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One approach of unified description of kinetic and hydrodynamic
fluctuations for classical systems i1s proposed. The coupled system
of equations for nonequilibrium oneparticle distribution function and
distribution function of hydrodynamic variables: mass density, mo-
mentum and energy for the description of kinetic and hydrodynamic
processes in classical liquids is obtained.

1. Introduction

Construction of kinetic equations with consideration for slow hydrodynamic
processes [1-4] is an important problem of the theory of transport processes
in fluids. For instance, this problem arises in attempting to describe low-
frequency anomalies in kinetic equations and related “long tails” of correla-
tion functions [5], as well as in consistent consideration of collective effects
in plasma [4,6]. The main point of the problem consists in that kinetic and
hydrodynamic processes are coupled and have to be treated simultaneously.

In papers [7-9] an approach was suggested to describe consistently kinetic
and hydrodynamic transport processes in dense gases and liquids on the ba-
sis of nonequilibrium statistical operator method developed by D.N.Zubarev
[10,11]. In particular, this approach was used to derive form the BBGKY
hierarchy the kinetic equation of revised Enskog theory [8,12] for hard
spheres and Enskog-Landau kinetic equation for one-component charged
hard sphere system [8]. In paper [9] generalized transport equations were
obtained for hydrodynamic variables (densities of particle number, momen-
tum and total energy) coupled with the kinetic equation for nonequilibrium
one-particle distribution function. These equations were used then to inves-
tigate time correlation functions and the spectrum of collective modes for
slightly nonequilibrium systems [13].

Obviously, the approach [7-9] can be used to describe both slightly and
strongly nonequilibrium systems. But to describe consistently kinetic pro-
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cesses and nonlinear hydrodynamic fluctuations, it is convenient to reformu-
late the theory in order to obtain the coupled set of equations for nonequi-
librium one-particle distribution function and the distribution functional
for hydrodynamic variables: densities of particle number, momentum, and
energy. The idea of such an approach was formulated in paper [14].

2. Nonequilibrium distribution function

To describe consistently kinetics and hydrodynamic fluctuations in one-
component classic fluid, one has to choose parameters describing in a natural
way both one-particle and collective processes. We take as these parameters,
the nonequilibrium one-particle distribution function f;(z;t) = (71(z))* and
the distribution function for hydrodynamic variables f(a;t) = (6(a — a))*.
Here the phase function

() =) 6z —a;) = 6(p—p;)é(r —7;) (2.1)

j=1 j=1

represents the microscopic density of particle number, and z; = {p;,r;} is
the aggregate of momenta and coordinates. The microscopic phase distri-
bution for hydrodynamic fields is given by

3

6(& - (l) = H H 6(&mk - a'mk)a (22)

m=1 {k|<ko

where the phase functions @ip = fig, Gox = Ji, G3x = &, are the Fourier
transforms of densities of particle number, momentum and energy:

N
ﬁk - Ze—zk-rj, (23)
j=1

N
T =Y pe*ms, (2.4)
i=1
N pz 1 N
o e T ) —ther; 2.5
I£j

and apng = ng, Ji, E are the corresponding collective variables. ¢(|r;;|) =
é(|r; —r;]) is a pair potential of interaction between particles. Mean values
(f1(z))', (6(@ —a))! are evaluated with the N-particle distribution function

o (zV;1) which satisfies the Liouville equation and, in accordance with the
idea of reduced description of nonequilibrium states, is a functional

o(zV;t) = 9(--.f1(w;t),f(a;t)---)- (2.6)

Thus the problem is to find a particular solution of the Liouville equation
for o (z™;t), which has the form (2.6). To this end, let us follow Zubarev’s
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method of the nonequilibrium statistical operator [ 10,11} and consider the
Liouville equation with an infinitesimally small source violating the time-
reversal symmetry

% (aV;t) +1Lyo (z"V5t) = —¢ (9 (zV;t) — o (wN;t)>, (2.7)

where ¢ — +0, after thermodynamical limiting transition. The source se-
lects the retarded solutions corresponding to reduced description of nonequi-
hbrlum states of a system. The quasi-equilibrium distribution function
g, (zV;1) is determined in a standard way [10,11} from the maximum of
the information entropy under the supplementary conditions that the nor-
malization be constant

/dI‘Ngq (zV;1) =1,

; (2.8)
dTy = (d;)! - ldz, K,‘;d”), de = drdp,
and the conditions that the parameters of reduced description
fileit) = (M(a)), (2.9)
flait) = (6(a—a))’ (2.10)

are fixed. Then the quasi-equilibrium distribution function can be written
as

o, (z;t) = exp{ /dw v(z; t) A ( /da}' a; t)f(a)}, (2.11)

where
da = {dnk, d.’k, dgk}

The Massier-Planck functional &(t) is determined from the normalization
condition for the quasi-equilibrium distribution:

P(t) = ln/dFN exp{ /dz v(z; t)i(z /da]: (a;t f(a)} (2.12)

The functions y(z;t) and F(a;t) play the role of Lagrange multipliers and
have to be determined from the consistency conditions

fi(m;t) = ()" = (fu(2))g, (2.13)
f(a;t) = (8(a — a))’ = (8(& — a)),, (2.14)

It is convenient to rewrite the quasi-equilibrium distribution function (2.11)
in the form

o, (V1) = exp {—@(t) - /dz v(z; t)ﬁl(z)} /da exp {—T(a;lt))fh(a)} .
(2.15)
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Using next the condition (2.14) we find the function F(a;1):

exp {~F(ai )} = (2.16)

where
Wi(a;t) = /drN exp {_m) _ /da: 7(m;t)ﬁ1(w)} fl@)  (217)

is the structural function of hydrodynamic fluctuations, which be also con-

sidered as the Jacobian [15] f(a) for the transformation into the space of
collective variables ng, Jx, &, averaged with the “kinetic” quasi-equilibrium
distribution function

Q;""" (:EN; t) = exp {—Q(t) - /dw y(z; t)’f?q(l')} . (2.18)
Thus we can write
W(a;t) = /dI‘N ok (zV;1) f(a). (2.19)

Taking then relations (2.18) and (2.19) into account, the distribution func-
tion (2.11) can be presented in the form

o, (z;1) = 07 (a™;¢) v{,((a ;;tt))

(2.20)

To the quasi-equilibrium distribution (2.20), there corresponds the entropy
S(t) = —(lng,),
(1) + /dz (23 0)(fn(z)): + /da Faityin L858 (991
' ' W(a;t)

In combination with consistency conditions (2.9) and (2.10), it can be con-
sidered as the entropy of a nonequilibrium state.

Having quasi-equilibrium distribution (2.20), we rewrite the Liouville
equation (2.7) for the function Ag(z";t) = o (z";t) — o, (z";t) which
tends to zero as t — —oo:

((% + 1Ly + s) Ag (zVit) = (% + lCN) 2, (zV;1) . (2.22)

The time-derivative in the right side of this equation can be expressed in
terms of the Kawasaki-Gunton projection operator P,(t) [11]:

%gq (@V;t) = =P, (t)Lno (zV;1). (2.23)
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In our case the projection operator P,(t) acts on any phase function o’
according the rule

Py(t)e’ = 04 (2V51) / dl'y 9’4;- . &2.24)
+/d 302(1?1"),0 [/dFN f1(z)e" = (fu(x))e /dI‘N g] |
+ [ a2 }a/cfvvvt e [ dvw f(@ye - rait) [arn g] +

Do, (zN;t) f(a;t) 8ln W(a;t)
+ [ da [ de S D e

X [/ dl'y f1(2)e’ — <ﬁ1(x))t/dFN g’] .

Taking relation (2.23) into account, we rewrite equation (2.22) in the form

(% + (1 - Pq(t))zEN + 8) Ap (z";t) = _(1 - Pq(t))ZENQq (=";1) .

(2.25)
Its formal solution is given by

t
Ao (zV;t) = — /dt' eI (g; t')(l - 'Pq(t'))z,CNgq (i),  (2.26)
t'

where
T(t;t") = exp, {— / (1 - ’Pq(t'))zEth’} (2.27)

is the generalized time evolution operator taking into account projection.
From (2.26) we find the nonequilibrium distribution function

t
0 (:z:N;t) = p, (mN;t) - /dt' e‘('l_t)T(t; t')(l — 'Py(t')) 1Lnog (zN;t’) ]

(2.28)
Let us consider an action of the Liouville operator 1Ly on the quasi-equili-
brium distribution function in (2.28). We have

Wyo, (zV;t) = - /d:c y(z; )0 (2) 0, (25 1) +
(2.29)
f(a';t) kin
o M ER

where 7,(2) = 1Ly i1(z). Using then the relation

Unfla) = Uy flne, T, &) =
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(2.30)
- -3 (@i + i@t i)

jk = 2£Njka gk = 'LL:N‘{'I:,

the last term in (2.29) may be represented in the following form:

f(a’ t) km N 9 f(a‘ t)
[zﬁ Wiast)l,_ u] i) /da (n,,_W(a t)(‘)n Wa; ) +
(2.31)
+ JkW(a t)ai V{/((a t)) + 8 Wi(a; )az_k Vj;/'((aa tt))) oc (zV,a51) .

Here we have introduced the new quasi-equilibrium distribution function

oc (2V;t) with microcanonical distribution for large-scaled collective vari-
ables:

8c (zNa ) - Q:m ( N.t) V‘/{.(((Z)t) (232)

This quasi-equilibrium distribution function is related to that in (2.20)
Oq ($N; t) by

o (zV;51) = /da, fla;t)ec (2N, a;t), (2.33)

and is normalized: .
/dI‘N oc (V1) = 1. (2.34)

Using the relation (2.33), it is convenient to represent averaging with quasi-
equilibrium distributign function in the form

/ da (.. ). f(a;t), (2.35)

where

) = /dFN v0e (@V31). (2.36)

Now in accordance with (2.31) and (2.33) we can represent the action of the
Liouville operator on g,(zV;t) as

Wno, (V1) = —/da/ dz y(z; t)ﬁl(a:)g,; (&, a;t) f(a;t) + (2.37)

+ / da;(nkW(a )a— aa v{,((a tt)) W (a; )6(3,., / ((‘2 tt))+

+ & (a %(Z v’;(& tt))) oc (a72)..
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Substituting this expression into (2.26), one obtains for nonequilibrium dis-
tribution function the following result:

0@"i0) = [ dae (2, 05%) flait) + (2:38)

. .
+/da dzx dt'es(tl_‘)T(t,t')(l—'Pq(t'))ﬁl(x)gL (=N, a; ) f(a;t')y(z;t)

— o0

- / da ;ﬁ 4 dte =T (4,1) (1-Py(t)) (ﬁkW(a;t')%%% +

3 9 flait) | s o 0 fla;1) N o
+ JW(a;t) J,,W(a;t')+€kW(a’t)8€kW(a;t’)) g;(:c sa;t).

This formula gives the nonequilibrium distribution function which describes
consistently both kinetic and nonlinear hydrodynamic fluctuations in a clas-
sical fluid. One can go over to the traditional scheme accepted in the ki-
netic theory, if hydrodynamic fluctuations are neglected. The corresponding
quasi-equilibrium distribution gf(z";t) is obtained from (2.33) if one puts
f(a;t) ~ é(a— @), where @ = ea = {@y} is the set of mean values of hydro-
dynamic quantities. Then the nonequilibrium distribution (2.38) takes the
form

o (a¥;0) = of (a";0) + | (2.30)
+ /dm/ dt’ ef(t'_‘)T"(t,t')(l - P:(t’))r;zl(m)g;‘ (2" t) y(z; 1),
g: (zN:t) = exp {—Qk(t) - /dm 7(x;t)ﬁ1(x)} , (2.40)

(1) =ln/dI‘N exp{—/da: 7(cc;t)f7,1(a:)}. (2.41)

Calculating then the Lagrange multiplier y(z;t) in (2.40) from the consis-
tency condition (fi;(z))" = (7(x)}), we get

N .
ot (N;t) = [ 2250, (242)
j=1

fi(z;j;t) being the nonequilibrium one-particle distribution function. It can
be shown [16,17] that the Liouville equation with the source specified by
quasi-equilibrium distribution (2.42) leads to the well-known BBGKY hier-
archy for reduced s-particle distribution functions with Bogoliubov’s condi-
tion of complete weakening of initial correlations.

The result (2.38) can be used to derive the set of equations for the
one-particle distribution function f)(z;t) and the distribution function of
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hydrodynamic variables f(a;t). We start with the obvious relations

D hlmst) = (@) = () + (),
(2.43)

, h
gil(@0 = [drx eleincfa)

Then the substitution of the explicit expression (2.42) into these relations
gives after simple but somewhat lengthy manipulations

a
O h@t) L) A0+ [ da 101, 2)gu(z,0) = (2.44)
+o0
= /dw’/da / dt' e~ (z, 2, a;t, 1) fla;t')y(z'; 1) —
1 _e(t'=1) . ' Y 9
—Z da [ dt'e $ns(z,0;t, YW (a; t)z— +
- 0J

d } fla;t)

+ ne(@,ait, YW (@i ) g ¢ rr i

CLCOEDY {ma(ait) (e ) + (2.45)
b po-i(as (0 0+ ggve(ai (@i | =

+oo
-3 ———ai /da’/ da:'/dt' W0, (k, ' a,d';t,t) f(a'st)y(2s 1) —
k k oo

+o0
- Z —a—-/da'/ dz’/dt' W, (k, o' a,a';t, 1) f(a'; 1 )y(2'; ) +
~ 08, S

7 ) o [ fla';t
’ ’ e(t’—t)‘ k ) .4 ___( » )
+§;/da_/dt e aJk¢JJ( 7Q7a7a’t’t)W(a’ )ajq W(a’;tl)

iy ) 8 [ fla't
' 1 e(t'—t) hog 4 1, )
+ ,.2,; /da—/dt e —agkqﬁgg(k,q,a,a it, 1YW (a';t) _65,, (W(a’;t’))

+oo
, 0 9
j : ' 1 Le(t'—t) s 4 W LI ) Y
' ,,.,/d“_/dt ) {aJ,.d’”(k’q’“’“’t’t) (@5t)5g, *

9 s o) (S
+ agh(éfl(kaq’aya,tat)w(a1t)an} (W(a’;t') .

where the one-particle and two-particle Liouville operators are given by the
formulas

) 'y (8 8
wm=2. 2 wa9=-Tolr-r)(5-55)-
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We have also introduced the binary distribution function go(z1,z2;t) in the
quasi-equilibrinm state .

gg(ilfl,fl?g;t) = /dI‘NT-Q Q4 (.’L‘N;t) . ' (246)

The contribution of microscopic dynamics is described by the transport
kernels ¢o5 which are expressed in terms of the correlation functions of
generalized fluxes I,: ‘

1

ban(z, 2y a5t t) = (La(z )T (1) (25 ) (2.47)
¢n1(k,a:,a;t,t') = (In(x;t)TQ(t’t’)IJ(k;tl)ycl7 (248)
bue(kyz,ait,t) = (Lu(z; )Tyt ) e(ks ) (2.49)
brn(k, T, a;t,t") (I (ks YT, (2, ¢ (23 )% (2.50)
den(k,z,a;t,t") (Ig(k;t)Tq(t,t')In(w;t’))fc’ , (2.51)
¢11(k,q,a,a’;t,t") (IJ(k;t)Tq(t’t,)IJ(q;t’))t[; s (2.52)
¢J€(k’q7a7al;t7tl) = (Il(k;t)Tq(t,tl)IE(q;t’))tL;’ (253)
ges(k,g,0,05,t) = (Le(k)Ty(t, ") (@)L, (2.54)
QSEE(kaqaa"a'l;t’t’) = <I5(k;t)Tq(t’tl)Ig(q;tl))t[t7 (255)

Lizit) = (1-P@)n) - (256)

Lkt = (1-PM)Iue), (2.57)

Lkt)y = (1-P@0)é). (2.58)

The Mori projection operator P(t) appearing in the fluxes is related to the
Kawasaki-Gunton projection operator (2.24) by the equation '

P, (t)a(z)e, (zV;1) = o, (&V;1) P(t)a(z). (2.59)

It should be emphasized that in formulas (2.47)-(2.55) the averages are
calculated with the distribution o, (zV ,a;tz) (2.32), so that the transport
kernels are some functions of collective variables aj. In the second equation
of (2.45), functions vnga; 1), vs(a; Q, ve(a;t) represent fluxes in the space of
collective variables and are defined as

va(a;t) = /dl‘N ik 0c(z™,a;) <ﬁk(a))tm
vs(a;t) = / dTy Tuoc(@™, i) = (Tu(a))L, (2.60)
ve(a;yt) = /dI‘N ék oc(a™,a;t) = <5h(a))tc

Let us summarize. The set of equations (2.44) and (2.45) gives the con-
sistent description of kinetic and hydrodynamic processes in a classical fluid
with allowance made for long-living fluctuations. The transport kernel ¢,,
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describes the dissipation of kinetic fluctuations, while the kernels Gniy Pin,
®ne, and ¢g, describe the dissipation of correlations between kinetic and
hydrodynamic degrees of freedom. Finally, the transport kernels ¢;;, ¢;¢,
Pes, and ¢ge correspond to dissipative processes connected with correla-
tions of viscous and heat hydrodynamic modes. The coupled equations for
kinetics and fluctuating hydrodynamics provide a basis for the calculation of
low-frequency anomalies in neutral classical fluids and some other systems,
say, in dense plasmas. Besides, these equations can be used to consider the
 influence of large-scaled fluctuations on kinetic processes in the vicinity of
the critical point. These problems will be a subject of future work.
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- MOOUPIKOBAHA KIHETHMYHA TEOPIA OJIA OIIACY
IIOBIJIBHUX T'IIPOIMHAMIYHUX IIPOIIECIB

B.T'. Mopo3os, O.€. Ko6pun, M.B. Tokapuyk

3anponoHoBaHo OIUH 3 HiIXOMIB Y3IOUKEHOI0 OIMCY KiHETHY-
HUX 1 [1IpONMHAMIYHUX G IYKTyALIA 1A KJacuunux cucteM. O1pu-
MaHO 3B’A3aHy CHMCTEMY PIBHAIHb IJISi HEPIBHOBRIKHOI OJHOYACTUH-
KOBO1 ¢yHKIil poanomuy i ¢YHKUl po3nomiay riIpoavHAMIYHMX
SMIHHHX: TYCTHHHA MacH, IMIYIbCY, eHeprii A onucy KIHETHYHUX
TA TiIAPOAUHAMIYHUX MPONECIB B KJIaCUYHUX PiIMHAX.



