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The problem of application of Gaussian and non-Gaussian basic
measure densities of collective variables for integration a cluster fer-
roelectric partition function functional is discussed. Starting from the
conver- gence of functional integrals in the phase transition point vicin-
ity the first Brillouin zone is divided into layers. Every layer consists
of two parts. In the first one the Gaussian measure density is sufficient
and in the second one the non-Gaussian measure density must be used.
The partition function obtained as a result of layer by layer integration
is finite in the temperature region which contains the neighbourhood
of phase transition point. The critical behaviour of a thermodynamic
functions is studied.

1. Introduction

There are two recently unsolved problems in the description of the phase
transition point neighbourhood in cluster ferroelectrics. The first one is the
rigorous treatment of dipole-dipole interaction between particles of system
and influence of it on the critical behaviour of thermodynamic functions.
The second problem is connected with complex intra-and inter clusters
short-ranging interactions, including the transverce field influence. The role
of dipolar interaction in forming the critical behaviour of isotropic ferromag-
nets was discussed in él-ﬁ]. The investigations have been performed using
both numerical methods and e-expansion in field renormalization group the-
ory. :
Some problems of simultanious coexistence of short range and long range
dipolar interactions in ferromagnetic systems was discussed in [7,8].

In the microscopic theory of ferroelectricity there are well known investi-
gations based on taking into account long-range dipolar interactions [9-11].
For calculation Gaussian integrals the procedure of diagram summation in
perturbation theory was developed [9,10]. The logarithmic corrections to
some thermodynamical functions were obtained. The renormalization group
method and it’s application to investigation the thermodynamical properties
of ferroelectrics near phase transition point were developed in [11]. The role
of short-range interactions in the phase transition was not discused. New
interesting results of experimental investigation of ferroelectric crystals are
presented in [12].

In the present paper the regular method for calculation of different ther--
modynamic functions of uniaxial cluster ferroelectrics in the phase transition
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point vicinity is proposed. The knowledge of characteristic functions like
free energy or thermodynamic potential is a basis to obtain all thermody-
namic functions [13]. Therefore. considering the phase transition from one
thermodynamic state to another one within the frames of equilibrium sta-
tistical physics, we shall deal with free energy which is a characteristic func-
tion of system under volume and temperature as an independed variables.
For this the Yukhnovskii’s method of layer by layer integration of partition
function functional over collective variables (CV) is used [14]. We propose
modificated layer by layer integration method [15], which is based on the
taking into account fine peculiarities of CV distributions in cluster ferroelec-
tric system. Short-range intracluster interactions will be considered exactly,
but intercluster short-range interactions renormalize spherically-symmetric
part of long-range patential. ‘

2. Hamiltonian and initial relations

We shall consider a crystalline system of volume V containing f, N particles.
There are f, particles in every of N unit cells of crystal. They form a -
cluster. So, we have a N-clusters system. For every particle there occurs the
possibility to be in one of two quantum states. These states are determined
by the §* Pauli matrix. The transition from one state to another one
is discribed by the §* operator. The probability of such a transition is-
determined by the extermal tranverse field value, or by so-called tunneling
parameter I'. The pair potential of interparticle interaction consists of two
terms: a short-range potential of nearest neighbours V;; and a long-range
potential J; 4 (R; — R;); where f, f' are numbers of particles in cluster, R;
is a radius-vector of cluster center.

As it was showh in [16] the Hamiltonian of such cluster system may be
presented in a Ising-like form using deneralized Hubbard-Stasyuk operators

» Y)‘(R,'): . )

H=Y {ZA;YA(R,-) ~5 3 B(R - R,-)Y*(R,-)Y*(R,.)} @)

A=1 i=1 1,j=1
Here
2370 )
YMR:) = Y UamX™(Ri), A=1,2,...2%,
m=1
m=2°(p—-1)+q, p,g=1,2,...2%, o (2.2)

X™= X is a Hubbard-Stasyuk operator, which discribes “transition” of
a cluster from g¢-state into p-state [17,18]. U,,, are a matrix elements of
U-matrix, which is a eigenmatrix of equation:

210 Jo
> { > [Vil’é(Ri_Rj+rff"‘

mm/=1 \ f,fi=1
1 ;e
—-'Q—Jff:(R,- - Rj)] aS,{)aE,{,)Um,\Um,A,} =

‘D)‘(R; - Rj)&A)‘I. (23)
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Here r;: is a Tadius-vector of the nearst neighbours f and f’, a{!) are matrix
elements of the transition from two-component individual particle spinor
basis to 2/°-component diagonal onto S* and S” spinor basis of cluster.
®;:(R; — R;) are the eigenvalues of the intercluster interaction matrix,
including long-range interactions J;y (R; —R;) and short-range interactions
of the nearest neighbours V3 6(R; — R; + ;). A, are energies of isolated
cluster. é is a Kronecher symbol. For more details about representation
(2.1)-(2.3) see ref. [15].
Generalized Hubbard-Stasyuk operators satisfy the commutation rela-
tion '
[V (R), YV (Ry)] = 3 Wi, YA(R:)S(R: - Ry), (2.4)

where
W),\‘/\’ = Z {UTJAUH)\’ - Ust)\UrsA’}Urtp., ’ (25)

r,s,t

T,5,t are ordinary and A, ¢ are double indices.

‘ Representation of the ferroelectric cluster system Hamiltonian in the
form (2.1) is convenient for the application of modern functional methods
to its investigation. Among different functional methods which are widely
used in theory of phase transitions the collective variables method is very
powerfull. CV is a collective name of a special class of variables, specific for,
every physical system. For example, for ferroelectrics CV are modes of a site
dipole momentum vibration. The set of CV contains a variable, the mean
value of which is connected directly with the order parameter, therefore
the phase space of CV is a most natural one for the discription of phase
transition. The method provides the possibility to formulate rigorously
the phase transition problem without any additional parameters artificially
introduced into the partition function [14]:

Because the generalized Hubbard-Stasyuk operators are non-commuting
we must use an interaction representation and introduce CV in a frequency
- momentum representation [15]

. B N
1 -y -A' IH
p)‘(k, l/) - __/dﬂ/e—zﬁ VSPI:E :e ﬁHoyk(Ri)eﬁ (I
\ ]\f/? 0 i=1

eikRiJ(pA,YA)jl {Sp [J(p,\,Y,\)]}_l, (2.6)

where J(py,Y?) is a transition operator from the set of variables R; to CV

space, V = %"n(n =0,+1,42,...) are Matsubara’s frequencies, § = =, k is

the Bolzman constant,

220 N

‘ C Ho=) ) MYMRY). (2.7)

A=11=1

For partition function functional in CV representation we have an ex-
pression

230

7 =27 / (dpa(i, ) T TITT Y (p2(k, ) %

A=1k<A v
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A= 1k<B‘ v

exp{ Z Z ZQA(k)pA(k v)pa(=k, —u)} (2.8)

Here

I (pa(k, v)) = (J(p2, Y )i, =

/(dw,\(k v))exp {1271‘2 Z Zw,\(k v p,\(k 1/)}

X=1k<B; v

—12
exp{z( ;T:)r') Z Z mh.../\:n(kl’Vl'--k2n>’/2n)X

A k1,va Aznkan,Van

wxl(kl,Vl)...w,)\“(kén,uz,,)} (2.9)

is a transition Jacobian, 9\, ,.(ki,%1...kan,V2,) are cluster cumulants,
wy(k, v) being variables conjugated to p,(k,v)

Zo = Spe™PHo (Vg =Sp{..e”FHe} /Sp{eFHo}, (2.10)

B, is a Brillouin zone boundary.

The functionals of the type (2 8),(2.9) related to other problems are usu-
ally called Ginzburg-Landau functionals [19]. The coefficients of Ginzburg-
Landau functionals are given from phenomenological considerations. We
have managed to construct this functional ab initio, using only the Hamil-
tonian of the system.

3. Gaussian and non-Gaussian measure densities for CV

The main problem of integration (2.8),(2.9) consists in the presense of infi-
nite number of wy (k, v) in exponential form (2.9). There is no regular recept
to calculate such integral exactly. To perform integration of (2.8),(2.9) ap-
proximately we may use different measure densities. The simplest nontr1v1a1
basic measure density is a Gaussian one (all products of w up to w? in expo-
nential form (2.9)). The ﬁrst non-Gaussian measure density is a quartic one
(all products of w up to w* in exponential form (2.9)). Using a perturbation
theory based on Gaussian integrals one can obtain results, which a good in
wholle temperature interval exepted phase transition pomt Non-Gaussian
measure density enables us to integrate (2.8) and to obtain results, which
are continuous in very transition point. For 1ntegra1s with quartic measure
density we have rather simple formulas [14, 20] So, it is a simplest stright
way to obtain an analytic expression for partition function.

It is well known that in cluster systems one may observe different types
of arranged structures and corresponding phase transitions [21,22]. Among
them the homogeneous arrangement, which is characterized by zero vector,
is always present. It is a ferroelectric arrangement of the crystal (A = 1)
Because only the ferroelectric phase transition is of interest for us we have
the possibility to integrate (2.8), (2.9) over py(k,v)(A # 1) which are not
connected directly with the order parameter of this transition using the
Gaussian measure density.
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The other difficulty of the integration in (2.8), (2.9) consists in the fact
that the CV p(k,r) are determined in phase space of momenta and fre-
quencies, while for the usual Ising model p(k) depends only on momentum.
Due to the using the interaction representation, transition from N variables
Y*(R;) to CV is acompained by appearing of infinite number of variables
p(k,v). But only variables p(k,0) are ”physical” ones. Passing through
the critical temperature, the displacement of the probability distribution
maximum takes place only for these variables [14]. They form the order
parameter of the system. Variables p(k, v # 0) are "unphysical”, the prob-
ability of their distribution is indifferent with respect to T'c.

Because the phase transition in a physical system is possible in the

thermodynamic limit ( N,V — oo, % = const )only, the spectrum of wave

vectors k (( k, = 1—2\,’;—';, c is a lattice constant, N, is a number of atoms of
the first Brillouin zone in a direction, n = 0,41,+2,...) becomes quasi-
continuous, variables p,(k,~) do not separate with respect to the k index,
and the problem of integration of (2.8), (2.9) remains similar to that in the
Ising model [14].

Another situation takes place for the frequency dependence. The spec-

trum of values v(v = "’;T", n = 0,+1,+£2,...) for real ferroelectric phase

transition temperatures is discrete, as well as the spectrum of values
91(k, v) as a function of v . The maximum of 9M,,(k, v) occurs at v = 0
[16]: max{9M,,(k,v)} = M;1(k,0). Therefore, in the Gaussian approxima-
tion for critical temperature we have an estimation

T, ~ &,(0)M,,(0, 0). (3.1)

The integrand of such Gaussian momentum contains a factor like (% + % +

k?)~!, were according to [14) & ~ 7 (7 = T5Z¢). Because of the discrete-
ness of v even when @ equals zero the Gausiian momentum is convergent at
v # 0. So, when the critical phenomena are investigated in the temperature

interval

AT < (0) |m,1(0,0) — D410, %)] (3.2)

all Gaussian momenta obtained as a result of integration over variables
p1(k,v) with v # 0 are convergent.

Descreteness of p;(k,v) with respect to v and the fact that in phase
transition the leading role is played by CV with zero frequency, allow us to
apply. the following order of integration of (2.8), (2.9), using different basic
measure densities. ‘At the first stage we integrate over variables p,(k,v)
- (A # 1) and py(k,v) (v # 0) using the Gaussian measure density. As it was
shown above all obtained integrals will remain convergent at 7 = Tc. At
the second stage we integrate over variables p;(k, v) (with v = 0), but using
non-Gaussian measure density. Such measure density satisfies an essential
requirement: all obtained integrals are convergent at 7' = T'c.

Some aspects of using Gaussian and non-Gaussian measure densities '
connected with the peculiarity of dipole-dipole intercluster interaction will
be discussed below.

After performing integration over CV py(k,v) A # 1 and py(k,v) v #
0 using Gaussian measure density we obtain the following expression for
partition function (2.8) ‘

z=2,[] 2527 2. (3.3)
A#1
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Here

Zg =Cy I1 [1 —[5"'«(‘0)97{»\(0,’/)]

k>0
>

- gea gm0
(3.4)

-1

v>0

z8=Ci 1 1- ml(omu(o,u)]—% [1- B, ()m(k,v)]

w>0

1
C, = exp{ - g Z ZUI,\,\M(k/,,,/’ -k — y/,k’/,uu, —k", —1/”) >
*! ol

(K, v)gak", u“)}, (35)
gr(k,v) = Bx(k) [1 = A2 (K)Tn(k, )]
With accuracy up to quartic basic measure density
Nl—l Nl Nl 1 (1)
2y =v2"7 Q™ [(dpe)" exp{ — 5 3 3 (K)pwpox -
k<B
. ‘
-~ZW Z ‘agll)plnpkzpksplué‘(kl + k2 + k3 + k4)}’ (36)
7 ki ka2, ks k< By
dOK) = ol - BB,(k), Q= / f(w)dw,
a$) = (2r)?Q! / w? f(w)dw,
o) = ~(2m)Q7" [ wf(w)do + 3af,
2m)? 27 )4
f(w) =exp {—L—é)—bzwz - (—Ll%bllw“} ,
oi = pu(k,0). (3.7)

by, by are renormalized after integration over CV with Gaussian measure
density cumul_ants M., and Myyqg.
i 1
ba(ky, kz) :mll(kla 0k, 0) ) Z fmuu(k', v, k', —v", k1,0, ks, 0) X

k',p!

gl(kla Vl)(s(kl + kz),

b4(k1,k2, ks,k4’) = mllll(kh Oa k2,0,k370,k4»0,) -
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3 .
_'2" E mllll(kl,V/,k”’l/”,kho’kho) X

k! !
gﬂllll(v'_k’a "'V’, _k”a _V”, k37 0, k4, O) X
g]_(kl, I//)gl(k”, V”)&(kl + kz + k3 + k4). (38)

The critical behaviour of ferroelectric cluster system is described by func-
tional (3.6). (3.6) is completely similar to three-dimentional Ising model
partition function functional in form [14]. The specific features of investi-

gated system contains in values dM(k), o, Q (3.7).

4. Recursion relations. Fixed point

The only condition imposed by the CV method is the existence of the Fourier
transform of interparticle potential [231. The complete intercluster potential
of cluster ferroelectrics, as it was mentional in chapter 2, consists of short-
range spherically symmetric potential and long-range dipole-dipole part.
The Fourier transform of such potential was obtained in [15]. To integrate
(3.6) in the neighbourhood of a ferroelectric phase transition point informa-
tion about the behaviour of the intercluster potential inside the Brillouin
zone, that is at k — 0, is necessary. In the rotational ellipsoid coordinate
system:

k — |k| COS¢ k‘ _ Ik|81n¢ k - |k| aZ — E
T Vol Fcot 9 Vai+cot2d © V1+oZtan’d —E' )
4.1
We have at small k
Ql(k) = ¢0 — ACL’z + AKz. (42)

Here z = cos ), ¢ and 9 are azimuth and polar angles, respectively, ¢o, A,
A are constants, a, ¢, are lattice parameters. Co
The main idea of integration of (3.6) is based on the fact that there

exist a certain region in the Brillouin zone B, where dM(k) > 0, therefore,
in this region (BF) one is able to use the Gaussian measure density for
CV. All obtained expressions remain finite under this integration in whole
temperature region, including Tc. In other part of the Brillouin zone B{
we shall use non-Gaussian quartic measure density and perform integration
only in thin layer of CV-replacing d$"(k) by it’s mean velue (d(zl)(k)) BI.
After such two-stage procedure of integration we obtain an expression for
Z, which is similar to (3.6), but defined in the already reduced Brillouine

‘zone B,. Than we can find new region of zone B,, where d%z)(k) > 0, and
repeat the same procedure of two-stage integration.
The sequeiice of subzones B,,, BS, BY (see Fig. 1) is defined by formulae

Boifo<lks g, da<9<non, <o)
B, 7T—:19n<19£7r*19"—’ .
Bfi,[0<|k’5§$? In1 <P pcgcon 1]’

B;’,:[0<|k<—B{— D <9< T — By 0<¢§27r],
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Figure 1. The sequence of subzones B,, BS, BY.

B, = BS + B!, (4.3)

¥, = arctan {%\/ﬂ/\(ﬂ¢o —af)-1 - 1} (4.4)

§ is a division parameter of subzones B,, into layers. Corresponding number
of sites in these subzones is:

N 1 e
)
Ny(1-8-3 1 n
Ni = "‘—-I(Sa<n‘-1) )\/ﬂ_,\ (840 - of ),
] N 1 n— 1 n
NP = 53—(,,1:5{\/5,\- (ﬂ¢o — af 1)) - \/ﬂ_A (ﬂ¢o — a ))} (4.5)

Performing completely two-stage integration over CV in (3.6) we obtain
the final expression for Z, in the form of a product of partial partition
functions referring to separate layers,

2 =v3" 70" 0,0,..0,..., (4.6)

Nn.-NE
' NI [12Z, . "
Qn = \/5 D, l:‘ WEZ"I\I/Q(Z,,)J X
ay

Nn+l
1) QMg
7\ 12K%(Z,)

where

(e K1/a(C) | (4.7)
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is the partial partition function of n-th layer,

= L g )

Kz = VE (2 ),

" L(Z,) = 6K*(Z,) + 4VZ, K (Z,) - 1,
| i )
g 3@ B) 3 e KT,

4al 2" L(Z)’
(n) (Bn (d5 n g
d (—S— ) () g9, = 3 (o) = B0) + gy
_21 5B, | (4.8)

K, are modified Bessel functions [15,20].

The coefficients dg")(%ﬂ, B,) ,a$™ corresponding to n-th layer of integra-
tion satisfy certain recursion relations, which characterize the behaviour of
an investigated system in a critical point.

Using a standard substitution for the terms d(")( ,Bn) and o™ a

T =T, .
n ﬂ rﬂ + q n Uﬂ .
we have '
o1 = S (ra + @) N™ + 3 (N(">;l) 1-87" —<(-rs)
nt " 4Z, 3 25,\ "
_§%,  Unpy = | 2™, (4.10)
n—1 '
e WEK(G) ( ‘
WGK(G) 1 L(¢n '
N = =, &M = g6 0 4.11
WZ.K(Z) 3 1(Z.)" (4.11)
The particular solution of (4.10) is
M =z=0, r,=r"=0, U,=U"= 0, (4.12)

hence, the cluster ferroelectric system is of Gaussian type.

In order to obtain a general solution of (4.10) we use the fixed point
method [14, 15, 24]. Linearizing (4.10) in the neighbourhood of the fixed
~ point (4.12), we obtain

Tagr =1 = Riy(ra — ") + R12(Un = U*), ,
Un+1 U = R21(Tn - 7") + Rzz(Un - U*) (4.13)
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Herey o
_ 87‘,,+1 2 BN(z
R“‘(ar,,) -s [N( )+*/—a\/—] , (4.14)
_ (Oman1\" _ 22 ON(2)
Fro = ( U, ) =TT ave
Rt = ((’)U,,H)' \/3[]"l (95(2 ) + U"g('r*) [1 (37’,, 1)
TN or, 2 Oz 2r* or ]

(Vs o VEOE()  UE(r?) (87,
Ao ( ) =t - aE T e <6U,,)'

General solution of (4.13),(4.14) was obtained in [25]. They reads
o (%e.5,) = 0B g

S’ §2(n-1) ’
my  aRE}' 4+ ¢RE}! :
a{™ = ST , (4.15)
where v
2
= [2(a8) - 60) + OR] w™
€2 = '[——(a(l) Bo) R + afll)} w™
Ry, . Ei— Ry E, - E,
R=—*—, R =—r——— w=-—F;
Ry, — E, Ry, R, - E;’
1l 3542852 -§9+2+25-1-2§-3
E1‘2{S+\/ 3-5-3 }
E, =1. (4.16)

The expressions (4.15), (4.16) will be used for direct calculation of the
cluster ferroelectrics free energy.

5. Free enegry. Heat capacity

One of the most important advantagies of the CV method in comparison
with the other functional methods, is the possibility to use it for direct
calculation of free energy of the 1nvest1geted system [14, 23]. According to
general rules of statistical physics [13] from (2.3) we obtain a complete value
for cluster ferroelectrics free energy as a sum of several terms:

- BF = lnzo—i—Zlnz1 +1In 2¢ +1nzl : (5.1)
A1

First three terms in (5.1) describe a regular part of total free energy due
to analytic behaviour of (2.10) and (3.4) in the vicinity of a phase transition
point. Now we pay attention to calculation the last term in (5.1)

Fi=-81'lnz. (5.2)
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Substituting (4.6), (4.7) into (5.2) we obtain the expression for free en-
ergy in the form of a sum of partial free energies referring to particular
layers.

me+1 m,

F=FD4+ 3 FE+Y FL (5.3)
) n=1 n=1

Here F() = —3-11y KLE\%& being constant, F and FJ are partial free
energies connected with Gaussian and non-Gaussian fluctuations of CV near
phase transition point, respectively; m, is a number, which fixes the end of
coexistence of Gaussian BY and non-Gaussian B regions in the Brillouin
zone.

Inc; —In(czR)
" 2ln S '

Ff=-p"ln (v2"D,), (5.5)

/12
Fi = ——ﬁ_l {(Nn - Nf)hl l:‘ (j;l 61"1(1/4(271)} +
a4

1. {2

_ — Cn I
Nogrln | 2 121(2(z,.)‘/<_"e BayalG)) - (56)

m, = 1 (5.4)

Substituting (4.15) into (5.5), (5.6) and performing summation over n
accordingly to (5.3), we obtain complete expression for the critical part of
free energy

F—FY = _g~'N, {~A+ Blnr}. (5.7)
Coefficients A and B (in the case § — 1) are the following

A= ‘i 1+ -———
"~ 2/BX(c;R)? 49g—c;R 4

3 R 3( ;R )2

q— 62R
1. (BA)8(qg- czR)Bo] R 11 11}
+§§1n 5156 In P In AT + 2 [ (5.8)

R c L4 3 ok _g( R >2+
2\/BA(czR)? 49—-c; R 4 \g—-cR

Ly 04— cy)
32" o156 '

+

Therefore, we are able to calculate other thermodynamic functions as the
derivatives of free energy (5.7). They depend on 7 = T;—Tﬁ through the
terms In 7 and e;. ‘

In order to calculate the coefficient ¢; we must obtain a renormalized

value of d”)(k) after integration of partition function functional in subzone
BS.
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Let us introduce notation: p, = 713- (ag") - ﬂgoo), m, is a complete renor-
malized value of pn (m, = 0 at T = T.). From the Word identity [10]
0G0
86:(0) = 7,(0,0,0), (5.9)

. am"
where G,(k) = == is a Green function and T kl,kz, k3) is a vertex part,
al™ (k) p

m, is easily obtained. ,
The vertex part 7 (ki,ks, ks) is determined by the "scattering ampli-

tude” T'(ky k2, ks ke) = (Pr,PraPisPrs)-

Let us introduce the notation

px is an “external line”,
e o PrP—iisa pair correlation function,

g Ekl,kn.ka,kq 6(k1 + k2 + k3 + k4)

With the accuracy up to fourth order in a4 we have the following dia-
grams (see Fig.2). Taking into account only diagrams of b, ¢ and d types, for
The case when all moments are of the same order in k we obtain a following
equation for I'n(k) :

X
SReT cost¥n_1 27

_ I (p)
Ta(k) = vn — 3R / pidp /0 dxo/dtp(ﬁ)\mz S (510
/Akzlm co§ "

Here v

n _ 3caRA -
dM(1 - s7) {arctanvr(s 1),/%ap4 _W\[zﬂA(l—s-l)z

™= B V/AAe 3 | Ay 3c:R

is so called the constant of anharmonicity.

(s — 1)\/3__—2%1+

3caRs 2
g+ Ar

(5.11)

arctan

T
R={m

(-1t o
S T ) [ ~ 0 (5.12)
(2 "’A”)( 26 +A”)

Introducing logarithmic variables

Ak? +my, Ar?
Yy = In T, Ln =In W
and differentiating (5.10) with respect to y we obtain

Tn(y) _ a2
————ay = 3T (y)- (5.13)
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v X

b)

IO =G
B KO

O<E
=

<P

Figure 2. The Gaussian diagrams for “scattering amplitude”
F(klv k2’ k3’ k47 )

Performing the integration (5.13) with boundary condition Io(Ln) = v,, we
obtain

T (k) Tn Tn . (5.14)

1+ 37.(La—y) 1437 In Aty

For the vertex part 7, (k) the equation similar to (5.14) may be obtained

x
= cos¥pn_y 27

ThoT
- _ ) 2 Il(p)rn(p)
T.(k)=1-R / p’dp / dz/dgo(ﬂ/\zz T BAR)E (5.15)
W +m cos¥, 0

In a logarithmic variables y and L, , after differentiation with respect to
y we have v

T 7)), (5.16)

Subsituting (5.14) into (5.16) and integrating (5.16) with boundary con-
dition 7, (L,) = 1, we obtain

To(y) = [1+ 37a(Ln — y)]7 '/, (5.17)

Therefore, taking into account the identity (5.9) expressions d" = m, +
BAz® + BAk* and (5.17), we obtain the equation for m,,

om, Am? ]“1/3

o, My, s2(n=1)

(5.18)

= [1 + 3%, 1n
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We shall obtain the solution of (5.18) correct to the logarithmic divergéncy,
1E* ' —¢REN? 3 caRE!™!?
2

substituting m, = g, — pé = 22Uy 4 352y accordinly to
(4.15). So, at small 7

A 2
3YnIn — 2~ -3y,lnT. (5.19)

M, s2(n=1) ~

Integrating (5.18), (5.19) with boundary condition m, = 0 at p, = py, we
obtain

my, =[1-37,1n 7']—1/3 (gn — pi) - (5.20)
For d(zn)(k) we have now an expfession
d(k) = B [1 — 3yaln 7] 2 7 + BAz® + BAK’. (5.21)

Substituting (5.21) into (4.16) we have
ny _ 2 - '
M = 380 (1 = 37, In7] Yir, (5.22)

Hence, c(l") at small 7 is proportional to rIn~/3 7. This peculiarity, as com-

pared with behaviour of similar coefficient for isotropic Ising model (¢; ~ 7)
[14], leads to the different character of behaviour of thermodynamic func-
tions near phase transition point.

The critical part of free energy (5.7) together with (5.8) and (5.22), has
the following final form

F—FO = _g-'N, fir? (ln )2, (5.23)

Here

2(3—4/3,3%7{”3)2[ 3 &R §( e R ‘)2+

fu= ‘ (BA(caR)?)V/2 49-cR " 4\qg-cR
1. (BA)'®(g- CzR)3°]
L Bl (5.20

Tt must be noted that free energy (5.23) is obtained in such a way that
two everylayer’s terms FC and F} are calculated in the same approximation.
For calculation FS we had summize (equations (5.10), (5.15)) in infinite
series of Gaussian diagrams which arrised from the perturbation theory with
respect to af{'). This is equivalent to using non-Gaussian measure density
for calculation FZ.

Using (5.4) it may be shown (see [15]) that for correlation length critical
exponent one has

_ 4 In(SE;)%
T 3mE-InE; .
Substituting here (4.16) we obtain v = 5. Accordinghly to a well- known
relation [24]

v (5.25)

a=2-dv—2-2. (5.26)
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s0, there are no exponential divergency of heat capacity at T = Te.
For obtaining C'v in explicit form we use an expression

10U

Cv=—— .
v Tar (5.27)
where an internal energy U.may be obtained from Gibbs-Helmholtz equation
oF
U=F - Tﬁ' o _ (5.28)
Using (5.23), (5.24) and (5.27), (5.28) we obtain
| | . T T
= ZkNfid2(r=—+= WP+
Cv 1f1{ (TTC+ Tc) In"/* 1+
1 T :1—12 _2/3 2 T2 ~5/3
3 (TTC +.3i5) In™*"r+ §Tgln T} . (5.29) .

At T — T.(r — 0) the asymptotic behaviour of Cv is determined by the
term - ‘ :

2
Cv = —2kN, fl%ln”sr, (5.30)

which posesses a weaker temperature dependence at 7 — 0 as compared
with In 7 (simpe Gaussian result).
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I‘AYCOBI TA HETAYCOBI I'YCTUHUW MIPU
B TEOPII KJIACTEPHUX CETHETOEJIEKTPUKIB

M.A. KopuHeBchKHit

Hocnigxeno npoGnemy 3aCTOCYBAHHA ayCOBMX 1 HerayCoBUX
T'YCTHH MID KOJIEKTUBHMX 3MIHHUX 3a iHTerpyBaHHAM ¢ YHKIOHaJA
CTATUCTMYHO] CYMM KJIACTEPHOI'O CErHeTOeIeKTPUKa. Buxonauu 3
YMOBH 361KHOCTI ¢ yHKIiOHaJIbHUX iHTErpalliB B OKOJII TOUKHU (a-
30BOT'0 IIepETBOPEHHA 3alIpONOHOBAHO cItocif nofminy rnepuoi 3onu
Bpimoena Ha mapu. Koxen map ckianaeThcd 3 ABOX YacIMH. B
MepuIiil YaCTHUHI JOCTATHLOIO € raycoBa I'yCTMHA MIpHM, B TOll yac
AK B OpYyTii HeobxinHo 3acTocoByBaTH HeraycoBy. Orpumana sk
pe3yJbTaT MOIIAPOBOrO IHTETPYBAHHA CTATUCTWYHA CYMa € CKiH-
UeHHOIO B TeMIIEpaTyYPHOMY 1HTepBalli, M0 BKJIOYAE OKiJl TOUKU
¢$a30BOTO MepeTBOpeHHA. BUBUEHa KPUTUYHA NOBEIIHKA TEpMOIU-
HaMIYHUX ¢ YHKIN.



