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We discuss the collective variables method which was developed in
the theory of phase transitions by Yukhnovskii. Here we present an
effective combination of this approach with the Wilson’s renormaliza-
tion group scheme. Accurate critical indices were obtained in the case
of n-component model using e-expansion procedure. We made the de-
tailed comparison between these two approaches based on comparing
of t\ivo correspondent diagrammatic sets and discuss stability of the
results.

1. Phase transitions theory and the collective variables
method

Althought the “golden age” of the phase transitions theories lies in 1970-80s
the questions of capability and accuracy of different theoretical approaches
in this field are of a great interest till now. The reason lies both in the univer-
sality of critical behaviour (that is why theory can predict or describe phase
transitions in newly founded physical systems) and in increasing accuracy
of intermediate methods like Monte-Carlo simulations. A lot of methods
based on renormalization group (RG) realization (i.e. different Wilson’s
type approaches [1-4], massless [5,6] and massive [7,8] field theories) are ca-
pable to provide a precise calculations of critical indices and other universal
characteristics of phase transitions and cannot obtain critical temperature
and other nonuniversal characteristics. On the other hand the precise cal-
culations of critical temperature is made in within the Monte-Carlo RG
approach [9], for example. .

In spite of successes in calculations of fundamental properties describing
system near phase transition point the main problem of phase transition
theory remains still unsolved. The explicit expressions for thermodynam-
ic functions, valid in the vicinity of T, as the functions of temperature,
magnetic field and microscopic parameters of Hamiltonian, are not calcu-
lated. These problems are solved in part within the collective variables (CV)
method proposed firstly for the systems of charged particles [10,11]. This
method has been applied to the theory of second order phase transitions
owing to great efforts of Yukhnovskii and collaborators [12,13]. The main
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purpose of these efforts is to develop the microscopic theory of the second
order phase transitions which will provide not only the universal character-
istics of the model, but also the possibility to obtain explicit expressions for
thermodynamic and structure functions of 3D spin systems near the phase
transition point. The method of layerwise integration of partition function,
developed by Yukhnovskii in the end of 1970s turned to be an original and
powerful mathematical tool for investigating phase transitions of different
type.

This method has several distinct features in comparison with the other
RG approaches. The correspondent RG transformation developed here is
formulated in general case without applying any types of perturbation theo-
ry (but does not exclude such possibility) and thus it is free of asymptotically
divergent series. It allows to obtain complete expressions for thermodynam-
ic functions (specific heat, susceptibility, etc.) in the vicinity of T, [13,14].
The prise for such level of generality are some approximations having to be
done here. This results in slight inaccuracy and some instability of critical
indices and other final results due to details of the RG transformation.

The aim of this report is to combine advantages of CV method with the
more accurate calculational techniques developed in other RG approaches
to obtain stable and correct values for critical indices and to make a detailed
comparison of RG schemes used in both cases.

Firstly we shall stress due to Yukhnovskii [13] that the statistical de-
scription of phase transition process is to be performed in the appropriate
phase space for a certain physical model. Among the independent variables
of this space there must be the ones connected with order parameters, their
non-zero average values appearing below the critical point. This phase space
is formed of a CV set. For the certain considered model each CV represents
the mode of density vibrations of the appropriate quantity like spin moment
for magnets, Fourier-transform of the one-particle distribution function for
many simple fluids, and so on. Thus CV is the general name of the vari-
ables class specific for every given physical system. For the case of magnetic
system collective variables are connected with the fluctuations of the spin
density [12,13]: ~

. 1 L -1 P 1 )
p%:——Zcos(kl) 7 p%:—Zsm(kl) I poz————Zsf,
VN % VN % VN %

(1.1)
where gp are the CV operators at the momentum k and $p is the spin

operator in the [ site. We shall use the complex CV for the convinience:

~

pr = p% —ip}. (1.2)

Transition from the initial configurational space to CV phase space corre-
sponds to non-unitary transformation and we need to know the transition
Jacobian. Due to this partition function in CV representation can be writ-
ten in the following form [12,13]:

2= [ exp(~pH(o)) T (p)(dp)". (13)

The Jacobian J(p) was found in [12,13]. Partition function in the CV
representation is represented as an integral over CV. Under integral stands
the exponent from the infinite series in products of CV. The expansion
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on the interaction potential Fourier-transform in powers of & reduces H(p)
to the form similar to Ginzburg-Landau Hamiltonian and Ornstein-Zernike
formulae. The investigation of Euler equation corresponding to this form
fulfilled by Yukhnovskii [13] proves that there exists a variable in the CV set
which is connected with the order parameter. It was shown, that the basic
measure density exists in the critical region which involves the second and
the fourth powers of CV in the exponent [13]. Thus the partition function
is represented in the form of functional integral with the quartic measure
density. In the Ising-like case we have [12,13]:

1 a4 ! :
Z= C/eXP [“5 > dk)orr_x — gy 2o Pr PR,
k<B ki< B

!
ag :
~ BIN? > o, -pp, — | (@)Y, (1.4)
" ki<B

where d(k) = ay — f®(k), 8®(k) is the Fourier-transform of the interaction
potential, prime / over the sums denotes the momentum conserving k; +
++ -+ kg; = 0, and{az,} are the constants of the transition Jacobian:

)2 - 2~ 0.467401,

~ 0.318310, a
: [(3)° - 15] ~ 0.347298.

. 2
(3)* - 6] ~ 0.176136, as= (1.5)

2. Renormalization group transformation

The renormalization group (RG) transformation proposed by Yukhnovskii
(we will refer it as RGYu) foots on the same concept of eliminating the short-
wave spin fluctuations as one of the Wilson’s approaches (the approach with
the recursion relations) [1]. It lies in step-by-step integration of the partition
function over the layers of CV pg, k € (B(r+1) B()] B(") /B(r+1) = 5 (s is
the RG parameter) starting from the variables with £ ~ B (B is the first
Brillouin zone boundary). But in contrast to the last one it is formulated
in general case without any variants of perturbation theory. This technique
was developed in the series of papers previously by Yukhnovskii {13] and
then by Kozlovskii and Pylyuk [14,15]. Both the critical indices and criti-
cal amplitudes as well as the complete expressions for the thermodynamic
functions are obtained.

Some approximations (as the averaging of the d(k) coefficient in every
layer of CV) enable one to avoid the perturbation theory. It is clear that
in the infinitesimal limit s — 1 the influence of this approximation vanishes
(except of n = 0 effect, where 7 is the small critical index). But in the case
of s > 1 some calculational errors do occur (which caused the dependence
of the final results on s). The analysis of numerical values for the critical
indices [14,16] indicates a weak dependence on s in the region of s € [2.5, 4}
where RGYu works relatively well. The dependence outside this interva
is much more essential. This shows that on one hand the CV method
developed in {13] is a powerful tool which gives the possibility to calculate
the complete thermodynamics in the vicinity of the critical point, and on the
other hand the approximations made in this approach cause the instability
of the final results in some limiting cases of RG parameter s.
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The aim of this report is to make a background analysis of the CV
method and especially the RGYu and to correct its inaccuracy. As a result
we will obtain relatively accurate values for the critical indices and prov1de
a detailed comparison with the other approaches.

The rest of this paragraph includes a short review of the RGYu which
was developed and described in details in [13]. Firstly the averaging of d(k)
is performed:

S dkypgp_p~ Y. dk)ege_p+d@ Y pppp,  (26)
k<B k<B(1) keA(O)
where B(® = B, BO) = B/s. Then the integration over CV pp with
k € (BMW, B()] is performed. For this the original trick is used {13]. The
py variables with k € (B(!), B()] are redenoted as 7; and the sums over

k € (0, BY) with the 7; products are completed to the interval k € (0, B().
To avoid integration over the superfluous variables 7 the cutting §-function
is inserted:

1
Z=C/exp ~5 > @®)—dNpgp_gt TI oCnz~pp)
k<B(l) k<B(1)
(2.7)

| 1)
exp |~ 2d® 3 gy P Z g, Mg, — o (@n)N(dp)N
2 k<B 4N <B

Using the Fourier-transformation for the cutting é-function the integration
over 7 variables can be easily performed:

1 - ag . adg .. . o~ ~
H/exp [_Ed(o)nfz - M"‘4 STN 7,16 . + 27”"’1‘”1”] dijp
[ S - S. ~ Se -
= (Q(d@))N exp. _?ZZ:VIJ - Z—?— Z:l/14 A 1/I~6 - ] (2.8)
L 1 ] !
P. P < C
N 2 4
= (Q(d(o))) exp 3 Z vpv_gp — 4—'N(l) E vg, .- -VR,
k<B(1) ' k;<B(1) '
Ps S ~)
6'(N(1))2 Z Vg - Vgg — (dv) , (2.9
ks <B
where ) L ] »
- ikl ~ ikl
I~=—ZT)E€ ’ = vepe . (2.10)
\/N— k<B N k<B

San and P,, are represented via the functions U(z,zy,...), ¢(z,z1,...),

on(z,21,...):

‘ 3\ 1/2
P, = S =(2r) (EZ) U(e,z1,...),
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Py = 798, = .s"d(27r)4 (a}-)qﬁ(m,zl, ce)s
4 0
) 3 3/2
Ps = s %56 = s~2(2r)P (a ) b1(2, 21,2, (2.11)
4
2 ,
Ps = 8—3d58 = s_ad(Qﬂ')B (%) ¢2($,2}1, . .),
4

J J ' , 3\ 5/2
P10 = 8_4 Sm = 8—4 (27!')10 (;4—) ¢3(£L‘,£I)1, .. .),

for which we obtained the following expressions:

U(z,zy,...) = uy,

#(z,z1,...) = 3(~ug+u?),

$1(z,21,...) = 5 (uz — ugug + 2u3),

b2(z,21,.. ) = T(~uq + duguy — 1203y + 3u2 + 6ud), (2.12)
'453(:1:, T1,...) = 9M(us — Suguy + 20uzul ~ 60u1u2 + 24u3 :

+ 30’!I,2U1 - ].0’U.2’LL3)

Here u,(t,t1,...) are the correspondent moments:

r/2) Joo €% exp(—t€2 — £4/2 — ,£6 — 1,68 — - )d¢
I'(a+1/2) f°° exp(—1£2 — £4)2 — 11£6 — 1,£8 — - -)df )
(2.13)
After this the additional integration over the vy is to be performed. This
was done in the same manner resulting in the expression:

(1)

ua(t,tl, . ) =

Z = C(Q(dONN (Q(POY)N Zz1), - (2.14)

where (Q(d(?))) is the result of integration over the n; variables and (Q(P(®))
corresponds to the result of integration over v variables. Z (1) has the same
form as the initial expression (1.4) but with the short-wave p; variables
eliminated:

()
a4
(1)-C/exp - Z dW(k)pep_i — TIND Z PE, -

k<B(1) ki<B()

(1)
ag N(l)
6'(N(1))2 Z ph B (dp) '
Ic<B

Thus the .RGYu is much close to the Wilson’s recursion relatlons (1] but
it is formulated in general without any perturbations. The corresponding
recursion rela,tlons RR) in this approach take the following form:

p(vtl) = (s(n P2((r™ 4 gMA() — g(n)y,

u(rt) = y(n)(sln)yi-dg(n) (2.15)
w(n+1) = w(")(s(n))G—sz:("),
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where (™) 4™ w(") are the scaled couplings:
d) = (r) 4g()s=2n g (0) = (M= g(m) = (Mo (2.16)

and N, g K() are the special functions represented as the combina-
tions of corresponding integrals:

(n)U( (n) 4y, (n) o) ( (n) 4,(n) .
(ny _ ¥ vy, £ln) = ((n))2d eyt 2.17
N $(n)U($(n),$1(n),)’ (8 ) (p(x(")’zl(n)’.“)’( )

Kn) = (s(n))4d yl'(n)¢1(y(n), y1("), o) o
1My (2M, 2™, .. )

where the special functions are given in (2.12).

The RR in general form (2.15) were discussed inténsively both numeri-
cally and analitically in [13-15]. The advantage of the CV method is that
final calculations can be reduced to evaluation of one-fold integrals of (2.13)
type which allows to consider a higher couplings (up to p!°) without a dra-
matic increasing of calculational efforts [16]. Although the numeric values
for the critical indices obtained within this technique have the interval of
stability on RG parameter s quite wide (about s € [2.5,4]) the problems
in the vicinity of s = 1 does occur. The reason is that the combination of
integrals (2.13) cannot describe the limit s — 1 correctly while evaluated in
the general form. The perturbation theory was applied to analyse the RR
(2.15) is capable to avoid the problem directly at s — 1 as it was shown
in [17]. On the other hand the perturbation theory is a good chance to
compare RGYu with other RG approaches, for example with the Wilson’s
~ RG scheme in a form of recursion relations [1].

- 3. Pl;araurbation theory within the collective variables me-
tho

As one can see the RGYu consists of two steps: integration over the 7;
variables (2.8), and integration over the N/s v; variables appearing due

to the Fourier-transform of the cutting é-function (2.7). The perturbation
theory being applied here means the evaluation of these integrals in the
perturbation form. This can be easy done in the diagrammatic form, for
example:

I{v) = /exp (—g Z nen_g +2mi Z ’71'5-13) X (3.18)

k<B ’ k<B

: 2
! !
ay 1 a4 \N
X<¢1l——— E -t s | o E ng, -emg, | g (dn)”,
4!N k< ¢ 2 \4IN s *

where the extended vg variables are introduced:

Ve, k< B(l),

0, ke[BW, B (3.19)

i = vy 0(BM) — k) = {
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For the products of vy we can write:

k<B k<B

1 0
= ¥ By, ooy, Lo(v),

. ; o
/ My - Moy, ©XP (“5 PILIRERZDY nzvz) (dn™)  (3.20)

(=3

where

L(v) = /exp (—;—i Z ngn_g + 2mi Z n,—;",;') dn)™  (3.21)

k<B k<B

(7 /d)" exp ( rd). 5 M_z)

k<B

is the nonperturbative result. This immeaditely yields the diagrammatic
expansion for I(v) (we will show here only contributions from the p* vertex
for simplicity):

I(u):(%)Nexp[ —e— 6 Q— 4 48 —e-— + 72 —&— + 72 —Q—Q—

- > s SO< +48 e am SO0 -3 —O—<
— 576 —QCe _ 1728 C)><—864 oVo - 864 >&
- 576 —6—-< - 1728 —XQ— ©(3.22)

T |

Here for each vertex stands a4/(4!d?) = g4(")/4, and for each extenal
leg variable 7;: (27m'/\/(7)17,;. Because of the potential averaging (2.6) each
loop is empty: T{/'Zk< gl = 1 and they are drawn rather formally. The
expansion (3.22) as compared with standard perturbation theory expansion
[1,3] contains a lot of superfluous diagrams. Performing the second-step
integrating over the vy (which corresponds to the cutting §-function) elim-

inates all these digrams and forms a loop-integral-like terms near the rest
of diagrams. This mean pairing of all terms in (3.22) again. For example
when we pair again the digrams set corresponding to P4 (2.8) we obtain:
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(%2)3)25"’[ ~6 Q +144 —O— +216 -& + 144 Q.

- > 438 SO< 448 LI —am SO0< - —O—<
- 576 —QL e _ 1728 C:)>-<—864 —Q—\Lo—v—Asetx >6< '
- 576 ﬁ-—é - 1728 XQ* ]

Pairing of diagrams set P, - P4 yields:

(L-Lj;:rs-“[ 8—O— +72 —6— +72 QO

+36 (< +48 —Q——< - 864 > X I - 1152 —O—<
1728 Q& _ 1728 Q>< - 1728 oVo - 1728 >8<
— 1728 —&< - 3456 —X-Q— ]

Here for each vertex stands again a,/(4!d?) = g4(™) /4, for external legs
pi: (2mi/ /P;)pg, each new formed loop is again empty. We obtain after
.gathering the similar terms and rewriting in the more usual form (in the
two-loop(2L) approximation) following RR representation (see (3.26)). The
pointed loops do not contain the loop integrals inside. These RR (3.26) may
be easy compared with the same RR obtained in the Wilson’s RR scheme
[1,3]. The result is the foowing correspondence between two diagrammatic
sets: ‘

0

I = Z — ; (3.23)
N prord (d(cj’) <d>
for the one-loop (1L) diagrams,
62
24
Nz Z > @@y qz))m T T dShm (3.24)

1€ q2692

for the 2L diagrams which can be cutted along the vertex (we shall call
them one-vertex reducible (1VR)), and

1 g

o =37, 29, ARV @@ ™G + @) <d >Hmen

(3.25)

for the 2L diagrams which cannot be cutted along the vertex (one-vertex
irreducible (1VI)).
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g2 ._Gz_e _ e _ ,&_92

<d>

62 |
+ 45 _8_$5 - },

—gt—d _ 6 % o 6
o =s { > 36 )<Ly + 15 =% + 1728 §)><Z;4’
£t sst <2 o

+ 432 WW + 864 P 480 <asT

- 1080 z% oy - 180 i oy - }, (3.26)

=g6-2d - 180 -9 4+ 288 >o¥)<—-,9 + 4320 @)K-——;"'
<d> <d> <d>
+ 17280 —&_ } 2160 82 4 6480 o2
<d>*% <d> <d>
+ 4320 o2 4+ 12960 >%< 6% _ 1200 6’
<>t <d>T <d>3

_ 02 _ o' _ Al 'y
2700 i <25 ~ 20736 >éi9<$g 20736 (D] Ly

02 82
— 10368 ZasF ~#10368 >4 25—

In (3.25) Q' denotés the region where the conditions || € (B/s, B],
|q2| € (B/s, B}, |§1 + ¢| € (B/s, B] are satisfied. The factors

f=1-s"9 0 =1-3s5% 42572 (3.27)

correspond to the different subsets of diagrams.

Thus, the main difference of the RGYu is the original procedure of short-
wave modes elimination. It is formulated in general form without using any
perturbations [13] which yields nonperturbative approximate results for the
critical indices and thermodynamic functions [14,15]. From the other point
of view it can be verified and compared well with the other RG approaches
using the perturbation technique. We performed it in a diagrammatic form
which results in appearing of RR in form of (3.26). This diagrammatic ex-
pansion consists of two steps: firstly all digrams are the empty-loop ones and
in addition a lot of superfluos reducible diagrams appeared (3.22); secondly
all superfluos diagrams cancel and remaining diagrams acquire the loop-
integral type approximate factors (3.23-3.25). As we see from (3.22) the
RGYu yields the same set of diagrams as the usual perturbation technique
[111. The difference lies in correspondence between the factors (3.23-3.25).
This correspondence is to be discussed more detaily.
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1) The infinitesimal case (s — 1).

In this case the potential averaging (2.6) effects have to disappeare. For
example the exact expression for I; (3.23) at d = 4 is:

1 1 d [B ¢*ldg
I = — —_— = —/ —_—
! § N%T‘i‘qz Bd.B/s T+q2 d=4
4 (B? oy T r + B2
= -1—32- (7(1 — 38 ) - -2—ln W (328)
s—1  41In(s) 2 i
B + O(1n*(s)).

The corresponding approximate expression from (3.23) reads:

I, <220 0 51 dln(s) 41n(s)

<d> <d>|g=qg <d>

. (3.29)

As we see at the infinitesimal limit both expression are the same and are
equal to 41n(s)/ < d >. This is valid both for the 1L and 1VR 2L diagrams

of (3.26). In the case of 1VI 2L diagrams we have (for example at d = 3):

. %1n%(s) Wilson’s approach,
ll_rg Timmy ~ { 2—3ln(.«3) collective variables RG, (3.30)

that is why in the usual perturbation scheme these diagrams in infinitesi-
mal limit disappeare (as was shown by Wegner and Houghton [4]) Due to
performing of RGYu these diagrams still remain. Later we shall made an
estimation of their essence while calculating the critical indices. It should
be mentioned that these diagrams are neglected in principle in some ap-
proximate RG transformations (for example in the Wilson’s approximate

recursion formula [1]).
2) The intermediate values of s.

The approximate recursion formula [1] for example works at s = 2. To
obtain the same results we have to neglect the 1VI 2L diagrams and then
put s = 2 in the frames of RGYu. In fact we are able to remain these
diagrams. In this case we have a good chance to work in a small interval of
s € {1.2,1.4] (fig.1) where the approximate and exact factors corresponding
to 1VI 2L diagrams (3.25) are the closest. It is interesting to note that these
two expressions coinside at s ~ 21/d (d is dimension of space). The special

fOI? of this value for the approximate RG schemes was pointed out by Baker
18].
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Ihn(n)

1\\/12 1.4 1.6
91/d

Figure 1.  Dependence of 1VI 2L diagrams on RG parame-
ter s (1: presented method, 2: Wilson’s recur-
sion relations approach)

3) Large values of s.

- This limit was studied by Bruce et al. [3] within the Wilson’s RG scheme.
It was shown that in this case the higher order couplings (¢® and higher)
become irrelevant and the scheme with the RR leads to results the same as
in massless field theory [19] (using € = 4 — d-expansion). Unfortunately the
averaging of potential (2.6) is too dramatic approximation to discuss this
limit within the perturbation analysis of the CV RG transformation.

N

4. Calculation of critical indices

In the previous section we have developed the perturbation theory technique
within RGYu which is used in the CV method. We have studied as well the
correspondence between the obtained diagrammatic set and the Wilson’s
RR approach. Here we shall obtain the relatively accurate values for the
critical indices using presented in the previous section scheme.

Let us pass from the diagrammatic form of RR to the algebraic one. It
should be mentioned that topological equivalence in diagrammatic set (4.26)
means the same loop-integral type factor which is an approximation of the
correspondent topologically dependent loop integral. Thus after gathering
all diagrams of those type into the single algebraic expressions we obtain:

P = 2 [(r(M) 4 g)(1+ 3094 — 3(26 + 36)(94™)
+ 4502050 4 .. ) — q] ,
W) = by () [1 - 900, 4 18650 g,(m) 4 27(40' + 36%)(ga(M)?
— 15(86 + 216%)g6(™) + -] (4.31)
wirtl) = 82y [1 — 4506, + 368(g4 ™)/ g6
+270(560" + 66%)(g4™)? — 548’ + 96%)g6™
— 648(20' + 62)(9a™)*/g6™ + -+ | ,
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where the redefined couplings read:

(n) w(™
() I A "= 4.32
g4 6(r(™) + ¢)?’ 9 90(r(™) 4 ¢)3 (4:32)

Turning the temperature to the critical one T, we expect the fixed point

solution of the RR (4.31) limpoo 94 = g%, limp oo g6(™ = g% which
leads to the set of equations: -

s*=[1 — 9695 + 208/ g5 + 27(40' + 367)(g3)? — L5(8¢' + 216%)g2] = 1,

s8724[1 — 4565 + 366(93)°/ 95 + 270(50" + 66)(g3)?
P48+ 96%)g5 - 648(26 + 67)(9)*/g3] = 1.

(4.33)
Recalling the 1L solution for the g4 coupling [1]:
| : 1— gt
r -
g =94= 9(1 _ S_d) (434)

we expect that taking higher orders into account will cause no change in
this order. Thus when we find the g3 as a function of g1 from the second

equation of (4.33):

36(1 — s~ | |
% = 825,1__3)_—1)(02{)3, at d # 3 (4.35)
9% = 4/5(¢2), atd=3 (4.36)

we see that the functional dependence (4.36) is not acceptable because it
will damage the 1L solution for g} being substituted into the first equation
of (4.33). The main idea of solving the equation set (4.33) is to represent
both gi and g§ couplings as power series of 1L solution (4.34). It gives the
power expansions of following form: :

30(1— s~¢ | '
Gi = o (gt -1 ], (4a)
* ‘ 36(1—s—d) 3 ‘
%= el tr - us

In the infinitesimal limit s — 1 we have more compact forms:

Ld412 ‘ 18d
* _ o/ — g ... = B
9i=9gll+3——=¢"+--1, g%=g—359 + (4.39)

(in this case ¢’ = 94 = %£). Using the well known technique for linearizing

of the linear RG operator [1] we obtain following expansion in powers of gi
for the correlation length critical index v: :

3d . 9d 8+10d - d?
g+ = -

| 1 *\2
v= g O g () (4.40)
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The expression for g (4.39) has to be substituted here. This results in
effective reexpansion of v in terms of 1L solution (4.34):

1 3d, 9d d-11d?+42d—24 ,
=42yt 4.41
v=g+79+3 d-na-3 ¢t (4.41)

It is interesting to note that such reexpansion procedure leads to very in-
teresting manipulations with the asymptotic series obtained within massive
. field theory and it is capable to provide a high precision calculations of cri-
tical indices without applying the Padé-Borel resummation technique (see
Appendix). v _

As we see from (4.41) the resulting expression for v will diverge at
d = 3. This is due to the fact that the 2L contribution includes the gg
coupling terms (having marginal dimension equal to 3). Here the dimen-
sional regularization idea appeared naturally. While performing the expan-

sion 3—13 = 1ch ~ 1+ ¢+ €+ --- we obtain for the critical index v the

following e-expansion:

v= : + ~1-6 + .

2 12 ' 18 -

The e-expansion obtained here can be easy generalized to the case of

n-component model. It is convinient to pass to the infinitesimal limit s — 1

which was provided within the Wilson’s approach by Wegner and Houghton

(4] and within the CV method by Vakarchuk and Rudavsky [20]. The ¢°

model was investigated in frames of last approach at d = 3 [17]. The.
differential equations of the following form were obtained [17,20]:

e+ (4.42)

3—2 = (r+ 4)[724:7 + (n + 2)dgs + 2(n + 2)dgj],

%g— = ul4—d—(n+8)dgs+ g(h +4)d(g6/94) — 4(5n + 22)dg}

~ | +12(n + 4)dge],  (4.43)
%? = w[6—2d-3(n+14)dg, + %(n + 26)d(g3/g6) — 54(3n + 22)dg}

'~ where { = Ins. The corresponding set of equations for the fixed point -
coordinates is:

ou _ 0w _
ot~ ot

We will use the trick of reexpansion and then perform the dimensional
regularization in the same manner as in the case of the Ising model. This
results in the following expansions: '

0. (4.44)

1 n+2 n+2 9 ) '
YT 3t imre T Emygp TR0, (145
€ n+14 ,
A = ———— .
2 4n+8) " (4.46)
14 8 2
Ay = 1+n+ 7n” 4+ 306n +3156n+8600€2, (4.47)

n+8€+ 2(n +8)3
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where A and A; are the indices of corrections to scaling. The expansion for
v (4.45) is to be compared with the same order expansion obtained within

the massless field theory by Wilson [5]:

1 n+ 2 n+2
Y=ot i) T 8mr o)y

(n? + 23n 4 60)€>. (4.48)

As we see the slight difference is present in the 2L terms. It caused by some
specialities in given RG transformation and dissapeares in the spherical limit'
n — oo. It should be pointed again that our result (4.45) is obtained in the
infinitesimal limit s — 1 while the field theoretical one (4.48) corresponds
to another limit s — oo. The expansion for v (4.45) gives at € = 1 relatively
acurate results: v = 0.600,0.639,0.671,0.697 (for n = 0,1, 2,3 respectively)
as compared to high-temperature series data » = 0.600,0.638,0.670,0.703
[21-24] and field-theoretical results at d = 3 v = 0.588,0.630,0.669, 0.705
[7.8]. .

5. Discussing stability of results

Let us discuss here two points related to the stability of our results. The
first one is the essence of the 1VI 2L diagrams appeared in the RR (5.26)
which yields some peculiarities in calculations. Calculating the fixed point
coordinates gj and g§ we obtain from the second equation in (4.44):

* __ 2 d - ) *\3
ge = 3d_3(n+26)(g4) . : (5.49)

Substitution of this expression into the first equation in (4.44) givés the
contribution: .

+4(n + 4)(n + 26)dg;? = +4(n® + 300 + 104)dg;>. (5.50)

It may be compared with the same order contribution which comes from
the 2nd type 2L diagram initially proportional to g}2: /

N

— 4(5n + 22)dg;>. o (5.51)

There are not any other diagrams of the same order in first equation of

(4.44). As we see the contribution from the 1VI 2L diagram to the fixed:

point coordinates is % - % as compared to the same order contribution which

goes from the 1L diagram from the second equation of (4.44). The same
estimations may be easy fulfilled for other contributions. The result is that
contributions of the capricious 1VI 2L diagrams do not exceed the -;— as
compared to the main important contributions from the corresponding 1L
diagrams. Thus the results obtained for the critical indices demonstrate a
weak dependence on peculiarities in calculation of these diagrams. It should
be noted that these considerations correspond only to the perturbatiod ana-
lysis of the CV RG scheme and do not refer to the general nonperturbative
scheme itself. Applying the perturbation theory is only a good chance to
verify this approach and to make a well established comparison with other
RG schemes. ’

The second question appeared here is stability of the final results on
choosing the value of RG parameter s. The e-expansions (4.45-4.47) are
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obtained within the s — 1 limit. There are no problems to perform the
calculations for arbitrary (not very large) value of s. In Ising-like case we
obtain for the critical index v:

1 st44s2+1

In(s) 1
FRNT

€
VEE) 2 12T

In(s) -i—s (5.52)

which demonstrate the relative flow of the s-dependent coefficient within the
interval of s € [1.0, 3.0} not more than 0.5% Thus providing the perturbation
analysis within the CV method using the reexpansion procedure and e-
expansion gives a possibility to obtain relatively accurate results for the
critical indices of the Ising and n-component model. The numerical values
obtained almost do not depend on the details of the RG transformation and
are stable in the wide range of the RG parameter s.

6. Conclusions

Thus the effective combination of different methods is presented here. The
usual renormalization group realizations (different Wilson’s type approa-
ches, [1-4], massless [5,6] and massive [7,8] field theories) are capable to
provide a precise calculations of critical indices and other universal char-
acteristics of phase transitions but cannot obtain critical temperature and
other nonuniversal characteristics. The collective variables (CV) method
developed previously for the systems of charged particles [10,11] being ap-
plied to the phase transitions phenomena [13] gives such possibility. One
can obtain both values for critical indices and the complete expressions for
the thermodynamic functions (like free energy, specific heat, etc.) [13-15].
One of the original aspects of this method is the use of original renormaliza-
tion group transformation which is formulated in general without applying
of the perturbation theory. Unfortunately the approximations made here
cause some peculiarities in calculations performed for limiting cases of the
renormalization parameter s.

Thus the idea to combine CV method with other renormalization tech-
niques appear naturally. Besides of improving resulting accuracy within the
CV method it gives a good possibility of making detailed comparison be-
tween it and other approaches which is of great interest even as a separate
problem.

This is the subject of presented report. We performed perturbation anal-
ysis of the renormalization group transformation within the CV method.
This gives us the possibility both to make a detailed comparison between
this method and Wilson’s recursion relations approach and to obtain rel-
atively accurate values for the critical indices. We show that slight dif-
ferences between two approaches appeared in two-loop level are caused by
peculiarities in calculation of one-vertex irreducible diagrams and turn to .
be unessential.

The original reexpansion procedure was used for search of the fixed point
coordinates and the dimension regularization is fulfilled to avoid the diver-
gencies at d = 3. The numerical values of critical indices obtained here
are in a good agreement with the high-temperature series analysis. The
detailed verification of stability and validity of results is made. We show
that applying the e-expansion it is possible to avoid dependence of the final
results on the detais of renormalization group scheme.

Finally we can state that combining of the CV method with the per-
turbation theory technique gives a fine-tuned tool in the theory of phase
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transitions.
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Appendix. Application of the reexpansion procedure to the
asymptotic series of massive field theory

Here we shall apply (and tegtify) the reexpansion procedure in the case of
asymptotic series obtained within the massive field theory atfixed dimension
d = 3 [7,8]. The critical behaviour of the system of n-component spins
located in the sites of d-dimensional lattice and interacting via short-range
potential corresponds to the field theory with the action [8]:

A@) = [ [50.87 + gmi8?+ 2o@7] e (ad)

The vertex functions T (LN ) (g, p;) satisfy the Callan-Symanzik equation [8):

[ + W(0) 5 = S0(0) = L7 (0) ~ )] Mg )

om 0g 2 B
= m2(2 — n(g))F(LH’N)(O, qiapj)a (A2)

where g is the renormalized ¢* type coupling and W(g) is the RG function.
Zeros of this function give the fixed point coordinates g* [8]:

Wi(g") =o0. (A.3)

Then g* is to be substituted into v(g) and 7(g) which gives physical values
for critical indices v and n:

v =v(g"), n=n(g"). (A4)

These two-step calculations may be performed in the different way: numeri-
cally (applying or not the Padé-Borel resummation technique [7,8]) or using
some analytical methods. The reexpansion procedure could be chosen as
one of such analytical methods.

Using the perturbation theory one can obtain the functions W(g*),
v(g*), and n(g*) as power series on g. We shall recall here a six-loop results
obtained by Baker et. al. at d = 3 [7]. In the Ising-like case (n'= 1) [7]:

W(g) = g(1- g+ 0.422497¢% - 0.351070g> + 0.376527g*
— 0.495548¢° + 0.749689¢° — - - ),
v(g9) = 0.5+0.083333g— 0.001886¢% + 0.008363g°> . (A.5)
— 0.006093¢* + 0.008043¢° — 0.0111644° — - ..
n(g) = 0.010974¢* + 0.000914¢° + 0.0017964*
— 0.000654¢° + 0.0013884° — - - -
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According to reexpansion scheme we have to find the 1L solution of eq.(A.3)
g’ (here due to W(g) normalization ¢’ = 1) and then find the complete
solution g* as a power series on g’. This gives:

g* = ¢'(1+0.422497¢' + 0.005937¢'% 4+ 0.0119844"
~0.041231¢™ + 0.040135¢"° — - - -). (A.6)

This series is to be substituted into the series for v(g*) and n(g*). After
gathering the similar terms we obtain the reexpanded series for v(g’) and

n(g’):

v = 0.5+ 0.083333¢" + 0.033322¢” + 0.007264g" + 0.0051464"
—0.001118¢'5+0.003694g6 — .. ' (A7)

n = 0.010974¢'2 + 0.010187¢" + 0.005044¢g" + 0.0032064"
+0.00129§g'6+... .

It is clear that the asymptotic nature of the initial series remains. But
the coefficients of reexpanded series became of the same sign and display
monotonous decreasing. - Second important feature is appearence of rela-
tively small coefficients (of order 10~3). This allows us to use one property
of asymptotic series and to neglect the rest of the series with the error not
greater than the first term omited (we marked the neglected part by small
font). This immeadetily yields:

v = 0.629 £ 0.001, n = 0.029 +.0.001, (A.8)

which is in exellent accordance with the same result obtained via the Padé-
Borel resummation method [7,8]. The situation for other dimensions of spin
n is similar. In the whole interval n € [0, 3] we have observed appearence of
relatively small terms which makes possible to obtain the results listed in
tabl.1. It should be mentioned that accuracy of index 7 obtained with the
help of reexpansions is even better than it accuracy while using Padé-Borel
method.

This example shows the efficiency and accuracy of the reexpansion pro-
cedure used in the modified renormalization scheme within the collective
- variables method presented here. It has to be mentioned that this proce-
dure is close to the pseudo-¢-expansion [8,21].
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METO[I KOJIEKTI/IBHI/IX SMIHHNX
Y TEOPII PA30BHUX ITEPEXOMIB:

. MPEIIU3IAHI KPUTUUYHI IOKA3HUKU 1
OJETAJIBHE IIOPIBHAHHA 3 IHMUMM IIIIX0OJAMA

A.M. Inprunsxutt, M.II. Ko3znoBcskunt

H

O6cymxyeTbca MeTON KOJNIEKTUBHUX 3MIHHUX, PO3BUHY TUH 1JIA
BMNanky Teopii $asosux nepexonis L.P. I‘OXHOBCLKMM [Iponony-
6€TbCA e eKTUBHE HOEIHAHHA LLOrO IIIXOAY 13 PEHOPMI PYIIOBOIO
cxemoro K.Binbcona. B peaynbpTaTi 3acTOCYyBaHHA NpoOUENypH €-
pO3KJany OTPMMAHO NPeUU3ilH] 3HAYEeHHA [T K PUTUYHUX IHIEKCIB
y BuIiaiKy n-KOMIIOHeHTHoi mogexni. Bukomano merasbHe nopis-
HAHHA 060X MiAXofiB, fike 6a3y6TbCA Ha MOPIBHAHHI BiNMOBIAHMX
IlarpaMHMX pPO3BMHEHb. 3HauHa yBara 3BePTAE€TbCA Ha CTIMKICTL
OTPUMAaHUX pe3yJIbTATiB.



