p has
been erased with the help of (5.26).

It is reasonable to assume that the quantity n may depend on v, i.e.
n = n(v), and that the physical quantities s(t), iXg(1), < F‘L(t)dF(t)>,

and <dF(t)dF*(t)> may not depend on v. Then, differentiating (E.9) with
respect to v, we have

0= —25(t)%dt + (dF(t)dF'(t)) - (dF'(1)dF(2)). (E.10)
This leads to 9
U
o = K1), (E.11)
which is solved as
n= k() +1(t), (E.12)

where k(t) and [(t) are real numbers independent of v. Substituting (E.11)
into (E.10), we have

(dF(8)dFH (1)) — (dFY(0)dF(t)) = 26(t)k(t)dt. (E.13)
By means of (E.12) and (E.13), (E.9) becomes
| iZ5 ()t = —26(t)I(t)dt + (dFH(£)dF (1)), (E.14)
which leads to
(dFY)dF()) = [iZ5(8) + 26()I()] dt
= {25(15) [n(t) + 1(t)] + itn(t)} dt,  (E.15)

where we have used (E.8) at the second equallty The substitution of (E.15)
into (E.13) gives us

(dF()AFT(8)) = {iZF() + 2n(t) k() + (1))} dt
= {2n(t) [n(t) + k() + 1(2)] + %n(t)} dt. (E.16)

For the system specified by the Boltzmann equation (12.2), (E.15) and
(E.16) reduce, respectively, to

(dF()dF()) = 2x[7+ (1)), (E.17)
(dF(£)dFY(t)) = 26[A + k(1) + (1)) dr. (E.18)

Since the Boltzmann equation (12.2) is compatible with the stationary pro-
cess specified by

dF'(t)dF(t)) = 2xndt, (E.19)
(4P (dF(1))
(dF(t)dF (1)) = 26(n + 1)dt, (E.20)
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" we know that ' :

(1) =0, k(t) =1, - (Ba21)

which lead to '

n=v (E=n) (E.22)
Substituting (E.21) into (E.15) and (E.16), we obtain (8.18) and (8.19).

We also get (8.23) by putting (E.22) into (E.7). '

F  Another Derivation of the Fokker-Planck Equation

The Fokker-Planck equation (8.24) can be also derived, systematically, from -
the stochastic Liouville equation (8.27) of the Stratonovich type by means
of the method [26,27]:

(d104(2))) = dlo(®))
= —i(Apdto]04(2)))
= —iHdt|0(t)), ' (F.1)
with
_if = 1#‘302“ / *&(ty)dh, (F.2)
where -
= 3" Kn(t)dt, (F.3)
n=1 ’
with
K (tydt = (- Z)n/ /“ /tH HftdtOHftldtlo o Hypy_ydtn_1)oc.

(F.4)
The symbol (- - -),... indicates the ordered cumulants [92,10] defined, for ex-
ample, by

(X())oe. = (X(B)), (F.5)
(X(OX (t1))oo. = (XX (1)) — (X(NX (1)), (F.6)

(X(O)X(01)X (82))or. = (X()X(01)X (1)) — (X)X (L)X (22))  (F.T)
—(X(OX (EINX (1)) = (X (ONX (82) X (22))
(X(t)>(X(t1))(X(t2)) +(XONX (t))N(X (1)),

for any operator X (t).

Using (8.28) with the properties (8.13)—(8. 15) for the Wiener process,

we obtain the Fokker-Planck generator H in (8.24) as

1

t+ At N . t1 . R
H= Ali_’o At,/ {(Hf,hdtl) _"/0 (Hf,tldtl on,tzdt2>0-c-} . (FS)

For the mathematical formulation in subsection 13.3., we regard (- - -) in
the above formulae as Eg(- - ).



82 ' T. Arimitsu

G Coherent State Representation in NETFD

We introduce a phase-space method for NETFD by means of a generalized
coherent state representation [62].

1. The probability distribution function Pf(“’")(z, t) corresponding to
|0£(%)) is defined by

000 = [ P (501409 (z)), (G.1)

with
A (z) = [ el =4 D g)), (G-2)
4
where |D(€)) is specified by
&*|D(2)) = —2D(2)), alD(2)) = =8| D(z)),  (G.3)
and v
(1D(2)) = 76@(2),  6P(z) = 6(Re(2))6(Sm(z)).  (G.4)
Here, we introduced abbreviations [, = fd*2z/r, and 8 = 9/9z, B =
0/8z*. The parameter s = v — u specifies the ordering of operators,
e.g. s = 1 for normal ordering, s = 0 for anti-normal ordering and
s = 1/2 for Weyl ordering. Equation (G.1) shows the correspondence
between thermal space and phase-space as
o]05(t)) e— 2PP(2,1),  &H04(2)) —— ~0. P (2,8).  (G.5)
Note that the tilde invariance, |04(t))~ = |04(t)), reads
P{)(2,0) = PY(2,1), (G.6)
and that o and a are canonical operators satisfying the canonical

commutation relation
[a, o¥] = 1. (G.7)

2. The phase-space quantity G#*)(zy, 2}, z3, 23) for the operator
G(a,at,dt, @) in the thermal space is defined through

Gla,al,at, @)= [ [ G, 57, 20, 25) A0 (5) A0 ),
z] VY22

(G.8)
with

A6 (z) = [ SKPBETED(E), D(e) = o E (G)
3
Then, for the state

G(a,at,at,a)|04(t)) = /F(“"’)(z,z*,t)|A(‘"")(z)), (G.10)
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we obtain
Flm)(z 2 1) = v 0i-udio?
XG(“"’)(zl + V0., 21 — p0, 2o
— pdu, 7+ VO)PP (2, 1)] 4 mry =, (GU11)

. __ 5 __ %
2 =2 =2

3. The expectation value of the observable operator
G(a, at) = / Fn (2, 27) A6 (), (G.12)
2
is given by

(1UG(@,aNos®) = [ Fee PPy, (G13)

4. As for the random force operators dW(t) and dW(t), we cast the
mapping correspondence between thermal space and phase-space as

dW(t) «— dW (1), dW(t) — dW™(1). (G.14)

The stochastic process for these random forces in phase-space are spec-
ified by (8.13)-(8.15) with the replacement of the operators according
to the correspondence (G.14). Namely,

(aw(t)) = (aw*(1)) =0, (G.15)
(AW (1)dw (s)) = (dW*(1)dW*(s)) = 0, (G.16)
(aw (£)dW*(s)) = [iZ<() + 2vk(2)|8(t — s)dtds. (G.17)
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KAHOHIYHMHA ®OPMAJII3M
AUCHUIIATUUBHHUX KBAHTOBUX CUCTEM.
HEPIBHOBA>KHA TEPMOIIOJILOBA TUHAMIKA

T. Apimitcy

[IpencrapieHo KaHOHIYHUI ¢ opMaIi3M KBAHTOBUX CHUCTEM B Jia-
JIEKOMY Bl DIBHOBard CTaHi — HEPIBHOBaXXHY TEPMOINOJLOBY HM-
namiky (HTII), mo o6’ennye pisHi Touku 30py U OXOMJIOE BCi
aCIEeKTH HEPIBHOBAXKHOI CTATUCTUYHO] MEXaHIKY, Taki AK PIBHAHHA
Gonkumana, ®okepa-Ilnanka, JlaHkeBeHa, 8 TAKOXK CTOXaCTUYHE
pIBHAHHA .Hlmeﬂ

[lokasaHo AK OTPUMYETLCA HATIB-BilbHUA FeHepaTop YacoBOl
epoJtollil KBaHTOBOTO piBHAHHA Pokepa-Ilnanka B HecTaLlOHAPHO-
My BUTATKy 3 NOTPUMaHHAM KLJIBKOX OCHOBHHMX BMMOL, I[0 HAaKJia-
JNarThCA JeAKMMM ) YHIAMEHTAJbHUMH BJIACTUBOCTAMM PIBHAHHA
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JliyBing. Ha ocHoBI Iboro reHeparopa IOKa3aHO AK OyOyeThCsA
KAHOHIYHA Teopid MUCUTATUBHUX KBAHTOBUX cucteM. OnepaTopu
3HUMINEHHSA U [IOPOIXKeHHA IpeJcTaBjleHl Uepes YacoBo3alleXHe Ie-
peTBopeHHA Boromobona.

Mokasano, mo B pamkax HTIII e npa masxu — ABI MOXKIU-
BOCTI BBE[IEHHA 30BHIIHBOTO oJaA. OuuH crocib — yepes epMiToBUi
“hat”-ramineToHiaH, iHITU]X ~ yepe3 HeepMiToBUI “hat”-ramineToHI-

aH. 3 crapum “hat’-ramiibTOHIAHOM NpENCTaB/IEHO S-MATPHLIO Ta
MeTOH TBIpHOI'O YHKUIOHAJY 3 METOK OTPMMATH CIIBBIIHOIICHHA
mix MetomoMm HTTIT] Ta onuwuM i3 misxiB 3amkHeHoro vacy lIBin-
repa.

3 oCTaHHBOI HeepMiTOBOIO B3aemomiew “hat”’-raminbToHiaHa
OTPMMAaHO 3arajibHUI BUPa3 CTOXACTAYHOI'O HAIMIB-BIJILHOI'O IeHe-
paTopa 4YacoBol eBoJIIOLIi 1A HeCcTaUiOHAPHOIO rayciaHa BLIoro
KBAHTOBOI'O CTOXACTUYHOrO npouecy. TakoX OTPUMaHO B 3aralib-
HOMY KOpeJiAllilo onepaTopa Bunaakosoi cunu. Ha ocHoBi HboOro re-
HepaTopa MOKa3aHo AK MOXKe GYyTH CKOHCTpYHoBaHa o6’sqHaHa Te-
Op1A KBAHTOBMX CTOXACTHUYHUX OUdepeHuiansHUX piBHAHBL. O6’en-
HaHMM YMHOM MOCHIIXEHO CTOXACTUYHI piBHAHHA cucTemu JliyBina
Ta JlanxkeBena ax B ¢opmi Iro, Tak 1 B popmi CTpaToHOBUYA.

Bca teopia HTIILI Ttakox npepcrabiieHa B ¢opMl c-4ucel, IO
no3sonsae B pamkax HTIIJI poarnsanaTy it KOrepeHTHI CTaHM.

CucreMa cToXaCTUYHUX OUD epeHUiaTLHIX PIBHAHE TAKOXK CKO-
HeTpy#oBana Ha “hat”-raminbToHiaHI 3 €epMITOBOIO B3a&MOIISIO.
Ilogana inTepnperania ¢opmynu Mopi B pamkax teopil HTIIM.
ITonano MatemaruuHe ¢popmymwsBanas HTIIN, ne croxacTUuHUi
reHepaTop YacoBOl €BOJIONI] 3alMcaHo Yepe3 MapTUHranu. B pam-
kax HTII neperaauyTo MeTon XxBunLoBux ¢ yukuinn Monre-Kapio
(e MomeNMIOBAHHA KBAHTOBOLO IIEPEXOLY ).



