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The phase transition theory developed by I. Yukhnovskii within the
collective variables method is applied to the binary alloys. The features
of the binary alloy problem in comparison with the Ising model are
discussed and analized. The Jacobian of the transition from the site
variables of the occupation number to the collective variables space
is calculated. The explicit expression for the partition sum of the
substitutional binary alloy is obtained.

1. Introduction

Calculation of the alloy free energy F(T,c) belongs to the important prob-
lems of the modern condensed matter physics. Knowledge of F(T,¢c) as a
function of temperature 7' and alloy concentration ¢ allows one to predict
an alloy behaviour under changing external parameters and construct the
phase diagram (diagram of state %1

Two ways to determine F(T', c) exist in the microscopic theory.
1. The "pure structural” way

F(T,¢)=E TS (1.1)

means that the alloy internal energy E and the entropy S are calculated
separately and usually within different methods and approximations [2].
2. The ab initio calculation proceeds from the alloy partition sum Z

F=—kgT In 2, (1.2)

where kp is the Boltzmann constant. Details about the approach 2 see
in [3]. Another approach based on compiter simulation methods becomes
commonly used in the present alloy theory [4].

Analytical theory of the alloy thermodynamic properties proceeds {rom
the various modifications of the mean field theory [1,2,5]. The static con-
centration waves method [5] is one of the most commonly used among such
modifications.

An adequate description of the alloy thermodynamic properties near
the phase transition temperature is necessary to construct the real phase
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diagram. The mean field approximation is not sufficient for this purpose
[3]. The last statement can be easily illustrated by analysis of the formula
for the order-disorder phase transition temperature, obtained within the
random phase approximation (3,5]

1
To = —7c— Vg(k*) CACB. : (13)
B

Here V2(k*) is a value of the ordering potential Fourier transform at the
points k* of the absolute minimum, ¢;(: = A, B) is a concentration of i-kind
atoms. The explicit expression for V5(k) is given in [3].

The order-disorder phase diagram should have extremum and be sym-
metric with reference to the point ¢4 = cg = 0.5 accordingly to the Eq.(1.3),
but such a situation does not often occur in real alloys [6]. Besides,the
Eq.(1.3) does not describe adequately the phase diagram of dilute alloys:
eg L l,eq — 1.

The order-disorder phase transition temperature obtained from the
Eq.(1.3) in the case of polyvalent metal alloys exceeds essentialy the ex-
perimental data [7]. Rather common opinion exists that a poor agreement

between theoretically predicted value of To (T{"*°")) and the experimental

one (Tém’ )} is mainly caused by accuracy of determination of V3(k*) in the
frames of pseudopotential method. But various modifications of V3(k*) cal-
culation procedure did not improve essentially agreement between Tétheor)_
and Tée”) [7]-

In our opinion solution of this problem should be under way on the
following items.

1. Application. of the phase transition theory which is beyond the mean
field approximation.: '

2. Account of the atomic thermal vibrations and local static displasements
that renormalizing the ordering potential Vo(k*) [8,9].

The present paper is dedicated to the development of the item 1. It is
organized in the following way. The main ideas of the collective variables
(CV) method [10], used %or this purpose, are given is the section 2. The
alloy partition sum calculation within the so-called ”p* approximation” of
the CV method is presented in the section 3.

2. The alloy partition sum. Problem statement and Jaco-
bian of the transition to collective variables.

Let us consider a substitutional binary alloy. The atom sites are given by
the vectors R. There are N; atoms of the i-kind (¢ = A, B) in the alloy with
condition N4 + Ng = N. The distribution of two kinds of atoms over the
lattice sites is given by the set of occupation numbers ogp

_ | 41 if the site R is occupied by an atom of kind A
R =\ -1 otherwise

According to 3] the partition sum of such an alloy in the interatomic pair
potential approximation may be written as follows

7 = exp(—NﬂVo)TT{,R} exp { -0 Z Vi(R)ogr
\ R
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+% > Vz(R,R')URUR'] -8 > /“N"}' (2.1)

R,R/ 1=A,B

Here Vj is the configuration independent part of the alloy energy, Vi(R)
characterizes the distinction in the atomic properties of the two kinds of
atoms, V3(R,R’) is the ordering potential (for the explicit expressions for
Vo, V1 and V; see [3,11]), B = 1/(kgT) is the inverse temperature, u; the -
chemical potential of a metal of kind ¢. Symbol TT{"R} ‘denotes that the

trace in (2.1) is taken over the eigenvalues of all oR.
Passing to the Fourier transforms py of the occupation numbers og one
gets for (2.1): ‘
. Z= exp(—N,BVg)Tr{aR}

X exp {—5 VNVipo + % Y Wak) ﬁkﬁ_kJ -8 > ltiNi}, (2.2)
‘ : keBZ i=A,B
Pk = —\/lﬁ Z og exp(—tkR). (2.3)
R

Vector k in (2.2) lies inside the first Brillouin zone (BZ). We shall use the
CV method [10] for the calculation of Z. According to the CV method
[3,11], ’

Z= eXP(-NﬂVo)/---/exp {~8[VNVvipo
+%. Y Vak) PkP—k]}J(P) II dpx, (24)
keBZ - keBZ ;

where

J(p) = TT{UR} IT ¢ (Pk.—'—\/%ZUReXP(—ikR))
‘ R

keBZ

(2.5)

140 1-0
X exp | -0 (,uAZ 2 B +#BZ 2 R)
is the Jacobian of transition from the set of variables og to the CV py space

(see for details refs [3,10,11]). The terms containing chemical potentials in
J(p) (2.5) take into account that there are

Ny = Z 1 +20'R,’ Ng = Z 1 -—20'R
R R

atoms of two kinds in the binary alloy. Presence of the chemical potentials
in the Eq. (2.5) permits one to perform the trace operation for certain
configuration at each site independently [3].

It is seen from the Eq. (2.5) that only the values of CV py equal to the
occupation number o Fourier components i (2.3) will contribute to the
transition Jacobian J(p). :



The partition sum of alloys . .. 45

Using the integral representation for the é-functions é (px — fx), one can
rewrite the transition Jacobian J(p) in cummulant form (3,11]

J(p) = /.../exp (27ri Z wkpk> exp [i Dn(w)] H dwy, (2.6)

keBZ n=0 keBZ
where
Da(w) (2”)” Y Mok k) @ (2.7)
n =|—-—=1} — niki.. . Kp)wy, .. Wk, .
‘\/N n! k] ..... knEBZ ’
My, (ky...kn) = My ) expli(ki +...+kn)R], (2.8)
R
an
M, = 5{};111 [exp(Bus — q) + exp(Bua + )] lg=0 - (2.9)

The vector k in (2.5) - (2.7) takes on all values in the first BZ. The cum-
mulants M, (2.9) are complex functions of the alloy component chemical
potentials and temperature [3,11]. Let us put down the first curhulants
which will be required in the following

Mg =1n Z exp (Bu;) = In Dy, (2.10a)
i=A,B
oy = 22 Bia) - exp (Puip) (2.10b)
M, = 4 exp (ﬂ,U'A) zxp (,B,LLB) , (2_10(:).
D,
Ms = —2M; M,, My = 2My (2M7 — My). (2.10d)

To separate the integration variables wy in the Eq. (2.6) for the Jacobian
let us introduce new variables wg and pg connected with wx and py by the

relations 1
WR = ——= Z wy exp(—ikR), (2.11a)
VN 165z

1
PR = — px exp(ikR). (2.11b)
VN \52
Then (see [10] for details):

J(p) = exp(N Mo) [T Jr(p), (2.12)
' R

where

o0
Jr(p) = [ dwp exp (QWinpR + 2miMywg + (
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2m1)3 2mi)t ;
+(——§:—)—M3wR3 + %—M‘;wR“ +.. ) : (2.13)

The function J(p) (2.12) can be represented as exponential infinite series
(3,11]

a as
J(p) = exp(N Mo)Q" [ exp (—arom — 5 pR” - 270k
R 2! 3!

a
_%pR4 - ) = exp(N Mo)Q™ exp [—01\/-1\7/)0 - 2—? Y. PrP-k
' " keBZ
as Z
- Pl Py B(K1 + .- + k)
3'\/‘]—\7_ kieBZ ' ’

a

' kieBZ _ .

with é(k; + ...+ k;) the Kronecker symbols. The following notations are
accepted in (2.14):

00 27114)?
Q :/ exp [27riM1wR + ( ;Z) Mywg?

+(2§f)3M3wR3 +.. ] dwg, (2.15)

a; = —881—;14?—, as = a® — 2!681;14?, (2.16)

a3 = 3a1az — a3 — 3!681%?, | (2.17)

| a4 = a? — 6a2az + 4aya5 + 302 - 4!?;’4?. (2.18)
Let us write down the useful relation

0ln@ 107Q (2.19)

oM, T QoMT

The quantities a;(i = 1,2...) are the coefficients of the transition Jacobian.
As follows from (2.15) - (2.19) a; are complex functions of the chemical
potentials and temperature. :

It is seen from Eqs. (2.4) and (2.14), (2.15) that neither the partition
sum nor the transition Jacobian can be integrated exactly. Then the prob-
lem to restrict oneself with the "proper measure density” (proper coefficient
an in (2.14)) arises in the CV method [10]. For the alloy case it means to
choose such a measure density in Eqs. (2.14) and (2.15) which could per-
mit to describe the alloy thermodynamic properties adequately in a wide
temperature region. .
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It has been shown in (3,11] that the Gaussian measure density is right
at high temperatures. Putting according to this approximation M3 = M, =
... = 0in (2.15) one may obtain that [3,11]

1 —M? M, 1 |
Q% = me"f’(mi) af = g0 = gy = = =0
(2.20)

and ,
7G _ (QG)N exp(N Mo) exp(~N BVo) / .. / exp - (af + V1) VN po

1 .
3 2 (o +v2(w)) pkp_kJ IT dow (2.21)
keBZ keBZ

It is seen from (2.21) that the Fourier components py (2.3) are assumed
to be independent in the Gaussian approximation. Thus this approach is
equivalent to the random phases approximation [10].

Integration over py in (2.21) has a sence if

» d2% = a§ + BVa(k) > 0 ' (2,22)

for all vectors k in the first BZ. For polyvalent metal alloys the inequality
(2.22) does not take place in some parts of BZ even at temperatures above
liquidus. It means that the Gaussian measure density fails and one must
take into account the coefficients a3 and a4 in the transition Jacobian (2.14)
to determine the behaviour of the alloy thermodynamic properties near 7;
adequately [3,11]. Then one obtains the correct values for critical indexes
and a finite function for the free energy at T = Tp [3]. But the theoreti-
cal results, presented in [3] are too complicated for numerical realization.
Therefore a different approach within the same measure density of p* but
simpler for calculations is developed in the present paper.

Let us put in Eq. (2.15) Ms = Mg = ... = 0 within the p? measure
density. Then the problem of calculation of the following expression arises:

oo 4. " .
QW = / exp [Z (22!) anﬁ] dwR. (2.23)

™ n=1

~ Let us introduce a new variable & to remove the cubic term (~ Mswg?) of
the sum in (2.23). The Q*) becomes of the form

00 . *\2 - 4 . .

QW =W / exp [27riM1cD + Q;Z—)Mng - L:::)—-M‘@“} o, (2.24)

where ' ) ' -
MM, 1 My M.

(()4) = exp e S {23, lﬂf[—% , © (2.25)

My 2 MP T 8M;
_ ‘ 3
My = My + MMy + L M; (2.26)

M,  3MY
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1 M3

M; =M 2.27
2 2+ 5 2, ( 27)
| My=|My]|. (2.28)
The integrals (2.23) and (2.24) exist if
M, < 0. | (2.29)

Condition (2.29) determines the relationship between chemical potentials of
alloy components within the CV method approximation of p?, see (2.10). |

Expanding exp[2r:M,@] into a series in Eq.(2.24) and taking into ac-
count that

oo ' .
/ & exp [——acbz - 7&)4] do =0 (2.30)
—00 .

one can get the following result for Q(4)

(2 )' ( +_;_) [X%](%ﬁ)
%gﬁi] o (2.31)

Here I'(m) is the Euler gamma function and ¥(a,b, z) is the confluent hy-
pergeometric function. The properties of these functions are given in detail
in [12]. Function ¥(a,b, ) has the form [12]

QW= 3 -1y

n 1
XW{§+Z,

F (a,b,2)
¥(a,b,2) = sm1rb {I‘(11+1a - b)I‘ (b)
R
with the Kummer function 1 Fy(a, b, ) [12]
1F1(a b,z) = Z ((Z; :n"
(®)m = b(b+ 1)(b+ 2)...(b+m— 1). _ (233) :

To find the coefficients of the transition Jacobian is necessary to know
derivatives 9"Q(4) /OMT, see (2.15)-(2.19).

Taking into account that just only Q4 (2. 25) and M; (2.26) depend on
M; one gets the following result

QW A M ‘
- 61?4{‘ Ecn( 3) W(i) (2.34)
=0
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where C? being binomial coefficients and

Wi = 0@ L S~ (_qpymti ME™ L 1
(2) =@ 5;2_:0(“) @m)! m+j+g
mi+l -
6 M 1\ 1 3M2

— = i+ =),=, === 2.35

X[ i, ?[2(m+y+2),2,2M4}, (2.35)

. (4) 1 > m+] Mfm_l .

m+j+k ~
6 2 1 1\ 1 3M?
— |\ i+ =), o, = =2, (2
x[\/MJ [2(m+J+2>,2,2M4] (2.36)
Here j in Egs. (2.35), (2.36) is integer and W(0) = Q().In wiew of Egs.
§2.15)-(2.19) and (2.34) the coefficients of the transition Jacobian take the

orm: 1
ay = — (4)2]01( ) W(i), - (2.37)
» |

y=al - Q(4)§CZ(M4) W), (2.38)

3 13 3 Ms 3~ -\
o = 30—l = 5 3 (M4> W), (2.39)

M 4—1
a4 = a} — 6alay + 4a,a3 + 3a2 - Q(‘*)Z;CA( 3) W(2). (2.40)

If exp(Bua) = exp(Bup), then
My=M3=0, My=1 Mq=|M;|=2

(see (2.10)) and the results for the Ising model [10] follow from Eqgs. (2.31)
and (2.37)-(2.40)

= n (3) 93 3.5 - £m(3) s (3).
o as 0, ' (2.41)

ap = 2i7rr (g) V2TV [Z 2] 4\1/_63/4 exp(3/8)U ( \/g) , (2.42)‘

o 1
as = 30 - 2—‘F ( )3'\/5 v [i ; Z] 3—65/4 exp(3/8)

{\/_2 6exp(3/8)U2( ‘ g)—U(z\/g)}  (2.43)

<
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The following notations are accepted in (2.41)-(2.43): K, (2) is the modi-
fied Bessel function and U(a,x) is the function of parabolic cylinder. The
following relations have been used to obtain (2.41)-(2.43):

v [u + %,21/ + 1,2z] = —-\/l?exp(z)(—?%)-;h’u(z),
K, (2)=K_,(2),

’ 2 2
g e g e 11 a?
Ua,2) = 27/ exp(~Zyu [2+_4,2, ay
vl +1 12?2 _ V7 JiFi(a/2+1/4,1/2,2%/2)
1274727 2 sin b I (a/2+3/4)
F(a/2+3/4,3/2,2%/2) | -
V2l .
| Vs T (a/2 +1/4) |
The results (2.41)-(2.43) indicate that the more general than in [3,10] ap-

proach to transition Jacobian calculation, developed in the present paper,
is correct.

3. Calculation of the alloy partition sum by the CV method
‘within p* approximation. : ,

According to p* approximation one should put the coefficients a5 = ag =

... = 0 in the Eq.(2.14) deﬁning'the Jacobian of the transition to the CV.
The partition sum has the form, see Eqgs. (2.4) and (2.14)

RPAC - exp(N Mp) ex;&(—-NﬂVo)[Q(“)]N/.. ./exp{— (a1 + V1) \/]Vpo

—5 2 (2 +BVa(K)pkpx — == 3 pi, .o, (ks + ... + ka)
a . .
— v 2 Pla-pedat o+ ka)} T dpx. (3.1)
" kieBZ keBZ

The variable po is related to the macroscopic quantity. Really (3]:

{po) = VN (ca — cB), (3.2)

where (pp) is the Fourier component of the one-particle distribution func-
tion (or) at k = 0. Let us introduce a new_variable pl) to separate the

macroscopic part ’
po = {po) + pg- (3.3)

Substituting (3.4) into (3.1) one obtains for the partition sum:

_ , 1
Z(4) — Z/_“/exp {—-\/_N_hpo - 5 Z d(k)Pkp_k

keBZ
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a

3
- 6k 4. +K
3!\/171(;32”“1 Picsd (K 3)
i ‘ .
—‘Z'—fN— Z pk]"'pk46(kl+--.+‘k4)} H dpk, (34)
: kiEBZ . kGBZ

where
Z = exp(N Mo) exp(—N Vp) [Q“)]Nexp{—N[(al + V1) e1a

1 1 1
+§(az + BV2(0))era? + 5036123 + 5040124]},

h =i + 8V, d(k) = & + AVa(k), ¢12 = ca — ca, (3.5)

- 1 -
a1 = a1 + (az + AV2(0)) e12 + 57030122 + 3046123,

1
~ 2
az; = az + azciy + 504012 y

d3 = a3z + a4C19, a4 = Gy4. ‘ (36)

Z in (3.5) is a partition sum of a "mean alloy”. It can be treated as the
partition function of a reference system. The random ideal alloy is such a
system. The coefficients a; and a4 of the transition Jacobian are positive
[3]. One can choose alloy components A and B in such a way that ¢;5 =
ca — cp > 0, providing the positive values for .

Suppose that the absolute minimum of potential V(k) is at points k*
which form the star {k*}. Consider such a temperature that the mean -
value of function d(k) over the whole BZ with the vectors of the star {k*}
excluded, is equal to a positive constant that is ‘

d(k) = dg + BV3(k) = const > 0. , (3.7)‘

Let us replace function d(k) by its mean value d(k) (3.7) in this part of the
BZ and integrate over variables py (k ¢ {k*}) by the method, developed

in [10]. Substitution of the mean value V,(k) instead of the real poten-
tial V(k) is an approximation the applicability of which is discussed in
{10]. Nevertheless it will allow one to separate the integration variables in
Eq.(3.4). o

Introducing a new notation for the variables py over which the integra-

tion is performed
pc=me o kg ().

One can reduce partition function to the form [3,10]

3?7/~--/9XP{—% > [d(k)—m] PKP_k — 270 Y Vk/’k}

k=k* k=k~*

<J) I1 dc I] dow - (38)

k=k* = k=k*
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with

J(v) = /.../exp {27ri E ek — W N6 — %m E M-k
S k=k* keBz

a3
- bk +.. 4+ k
3!\/Fk§32"“1 ey (K 3)
i ‘ .
_ﬁ > 77k1---77k4‘5(k1+---+k4)} II dm. (3.9).

Vector k in Eq.(3.9) lies inside the first BZ and we require that 7 coincide
with'the py variables at k = k*. The integral representation for the product
of the Dirac functions [Jg—y« 6 (P — M) has been used to write down this
requirement in (3.8) and (3.9) [3,10]. -

Comparison of the expressions for J(v) (3.9) with the Egs.(2.6) and
(2.7) indicates that the problems concerning calculations of J(v) and J(p)
are similar. Introducing a new variable

1
MR = ——= 7k exp (tkR) (3.10)
VN keBZ
and a new notation ‘
. ) N ' o
R E % Y vkexp(—ikR) (3.11)

k=k*

one can represent J(v) as follows

1
Jw)= | ... ] exp |27 -h - —d(k 2
(v) / / p[ ‘%:VRTIR %:nn 5 )%:UR

‘% 2R~ %‘Z Wf{] [Idm =] =), (3.12a)
T & I L W '

~ where
(2xi)"

n! -

Tovg| - (3.12b)

JR(¥) = @ exp [— >
n=2

The expressions for Q§4) and coeflicients T,, can be obtained easily from
Egs.(2.31) and (2.37)-(2.40) by means of the following substitutions

_9milly — h, (20)? My — d(K), i(27)°Ms — G5, (271)*M, — G4 (3.13)
and | '

1 anQ(tl) (_l)n anQ:(l4)

= - (3.14)
QW My M ok
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The partition sum after integration over 7y takes the form:

(4) / /exp{ 2mi Z Yy Pk — 5 Z [d(k) - d_(l_(—)] PkP-k

k=k* k=k*

(2m4)? ‘ .
- T v_ o 0 (ky + ..+ ks
o1 Zkzg*yk k— y\/__ ;gi*ykl Vk, ( 1 . )

2mi)t '
-(4”3 T, Zk Y, - Vk45(k1+---+k4)}kl—:l[( dukkl'l[( dpx. (3.15)

The coefficient T is absent in (3.12) and (3.15) because of the requirement

(see (3.3))
(po) = (o) =0 (3.16)
which can be written as follows
(4)

0V Nh Q§4) Oh

Equation (3.17) is used for determination of the chemical potentials of alloy
component.

Integration over v variables in Eq.(3.15) has some features demandlng
some additional explanations. In order to factorize the integrals in (3.15)
let us introduce an auxiliary lattice, containing N* sites. One can take a
superlattice, realized in ordered alloy below the temperature of the order-
disorder phase transition as such an auxiliary lattice.

The Dirac functions 8 (ky + ...+ k;) are defined on a new lattice as
follows

1 . ) ‘
6(k’1‘+...+kf):FZexp[z(kf+...+kf)R*], (3.18)
R*

where R* are the superlattice sites.
Introducing new variables

VR» = \/_._ > vkexp(—ikR*), (3.192)

N*k Kr

PR* = G E ok exp (tkR*) (3.19b)
k=k*

and taking into account definition (3.18) one obtains for the partition sum
(3.15):

= (4) / / exp { - [d(k) - @] PKP X

xJi(p) II dpx. (3.20)
k=k*
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Here

. 27rz
Ji(p) = /.../exp [—27rzZuR*pR* - ) TQZVR*
R

(27["& TSZ vy, — 27”) T4ZVR*:| Hdl/R*

P, .
[ ] Hexp [ 2_: PR (3.21)
with (compare with (2.31))
-~ 2m 3m 1
Ts 1\ /6\72 1
g S (5) ) ()
3m 11 3T2 .
and ’
~ . [ N* ~ N*
T; = T2, T; = —N—Tg, Ty = W‘T“ (323)

The coefficients P, in (3.21) are defined by equations like (2.37)-(2. 40) with
the following substitutions

a; — (“1)iPi, QW - Qg“), M; > T;. (3.24)
One should restrict oneself by the coefficient Py in (3.21) within the p?

approximation.
The result of integration over vy variables is the following:

z=7[")" &3] [ / exp {—- > [Br 4+ 8V2(0)] prp e
k=k*
Z Pk, - - Pk 5(k1+...+k3)
3'mk it 1 3
Py
4'N* Z pkl' 'pk46(k1+"'+k4) H dpk’ (325)
k;=k* ' k=k*
where ~

By = Py~ AT (3.26)

Thee result obtained is of a great importance. The extremum of the integrand
in (3.25)

1 .
E@ = 2 Z (Pz +ﬂV2(k)) PkP xt o= 3,m Z Pkl' 'pi)(:s

k=k* k;=k*



The partition sum of alloys . .. 55

P
x6(k1+...+k3)+m:ﬁ Do kPR + .tk (3.27)

represents the Landau free energy in terms of series in order parameter. The

explicit expressions for the expansion coefficients (}32, Ps, P4) are obtained.
The system of equations

SE®)

Bpfq -

determine the coordinates of the E(4) function extremum [3,10]. The pf val-
ues have the clear physical sense. They are equal to the Fourier components
of the long-range order parameter [3]. : :

The presence of the cubic term in Pk in (3.25), (3.27) is necessary but
not sufficient condition for realization of the first order phase transition.

Let us perform the final step of the partition sum calculation. We are
interested in the second order phase transitions in binary alloys. Thus,the
cubic term is absent in the integrand of (3.25) and the temperature of the
phase transition is defined by :

Py + B:.Va(k*) = 0. (3.28)

The coefficient P, is a complex function of temperature and a complex
equation with respect to 8. results. :
Let us write down the final formula for Z , omitting details of calculations

=7 [th)]N [ g‘i)] N [ :(34)] N*, (3.29)

where (see (2.41))

) N
0= s (3)(5) (L1 2E
3 =51 (3 Py ¥ 4’2°2P, | (3-30)

The free energy per one atom

F= —%kBTan

is a function of temperature and chemical potentials of the alloy components.
The equations
oF

C; = —m 1= A,B (3.31)
allows one to perform the Legandre transformation
F(T,ca,e) = F(T,pua, ug) — Z Wici (3.32)
i=A,B

and get the expression for the free energy as a function of T and ¢;(i = A, B).
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4, Conclusions

The approach initiated by professor I. Yukhnovskii for solving the three-
dimentional Ising model [10? is developed in the given paper. We tried to
show the efficiency of the Yukhnovskii method, applying it to the problem
of binary alloy thermodynamic property investigations.
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: PO3PAXYHOK CTATUCTUYHOI CYMU
BIHAPHUX CIIJIABIB 3AMIIMEHHA METOJOM

KOJIEKTUBHMX 3MIHHUX. HABJIM>KEHHA p*

IO. Xoxiaos, 3.0. I'ypcekuiu

Teopis ¢pazobux nepexonis, possunyra L.P.KOxHOBCEKMM B paM-
KaXx MeToJy KOMEeKTUBHMX 3MiHHMX, 33CTOCOBYETBHCA NJAA BUIAI-
Ky GiHapHMX CINaBiB 3aMimeHHA. Po3riAgaloTbed i aHam3yI0ThCA
0COBAMBOCTI PO3paxyHKY CTATHCTHYHOI CyMM GiHAPHOIO CILIaBY B
HOpIBHAHHI 3 Mofeno I3inra. B ABHOMY BUIJIAN PO3PaXOBYEThCA
Ko 6iaH epexody 0 KOAEKTUBHYX 3MIHHMX 3 BKJ/IIOYEHHAM Y HbOI'O
XiMiYHMX MOTEHLIAJIB KOMIOHEHT CIUIaBy. 3allpoNOHOBAHO METOJ

PO3paxyHKY CTATMCTMUHOI CyMU B Mexax HabimkeHHsA pt.



