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We study networks of self avoiding polymer chains of arbitrary but
fixed topology and calculate critical exponents governing their scal-
ing properties (star exponents). Calculations are performed in the
frames of the fixed-dimension field theoretical approach. Renormal-
ization group functions in the Callan-Symanzik scheme are obtained
in three-loop approximation and are analysed directly in three dimen-
sions. Perturbation theory expansions are resummed with the use of
Padé-Borel transformation. The results obtained are in a good agree-
ment with Monte-Carlo and e-expansion data.

1. Introduction

Long polymer chains immersed in a good solvent can be described in frames
of field-theoretical renormalization group approach widely used in the theory
of critical phenomena. In the early 70-ies P.G. de Gennes was one of the first
to realize that a model of long polymer chains in terms of self-avoiding walks
(§AW) in the limit of an infinite number of SAW steps N — oo can be
mapped onto a magnetic n-component spin model with O(n)-symmetry in
the limit n — 0 [1,2]. In particular, the critical exponents v and v describing
the behavior of the correlation length (§) and magnetic susceptibility (x) of
the O(n)-model in the vicinity of critical temperature T,

E~T7Y, (1.1)

(1.2)

in polymer theory correspond to size and configuration number exponents
v and v describing the average square end-to-end distance R?

x~1 ", T=

R~ N N>»1 (1.3)

of a single chain of N monomers and the number Z, of possible ways of
realization of a SAW of N steps on a given lattice:
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Zn~pVNTL N> 1, (1.4)

where p is the non-universal connectivity constant.

Natural interest in generalization of the theory of “long chains” to the
case when these chains have a possibility to be tied together and thus to
form “stars” and networks of arbitrary topology lead to the notion of star
exponents which govern their scaling properties [3-7]. Zero-mass renormal-
ization group scheme as well as direct renormalization by minimatl subtrac-
tion with successive e-expansion were used to analyse critical behavior of
polymer networks and stars. The approach we are going to use here foots
on the massive field theory renormalization scheme (Callan-Symanzik equa-
tions) and it enables one to perform calculations directly in the fixed space
dimension d of interest (e.g. d = 3) avoiding application of the e-expansion.

In this article we present results for star exponents obtained directly
in three dimensions in three-loop approximation. The paper is organized
as follows. In Sec.2 we give some definitions and review recent results ob-
tained in the theory of polymer networks and stars; Sec.3 is devoted to the
description of the massive field theory renormalization scheme we use here,
expressions for the renormalization group functions in three-loop approxi-
mation are given there as well; in Sec.4 we perform the resummation of the
series obtained and give the results for star exponents.

2. Star polymers

Generalizing the above concept, it is quite natural to describe the topology
of a polymer network in a good solvent as that of a set of long chains tied
together at their endpoints. It was shown [4-6] that the scaling properties
of such a network are determined by its “star-like” vertices, connecting the
extremities of the chains. Let us consider first a single star polymer (Fig.1)
with F legs of N monomers each. Then it can be shown that for long chains
f\’] — 00 its number of self-avoiding configurations will scale according to
4|

Znp~pfNNTFL N> 1. (2.1)

Figure 1. Star polymer.

Formula (2.1) can be considered as the generalization of (1.4), p still
being the non-universal connectivity constant and values yr give us the
first example of star exponents. In the case F = 1,2 one still has the single
polymer chain: 7; = 73 = 7 and for F > 3 4p form a set of independent
critical exponents. For the two-dimensional case the values of vz are known .
exactly [3]:

F = [68 + 9F(3 — F)]/64. (2.2)
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The exponents v are not the only possible exponents appearing in poly-
mer physics which can not be expressed in terms of “usual” S AW exponents
v and v (1.3), (1.4). For example, one can consider two polymer stars hav-
ing F and F' legs, correspondingly (Fig.2). Due to the hard-core repulsion
the probability of approaching the cores of these two polymers at distance
r vanishes as

P(r)~ 1P 0. , (2.3)

Here 0 form a set of universal contact exponents.

Figure 2. Two star polymers of functionalities F and F’ at a distance 7.

One can continue introducing other sets of exponents caused by the star-
like nature of considered chains and describing their different properties. Let
us note however that only one of those sets is independent and the rest can
be expressed in terms of it. As it was pointed out in {4] polymer networks
can be described in terms of a single infinite series of independent universal
critical exponents yp. All geometrical exponents can be expressed in terms
of yr. For the two-star contact exponents 6 g the corresponding expression
reads [4]:

vOrp — 1 =9F +YF — VF+F'- (2.4)

Let us now consider a general network G of arbitrary but fixed topology,
made of F' chains of equal length N and tied together in vertices (see Fig.3).
One has for the asymptotic number of self-avoiding configurations Zg:

Zg~pfNNYSTL N> 1, (2.5)

where the expression for the critical exponent y¢ reads:

F
7g~1+1/d=an[(’)’p—1+1/d)——-2—(’)’2—1+1/d)J, (26)
F>1

here ng is the number of vertices with F' legs.

Thus knowing one set of exponents for single star polymers one can
obtain geometrical exponents characterizing any polymer network [3,7]. So
in what follows below we will consider mainly the properties of a single
polymer star immersed in a good solvent with arbitrary but fixed number
of arms (see Figure 1).

We are using the continuous chain model introduced by Edwards [10].
Considering an ensemble of F' disconnected branches and puting correspon-
dence to each branch a a path r,(s), parametrized by 0 < s < §,,a =
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Figure 3. A polymer network G. It is characterized by the numbers ng of
F-leg vertices. Here ny =3, n3 =2, ny = 1, ns = 1.

1,2,..,F (S, being the Gaussian surface of ath branch) one can describe
such a system by the following Hamiltonian:

Sa

1 1 & dr(s) ,
BT T g2 [ G
F Sa  Sp
% 3 [ ds [ ds'8%(ra(s) — ry(s")). (2.7)
a,b:lo 0

The partition function is obtained as a functional integral over all possible
configurations of polymer system divided by its volume  thus dividing out
identical configurations just translated in space:

Z{S.} = %/D[rl,...,rp] exp[— - (2.8)

__ﬂ]
kgT”’

here the symbol D[ry, ...,r] includes normalization such that Z{S,} = 1for
o = 0. To make the exponential of §-functions and the functional integral
well defined in bare theory a cutoff s has to be introduced such that all
simultaneous integrals of any variables s and s’ are cut off by |s — §'| > sp.
With this we can relate the Gaussian surface S of a path to the notion of
steps N of a self avoiding walk by

N = S/So.
Now the partition function for the polymer star reads:

1 H
ZF{Sa} = ZF{Sl,...,SF} = ﬁ/D[rl""’rF]exP[“EI%] %

F

H §4(r2(0) — r*(0)), (2.9)

a=2

here the product of é-functions

F
I #(x*(0) - r'(0))

a=2

ensures the “star-like” configuration of a set of F chains, i.e. “enforces”
them to have a common endpoint in r!(0) (c.f. fig.1).
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Besides the partition functions one can define correlation functions of
an F-arm star. For the core-endpoint correlation function one has [3,7]:

F
Pp(ro;r1, .y tp; 81,0y SE) = (H §4(r*(0) — r0)6%(r?(Sa) — o)), (2.10)

a=1

here r¢ is the coordinate of the core, ry,...,rp being coordinates of chain
endpoints, 51, ..., SF being their Gaussian surfaces. The averaging in (2.10)

means: ()= flz.fD[rl’,__,rF] exp[—%%](---)
e Zp{Sa}

For the Green functions one has:

F
(27r)d6d[p0 + Z Pa]GF(PO; P1,..-,PF; Sla seey SF) =

a=1

F
ZF(Sl,...,SF)/H[ddraexp[ipara]PF(ro;rl,...,rp; $1y.8F).  (2.11)

a=0

The mapping to field theory is performed by a Laplace transformation from
the Gaussian surfaces S, to conjugated chemical potential variables (”mass

variables”) p,:

- F
Zr{u.} = / HdSb exp[—,ubsb]ZF{Sa}. (2.12)
b=1

As a result an ensemble of F' polymer chains is described by a field theory

with the Lagrangian £{@,, 1, } involving a separate field ¢, = ¢,(r) for each
chain:

1 F hrd ]. b U F - —
Cionm) = 5 3 [ druldl + 519600 + 2 30 [ atrlduPigal,
a=1 a,a’=1
(2.13)
here ¢, is an n-component vector field ¢, = (¢!, ...,¢"), |¢a|? = 17 _,(62)?.

However, the perturbation expansion of field theory (2.13) at arbitrary value
of n results in particular in some diagrams, which do not appear in polymer
theory . As it is well known [1,2] such diagrams (involving closed loops of
propagator lines connected to the remainder of the diagram by interaction
lines only) can be suppressed by taking the limit n = 0.

Returning now to the partition function of a single polymer star Zg{S3}
and using the Laplace transformation (2.12) we can represent its Laplace

transform Zr{u;} in the following form:
7 L[ o0 17
Zr{w} = -6/ d rOH d ra/D[an(r)] X
a=1
F

IT #a(ro)ga(ra) exp[—L{¢s, ms}], (2.14)

a=1
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at n = 0. In field theory the star vertex is related to the local composite

operator [[F_, ¢, of F distinct zero component fields. Formally this is the
n = 0 limit of an operator known in n-component field theory [12]:

i Not@F g () LG*F(r), (2.15)

ay,..,0p=1

where N®1:+9F is a zero trace symmetric SO(n) tensor:

zﬂ: NO3,00p ()

a=1

Now it can be checked diagrammatically that Green functions involvin
an operator with N®1»%F gymmetry coupled to F external fields ¢3(r5
in the limit n = 0 coincide with Green functions (2.11) of the F-arm star
polymer. Thus in order to find star exponents in the field-theoretical renor-
malization group program one may consider the problem of renormalization
of composite operators (2.15). This will be the subject of the subsequent
section. : »

3. Renormalization group functions in three loop approxi-
mation

As was shown in the previous section considering the behavior of the star-
like vertices in polymer theory one faces the problem of renormalization of
a field theory containing two couplings one being of O(n) symmetry and
described by tensor S,,, .. 4,, the other being of traceless SO(n) symmetry
(Nal.,,,.ap):

1 - - U
L{gn, s} = 5 [ dr[(ud|1 + [VE|?) + =2 Say, ey o™ +
2 4!

%Nal,...,ap¢a1_...¢ap]. (31)

First of all let us point out that the problem of composite field renormal-
ization in the case of traceless symmetry we are going to tackle here was
considered in the frames of e-expansion in [12] in the field-theory context,
in polymer context ¢-expansion results up to e3-order were analysed in [6,7].
We will return to these results later. The distinct feature of our study is
that we are going to apply here equations of the massive field theory. As
is well known in order to analyze the expressions appearing in such an ap-
proach one can either apply ¢-expansion (and thus re-derive the results of
[6,7,12]), or as it was proposed by Parisi [13] consider renormalization group
functions directly in the dimension of space of interest (here we are interest-
ed in the three dimensional case). So performing calculations in the spirit
of [13] enables us to proceed directly in three-dimensions.

The critical properties of the field theory (3.1) can be extracted from the
coefficients By, B, 74, 742 of the Callan-Symanzik equation for the renormal-

ized N-point vertex function I'} (see e.g. [14-16]). As far as we are inter-
ested in the renormalization group functions and their derivatives over the
coupling constants at the Heisenberg fixed point (u* # 0,v* = 0) we need
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‘to calculate vertex functions of the symmetric interaction Sa,...,a$** ....0™*
I'?,T* together with F-point vertex function I'F with only one Nt F ¢
....¢%F insertion (the other terms will either contain some trace of tensor
No1--2F or will be proportional to some power of v and will disappear in
the Heisenberg fixed point). The graphs for T'F are obtained from the usual
four-point graphs by replacing each four-point vertex in turn by v No1»F,
In three loop approximation which we are going to consider here there ap-
pear two more graphs in T'F which can not be produced in this manner
(they are shown in fig.4).

(b)

Figure 4. Additional graphs appearing in the function I'F in three-loop
approximation. ‘

Finally the expressions for 8- and y-functions read 1

B = —(4-d)u [1 — w4 fRLAY? 4 BALAR 4 ] , (3.2)
B, = —(4- d)”[(ffd) f F(nFJr—Sl) (u+ f2LAL2 4

BLAG3 + .. ], (3.3)
v = —(4- d)%%:%?—z)uz [2ig 4 (442 — 3ig)u + .. ], (3.4)
Jgp = (4- d)%i—%J L+ 72244 4 4 ] (3.5)

here 6F is the engineering dimension of the coupling v:

5F=F+d—£2§

and the expressions for two-loop (ﬂ£2LA), ,B,SZLA), 7(21”4)) and three-loop
(ﬂi([q’LA), ﬂS,SLA), ~(LA)Y contributions read:

aELA) = -(;-_%g)—z[(Sn +22)(ig — %) +12(n +2)], (3-6)

'We changed the scale for the renormalized couplings v = ul(n +8)D/6, v = v D/6
and beta functions f.(u) = 68, (v')/[(n +8)D), Bu(u) = 6ﬂu:(u’)/D, (D being the one-

loop integral: D = (2—71#; f (_k’iéfﬁf’ u’,v' being the renormalized couplings corresponding

to the bare couplings uo, v0), to define a convenient numerical scale in which the first two
coefficients of Bu(u) are -1 and 1.
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,B(SLA)
7(2LA)
,B(SLA)

,B(SLA)

(3L4)

—(2i1(n + 4F — 2) + 2i3(n + 2)/(F - 1) +

(=n —4F +2))/(n +8),
(1 - 2iy),

(ri+8)

(n+8 Zzb ek

(n+8)22b 4

m[w(n +8) — (44n + 280)i; +
+(8 = 3d)(n + 2)iz + 12(n + 2)i3 +

In (3.9), (3.10) 4o = 1. And for the coefficients bJ,bJ one has:

~8(4n? + 61n + 178),
4(31n? + 430n + 1240),

(3dn? + 30dn + 48d + 8n? + 80n + 128),

~12(n? 4 10n + 16),

—48(n? + 20n + 60),

—24(2n? + 21n + 58),

—6(3n% 4 22n + 56),

—24(5n + 22),

—12(n? + 10n + 16);

(n® + 8nF + 6n + 20F? — 28F + 56),

—4(n? + TnF + 5n + 18F? — 28F + 54),

—(3dnF — 3dn + 6dF — 6d + 4n® ~
8nF + 48n — 16F + 80)/(F - 1),
12(n + 2),

12(nF + 2n + 4F% — 10F + 20),

3(n® + 4nF — 2n + 4F? 4 12F - 24),
6(n + 2F% — 10F + 18),

4(nF — 2n + 14F — 28),

3(n? 4 10n + 16)/(F - 1);

(3.7)
(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

here i; — ig are the integrals originating from the corresponding two- and
three-loop Feynman graphs. Their numerical values at d = 3 are as follows

[17,18]:

i1 =2/3; ip=-2/27; i3 = -.0376820725;

iq = .3835760966; i5 = .5194312413; i = 1/2;
.1739006107; 15 = —.0946514319.

7 =

(3.14)
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Correspondence between i; — ig and the appropriate Feynman graphs is
given in [18]. For the additional graphs appearing in I'¥" the corresponding

normalized numerical values are: 1 (fig.4a) and 1, (fig.4b). In the cased = 3
expression for 8, and gamma-functions coincide with three-loop parts of
appropriate expressions obtained in [19] and at arbitrary value of d they
were given in [20].

Note that expressions (3.2) - (3.5) are written for the arbitrary number
of field components n and thus contain more information that is necessary
for the polymer case n = 0. This case was considered by Wallace and Zia
[12] in three loop € expansion motivated by the question of relevance of the
v-coupling in the renormalization group sense. These authors introduced
a series of critical exponents ap: the value of the critical exponent ag is
connected with the anomalous dimension z% of v at the O(n)-symmetrical
fixed point:

F
(2 - n)er = 2% - o,

2
x%’___?__ﬂ_ya_(_z’__ﬂ)_gﬂ’ at wu=u*, v=0v"=0. (3.15)

The relation to the star exponents is given in the limit n = 0 by
v — 1= ~v(2 - n)ar + [v(2 - ) - 1]F. (3.16)

Thus the expressions (3.2)-(3.5) may be used to study the stability of the
O(n)-symmetric fixed point to the perturbation introduced by the traceless
coupling. In frames of the e-expansion the following expression for ar was

obtained in [12] in £3-approximation:

eF(F —1)

2(n 4+ 8)
2

&
2(n + 8)4
6(5n + 22)]¢(3) — -21-n4 — 18n% — 86n? — 168n + 592 +

2(F — 4)(n + 8)[8k(n + 8) + n? — 24n — 136]}], (3.17)

2(9n + 42)
n+8

£
1 2 _4F —
ap 1+ +8)( n+ )/+

2(n
{4(n + 8)[(F - 2)(n + 14)(n + 8) —

where ((3) ~ 1.202 is the Riemann ( function.

4. Star exponents in three dimensions

We now proceed with the calculation of the star exponents. Combining
(3.2)-(3.5) with (3.16) one obtains the following expression for the function

vr(u) (vF = 1r(w")):

7r = 14+ (4= dFH e+ 934 + 434, (4.1)
114 . n-F43
VLA - A (4.2)
-1
y2A ———[(—nF + Tn — 4F® + 6F + 10)i; +

(n+8)



Star exponents in polymer theory . .. 17

(dn® — dnF + 5dn — 2dF + 6d — 4n® 4 6nF ~

34n + 8F2 — 4F — 44)/4], (4.3)
1 8. . ,
3LA  _ "y 4.4
TF (TL n 8)3 ;)7F7'.77 ( )
¥ = :8—1-(——d2n3 + d?n?F -
7d*n® + 4d*nF — 16d%n + 4d*F — 12d* +
8dn® — 10dn®F + 82d * n? — 8dnF? —
36dnF + 236dn — 16dF? — 32dF + 208d — 167> +
28n*F — 260n” + 64nF? 4+ 72nF — 1112n +
80F3 — 128 F2 4+ 400F — 1504),
vy = —_—2-}-(dn2F — 13dn® +
4dnF? + 2dnF — 54dn + 8dF? — 56d — 8n*F 4 100n? —
44nF? + 604n — 7T2F3 4 152F% — 328F + 1000),
—d
AE = —§—(n2—nF+5n.—2F+6),
7% = —6(-n®+nF —5n+2F —6),
¢ = —6(=2n + nF? 4 nF - 22n + 4F3 —
—14F? + 30F - 52),
g = %B(nZF —3n? + 4nF? — 6nF —
18n + 4F° + 8F? — 36F — 8),
78 = —3(=3n®+nF —13n+4 2F° -
12F?% 4+ 28 F — 30),
vF = —2(nF%—3nF +2n+ 14F? — 42F + 28). (4.5)

Expression (4.2) as well as (3.2)-(3.5) is known to be asymptotic and the
appropriate resummation procedure is to be applied in order to extract
from them reliable information. We choose here the simple Pade-Borel
resummation technique. The procedure is as follows: first one solves the
equation for the fixed point:’

Bu(u*) =0, (4.6)

and then the obtained value of Heisenberg fixed point u* # 0, v* = 0 is sub-
stituted into the corresponing series for the critical exponent (say, yr(u))
and one more resummation of the series for the critical exponent is per--

formed:
F = 7r(u”) (4.7)

and in this way the numerical value of critical exponent is obtained.

So in fact one has to deal subsequently with several (in the example
given above: with two) asymptotic series. In the ¢-expansion technique
there exists a natural expansion parameter (¢) allowing one to pass from
one series to the other in a self-consistent way, i.e. to be in the frames of the
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same (chosen from the very beginning) approximation in the powers of £. In
the expansions given above the expansion parameter is the number of loops
(=certain power of the coupling constants). And once one has solved the
equation like (4.6) the expansion parameter “disappears” and the result for
the fixed point is just a number 2. So here some arbitrariness appears. One
can either follow the scheme of dealing with “numbers”, i.e. subsequently
solving the equations: '

B (u?) = 0, (4.8)
1P = 75 (u), (4.9)

(here 87¢*, v3*° mean the expressions for the corresponding renormalization
group- functions resummed in some way) and substituting the numerical
value of the fixed point u* obtained from (4.8) into (4.9). It is quite clear that
in this case this numerical value (obtained, say, in /-loop approximation) will
‘contribute in the same way in all orders of the perturbation theory in the
expression for yr. The alternative to such a scheme of calculations is the

so-called pseudo-¢-expansion 3, where an auxiliary parameter (let it be ?) is
introduced to keep track of the orders of perturbation theory:

- o]
Bu(u,t) = —tu+ S BU~DLAY (4.10)
i=2
BiL4 being j-loop contributions. Of course the equality holds:
Bu(u,t = 1) = Bu(u).

Now one can obtain the value of the fixed point u* as a series in t 4 :

NOEDI IS (4.11)
j

This series can be substituted into (4.7) resulting in:
1e(t) = 374, (4.12)
J

and the final formula for critical exponent reads:
vF = yp (u*,t =1), (4.13)

where 75 means the resummed (with respect to ¢) series (4.12). Both
schemes explained above are used in analysis of the asymptotic series arising
in the fixed-dimensional renormalization group framework. Here we will
follow the seconid one. Performing the expansion (4.11) for the expression
for the B-function (3.2) and substituting the series for the Heisenberg fixed

2We are speaking here only about the analysis of the series obtained in a certain (-
loop) approximation. Of course one should start from the same approximation in the
number of loops for all renormalization group functions. '

3First introduced by B.Nickel: see Ref.19 in [21].

*In fact powers of ¢ in a certain term of perturbation theory correspond to the number
of loops in the loop integrals and this enables us to separate contributions from different
orders of the perturbation theory while substituting results of (4.6) into (4.7).
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Table 1. Values of the star exponent yr obtained in three-dimensional
theory (columns 2,3) in comparison with the results of e-expansion (columns
4,5,6) and Monte-Carlo simulations (column 7). See the text for a full
description. v

F d=3 g-expansion [6,7] MC [22,23]

3 106 '1.05 1.05 1.05 1.07 1.09

4 086 086 0.8 0.83 0.85 0.88

5 061 061 0.53 0.52 0.55 0.57

6 032 032 0.14 0.18 0.16

7 -0.02 -0.01 -0.33 -0.20 '
8 -0.40 -0.36 -0.88 -0.60 (-0.99, -0.30)
9 -0.80 -0.72 -1.51 -1.01

point u* # 0, v* = 0 into (4.1) one finally obtains the following expansion
of vF in powers of the “pseudo-ez’ parameter t:

TR(t) = 3 Tht. (4.14)

The coeflicients 7}, for j = 0 — 3 read:

3% = 1, (4.15)
Vb= (4= )Py, (4.16)
B 8(4 — d)FyiA
2 _ 2LA : F
e = (A-d)Fyr "+ (n + 8)?
o1 :
((5n+22)(i1 = 5) + (n + 2)ia), (4.17)
3 16(4 — d)Fy3tA |
3 _ _ 3LA F _Z
P = (4 d)F7F + (n n 8)2 [(5n + 22)(21 2) +

128
(n+8)*

1
+(n + 2)i)? + m(—wn? — 488n — 1424 + 4(31n% +

(n+2)iz] + (4~ d) Py P2 ((5m 4 22)(6n — 5) +

430n + 1240)i; + (3d + 8)(n + 2)(n + 8)iy —

12(n + 2)(n + 8)iz — 48(n® 4 20n + 60)i4 —

24(2n% + 21n + 58)is — 6(3n? + 22n + 56)ig —

24(5n + 22)iz — 12(n + 2)(n + 8)ig)). (4.18)

and the coefficients y}£4, 34| y34 are given in (4.2)-(4.4). Eq. (4.14)

together with (3.2)-(3.5), (4.1) contains one of the main results of this paper.
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Now one can apply the Pade-Borel resummation in ¢ to the series (4.14)
and then at ¢ = 1 one obtains the values for the star exponent v given for
different F in the second and third columns of Table 1. The second column
contains the value of vr obtained directly from resummation of the series
(4.14); while in the third column we give yr obtained on the base of the

resummed series for the exponent z (namely such a way of calculation of
vF was chosen in [6,7] in the frames of the e-expansion method). The next

columns give the results obtained by the e3-expansion based on: simple
Padé approximation (the 4th column) and Pade-Borel analysis neglecting
or exploiting exact results for d = 2 (the 5th and 6th columns respectively)
[6,7]. The last column contains Monte-Carlo data [22,23]. For low number
of arms F < 5 the results of the different approaches agree reasonably well
and are also close to the values obtained by MC simulation. We have used
two different renormalization schemes as well as different procedures for the
resummation of the resulting asymptotic series. Table 1 gives thus a test
for the stability of the results under changes of the calculational scheme.
Obviously for higher number F' > 5 of arms coincedence of the results is
no longer good. The main reason for this is that calculating the exponents
combinatorial factors lead to an expansion in Fe for the ¢ expansion and of
Fg when directly expanding in a renormalized coupling g. For such large
values of the expansion parameter even resummation of the series fails. For
large numbers of arms other approaches to the theory of polymer stars like
a self consistent field approximation might be more useful. We conclude
- that the Parisi method of massive renormalization in fixed dimension as it
is widely applied in the theory of critical phenomena used together with an
appropriate resummation scheme is a powerful tool also for the calculation
of exponents in polymer theory in the present case leading to a good test of
previous results and methods.
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3IPKOBI IOKA3HUKMU 13 TEOPII ITOJIIMEPIB:
PEHOPMI'PYIIOBI PE3YJIbTATH
Y TPUBUMIPHOMY ITPOCTOPI

K. ¢on Pepbep, FO.B. T'onosau

HocaimxyloTeca ciTku moBiabHOl, ane ¢ikcoBaHol TomoJorii,
YTBOpEHI [I0JIIMEPHMMH JAHIIOIaMH 1 0 BUNCAIOITLCA KPUTHYHI T0-
Ka3HMKH, [0 XapaKTEPU3YIOTh 1X MacmiTabHi BJACTUBOCTI (31pKoBi
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nokasauku). O6UMCiIeHHA TPOBOAATHCA Y PAMKaX TEOpPETHKO-TIOo-
JbOBOrO MIXOLy IpM ¢ikcoBaHift BUMIpHOCTI mpocTopy. PeHopwm-
rpynosi ¢pyukuil B cxemi Kannana-CuManisika 0TpUMaHo y Tpu-
meT/ieBoMY HaBIMXKeHHI 1 IpoaHai3oBaHo 6e3MocepeHbO y TPhOoX
BuMipax. Panu Teopil 36ypeHb MepecyMOBaHO 3a JOTIOMOr0I0 Iepe-
rBopenHs Ilame-Bopena. OTpuMai pesynbTaty fobpe y3romxky-
1oThcA 3 tauumMu Monrte-Kapiio Ta e-po3kiany.



