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The collective variables method with a reference system is used for
the investigation of phase transitions in the binary mixture. The ex-
plicit expressions for critical temperatures of a two-component system
of different size particles interacting via different attractive potentials
are obtained in the Gaussian approximation. The phase space of col-
lective variables connected with order parameters is found. The case of
the symmetrical mixture is considered in detail. The results are com-
pared with the already known ones obtained for hard-core Yukawa
mixture by the integral equation methods. The main difference is
a presence of the second branch of critical temperatures. Numerical
results are in a good agreement with those obtained in the mean-
spherical approximation.

1. ' Introduction

It is known that gas-liquid and mixing-demixing phase transitions can occur
in a binary fluid mixture [1,2]. The possibility of the realization of these
phenomena and their priority depends both on external conditions (pressure,
temperature, concentration) and on microscopic properties of components
of the mixture (relations between interactions of a-a, b-b and a-b particles).
The study of the influence of interparticle interaction potentials Ujq(r),
Uw(r) and Uz(r) on phase diagram topology of a binary mixture is an
intresting and actual problem. In recent years this problem has been studied
intensively by integral equation methods. But the pioneering work in this
field was Waisman’s one [3]. Waisman considered a symmetrical mixture
with the same number densities in which particles interact via the two-body
hard core plus a Yukawa tail potential:

00 if r<1
Uij(r) ={ Kij ,—3(r-1) fors>1 - (1.1)

In Waisman’s model the same species particles (like particles) outside the
core attract each other, and the different species particles (unlike particles)
repulse (or vice verﬁsa.) with the same magnitude (K3 = Ky = K2 ).
Waisman solved the mean-spherical-approximation (MSA) integral equation
. for this model and showed that for the repulsion between the unlike particles
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(and attraction between the like ones) there was a region in the density-
temperature plane where no real solution existed. He interpreted this fact
as an evidence of the separation phase transition. In the more recent work [4]
the authors considered the extended Waisman’s model: (K13 = K # K2
) (the symmetrical model). Having solved analytically MSA for this model
they showed that two types of phase transition can occur in the mixture
depending on K7; and K1, relation: liquid-gas and mixing-demixing phase
transitions.The latest works [5-9] were devoted to numerical solutions of
integral equations. There were considered on the one hand more complicated
mixtures of hard spheres of different sizes interacting via different Yukawa
tails ( K11 # Kj2 # K2 ) [5,6] and on the other hand — mixtures of
particles interacting via Lennard-Jones potentials [7-9]. It is also necessary
to note Ref. [10] in which the authors related the second order expansion of
the grand canonical potential to direct correlation functions. For a binary
mixture of hard spheres with attractive Yukawa potentials direct correlation
functions were calculated making use of the reference hypernetted chain
integral equation. All the works have-shown a considerable progress in the
study of the properties of phase transitions in binary mixtures as a function
of the microscopic interaction between particles. However, there exist some
problems in the studies based on integral equation methods, namely: a) an
analytical solution of the Ornstein—Zernike equation exists only in case of
the simplest closure : the. MSA for several pair potentials (e.q. eq.(1.1)); b)
both the Percus-Yevick (PY) equation and the hypernetted chain equation
show the existence of a limit of stability T,(p) for the given mixture at
fixed concentration and density. As the temperature is lowering towards
this limit, the osmotic or the isothermal compressibility increases and it
becomes more and more difficult to get the numerical convergence. The
failure of the numerical algorithm to converge is not always associated with
the true divergence, thus the interpretation of T,(p) as the spinodal line of
the mixture is not straightforward [11].

In this paper we propose a new approach to the study of phase transition
properties in binary fluid mixtures depending on microscopical interactions
between particles. It is based on the method of collective variables (CV)
with a distinguished reference system (RS) [12].The CV method is a func-
tional method which allows: a) to determine the explicit form of Ginsburg-
Landau-Wilson Hamiltonian; b) to perform an integration of the partition
function using the fixed point method proposed in [13] for 3-d Ising model
and as a result 3) to obtain thermodynamic functions in the neighbourhood
of the phase transition point as functions of microscopical parameters of the
Hamiltonian. Recently [14,15] we extended the CV method for the case of
the grand canonical ensemble. The use of the CV method for the phase
instability study in binary mixtures permits to avoid the difficulties which
have been noted above. _

The layout of this paper is as follows. The main aspects of the CV
method with the RS for a bjnary system are clarified briefly in Sec.2. The
phase space of CV which includes the variable corresponding to the order
parameter is separated here. Sec.3 is devoted to the investigation of phase
transitions in a binary fluid in the Gaussian approximation. The explicit
expressions for critical temperatures of a two-component system of hard
spheres of different sizes interacting via attractive potentials ¢;;(r) (di #
$;; # ¢i; ) are obtained. The case of the symmetrical mixture is considered
in detail. In Sec.4 we compare our results with previous investigations
g4,10]. A brief summary with the main conclusions of this paper follows in

ec.5.
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2. The methpd of collective variables with the reference
system. Binary system

Let us consider the classical two-component system of interacting particles
consisting of N, particles of species ¢ and N, particles of species b. The
system is in a volume V at temperature T'.

Let us assume that the interaction in the system has the pairwise addi-
tive character. The interaction potential between a v particle at 7; and a 6
particle-at 7; may be expressed as a sum of two terms:

Uqs(rij) = Yys(ris) + das(rij),

where 1.,5(r) is the potential of short-range repulsion that is chosen as the
interaction between two hard spheres 0., and ogs; ¢s(r) is the potential
describing an attraction at long distances. An arbitrary positive function
belonging to the L class can be chosen as the potential ¢.s(r).

Further consideration of the problem is done in the extended phase
space: in the phase space of Cartesian coordinates of the particles and in the
CV phase space. The interaction connected with the repulsion (potential
¥.5(r)) is considered in the space of Cartesian coordinates of the particles.
We call this two-component hard spheres system the reference system (RS).
The interaction connected with the attraction (potential ¢,s(r) ) is consid-
ered in the CV space. The phase space overflow is cancelled by introduction
the transition Jacobian.

Then the grand partition function in the CV representation with the RS
has the form

: EoE1, v (2.1)

where Zg is the grand partition function of the RS:

oo oo b ~ ‘
> Z:o I[ exp [ﬁl]‘\([)ﬁ’v} /(dI‘)exp [_gzzw’yﬁ("'i]‘)] :

. Noe=0N, Y=a 45 1j

il

=
—0

Here (dT') is an element of phase space of Cartesian coordinates of particles; -
B = ElT is the reciprocal temperature; yo is the chemical potential of the
4-th species in the RS. .

The part of the grand partition function which is defined in the CV

phase space has the form:

= = /(dp)exp[ﬁz 1l poy — % Z Z awg(k)p,;’,yp_g,s]‘](p), (2.2)
¥ ¥6 E :

k

where a5(k) = &dqs(k), #-5(k) is the Fourier transform of ¢.s(r); py is
the part of the chemical potential of the y-th species which equals to '

1
W=y — i+ 5D am(k)
R

(11 is the full chemical potential of the y-th species). u;"is determined from
the equation _
dln E]

W=( )
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The CV Pi has the form

Pin = pl%ry h ip%n’
where ¢ and s are used to denote real and coefficient at imaginary part of
PE pk and pk describe the value of k-th fluctuation mode of number of
~ v-th species partlcles Each of p* and plc takes all real values from —oo

to 4o00.
(dp) is the volume element of the CV phase space:

(dp) = [T dponIT ot dp,m
v E#0

The prime means that the product over k is performed for the positive
. values of k.

S J(p) = J(pa,ps) is the transition Jacobian to the CV averaged on the

J(p) = /du)Hexp [z?wzuk pkv} exp |:Z _127") Z Z X

n>1 n! Y-Yn By K

M’Y]---’Yn(kl_, k )V (2.3)

PR 744
k1,m knv'Yn] ’

where variable vz is conjugated to the CV pp . My, 4. (K1,. .., kn) is

the n-th cumulant connected with S, ~,.(k1,...,k,), the n-particle partial
structure factor of the RS by means the relation’

My, (R .. ) = TN, .. .Nﬁs%,%(kl, o kn)bp g (24)

where 6k oty 18 Kroneker symbol.

It is known that near the critical point the density fluctuations increase
and the correlation radius becomes infinite. From this point of view the limit
k — 0 in the cumulants is especially important. Relations which connect

M,,. 4,(0,...,0) with thermodynamic functions of the RS are obtained in
[14] (see Appendlx A).

In order to understand the mechanism of realization of gas- liquid and
mixing - demixing phase instabilities in the binary fluid we shall consider the
Gaussian approximation of the functional (2.1) -(2.3). For this aim we shall
let n = 2in (2.3). As a result of the integration in eq.(2.3) over variables
VEa and Vi p =1 may be written as

—
—
(=11

[l]

~

H \/mk_—/(dp emp[—H(0)+ ‘

+ Z Fypoy — 222%6 k)PP ) (2.5)

y=a,b
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Here we introduced the following notations: M(k) is 2 x 2 symmetrical -
matrix, elements of which are cumulants M,s(k):

(Ns) 5

Moa(k) = (Ny)(8ys + 5 (h)) =
= V) (N2} (k). (26)
H(0) = %%w»wwm*mnw, (2.7)
Foo= b X (N0 (28)
wuk) = )+ M (D). (29)

hys(k) is the Fourier transform of the pair correlation function; [M~1(k)],s
is an element of an inverse matrix. As it is already proposed in Ref.[16] we
separate the CV phase space, which includes the variable, connected with
the order parameter by diagonalization the square form under the integral
in eq.(2.5). As a result of the orthogonal transformation

Piy = Z Ayl v =a,b (2.10)
i=1,2 .

~

for the square form we have

_ %Zsi(k)gmg_,;,i, (2.11)
k,zt
where B
12(k) = 5 (aaa(k) + an(k) F \/(0aalk) — an(k))? + 462, (R)),  (212)

(the signs >-> and ’4’ correspond to indices 1 and 2).The explicit forms for
A.; are given in Appendix B.

3. Phase transitions in the binary system

Sélving the.equ.a,tions
E1(k = 0) = O
g2lk=0) = 0;

we obtain the expressions for critical temperatures of the binary mixture in
the Gaussian approximation (RPA):

055 = 2pz(1 = 2)[Baa(0)dss(0) — $25(0)][Sa(0)S5(0) — SZ,(0)] x
{~[(1 = £)S2a(0)Baa(0) + 54(0)Pse(0) + 21/z(1 — £)5as(0) x
$ab(0)] £ [((1 = 2)54a(0)bua(0) — 255(0)des(0))* +
4((1 ~ ©)Sua(0)Gas(0) + /o(1 = 7)Sas(0)B15(0)) (2 Se6(0)Bas(0) +

Vz(1 - 2)5a(0)$aa(0))]2} 72, (3.1)
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where sings '+’ and *-’ correspond to indices 1 and 2; 8¢ = (8¢)~%, p = &

is the average density; z is the concentration of species b; $;;(0) and Si;(0)
are the Fourier transforms of potentials ¢;;(r) and partial structure factors

of the RS at k =0 accordingly.
As it is seen from the Gaussian approximation, dependence of the critical

temperatures (3.1) on characteristics of the RS and on ¢;; SO) is complicated.
Therefore to study the possibility of the realization of gas-liquid and mixing-
demixing phase transitions and their priority first we shall consider the
simplest case, namely, the symmetrical mixture.

+

a) The symmetrical mixture. The symmetrical mixture is the model
system of equal size particles interacting via the same attractive potentials
between like particles ($aqa(r) = dw(r) = ¢(r) ) and via the different at-
tractive potentials between unlike particles g o(r) # ¢>ab(r) ). Although
the symmetrical mixture represents the simple model of a real binary flu-
id, it exhibits all three types of two-phase equilibrium which are observed
in such a system: gas-liquid, gas-gas and liquid-liquid. The critical curves

05(z) and 65(x) of this mixture are symmetrical with respect to the concen-

tration z = % and exhibit at this point an extremum. The concentration

T, = % is a critical one for the symmetrical mixture. At z, = % the critical
temperatures have the forms:

6= ={ get. T)s g (3:2)
05(%)={ zfe;l’ fgg;;g , (3.3)
where
9 = kI?
08 = —E(3(0)+ Bus(0))5:(0); (34)
o = —£(9(0) - $us(0))S-(0); (39
L(0) = u(0)S(0)+ $(0)Sas(0). (3.6)

§4+(0) and S_(0) are the density-density and concentration- concentration
structure factors of equal-diameter hard sphere mixture at k=0 Atz. =13
quantities S (0) and S_(0) reduce to the forms: 5, (0) = 5(0) + S45(0) -
the structure factor of the one-component RS and S_(0) = §(0) — S.4(0) =
1(Saa(0) = Ses(0) = 5(0)).

Quantities £1(k), €2(k), Aai, As; ((2.12), see appendix B ) reduce and
become equal to

o(k) — (k) + %, (k) >0
ea(k) = { a(k) + aus(k) + Z—Sm ann(h) <0 (3.7)

_ [ oB) + aask) + wips aa(k) >0
ea(k) = { a(k) - aaZ(k)+ ;S ) ai:(k) <0’ (38)
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where A,y = 3@, Ao = 5@

)

; : (3.9)

2 g3 > 0 L2 0
Ab, = 7 (12  Apg = 3 ajz >
' { 3?: a1 <0 b2 { —lzﬁ, a2 <0
where Su(k)
25,
et -~ 38

Taking into account (3.9) for CV £, and £z, we have

o f e ana(k) >0 R 2 aya(k) >0
Ek,l - { Pis a12(k) <0 ‘ék,Z - s am(k) <0 (310)
where . L '1 ' ’

= ke trie) = Floramer)- o (1)

New variables pp and c; are connected with total density fluctuation
modes and relative density (or concentration) fluctuation modes in the bi-
nary system. The diagonal square form (2.11) transforms as (independently
on the sign of a12(k)): '

_% >_[(e(k) = eas(k) + 2/N)ege_g+
k

+ (a(k) + aws(k) + 2/N S, )ogo_g. (3.12)

As it follows from (3.7)-(3.8) and (3.10)-(3.11) in the case of symmetrical
mixture there exist two critical branches €;(0) and £2(0) and according to
them two subspaces of CV - ¢; and pg, which include variables co and pg
connected with the order parameters.. .

Let us consider the critical temperatures . Expressions (3.2) - (3.3)
contain the values ¢ — ¢, and ¢ + ¢,5. There are two possible cases: a)
Jqﬁl > |pap| and b) |¢| < |Pas|- In the case ’a’ the attractive energy between
ike particles is stronger than between unlike particles.  The separation of
components can occur in the system. In the case 'b’ the attractive interac-

- tion between unlike particles is stronger than between like particles and it
is a condition of existence of the mixture. In Fig. 1 critical temperatures

#5(n) (the curve 1) and @5(n) (the curve 2) are plotted vs packing fraction
mat 7 = 0.8. Here 05(n) = 6¢n/(p|#0)]) is the dimensionless temperature,
n = npo3/6,p = N/V, N = N, + Ny, r is the dimensionless unlike inter-
action strength: 7 = —¢4(0)/|#(0)] (the form of ¢ij(r) is not specified).
The curve of the gas-liquid equilibrium (r = 1.2) is shown by the dashed

line in Fig. 1 and has the same form as the corresponding curve in the
one-component case. Both the curve 8 = 65(n) and the curve 8 = 85(n)

are composed of two branches meeting at ) = %cros(r). The different slope
of two branches can be interpreted as an indication of some difference in
the physics of the transition undergone by the mixture. Indeed it is clear

from Fig. 1 and formulae (3.2)-(3.3) that for < 7 the curve § = 8(n)
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Figure 1. Dependence of critical temperatures of the symmetrical mixture
on the packing fraction (a = 1, ¢ = 1, z = 0.5, r = 0.8 (solid curves) and
r = 1.2 (dashed curve))

is the line of the liquid-liquid phase equilibrium and for > # is the line
of the gas-liquid phase equilibrium. On the contrary the curve 8 = 65(n)
is the gas-liquid phase equilibrium line for n < 7 and is the gas-gas phase
equilibrium line for > #. The curves 65(n) and 65(n) have one common
point, for which the gas-liquid and separation critical points coincide. The
corresponding to this point density 7 is determined from the condition

65 (77) = 65(7) (3.13)

or from the equation L(0) = 0.
Now let us consider in Fig. 1 the line which is formed from the branch

05(n) for 7 < 7 and from the branch #5(n) for > 7 and compare it with
dashed curve, which is the line of gas- Lqmd critical temperatures. These

curves have the same form. The two remaining parts of 85(n) and 85(n)
form the straight line. Hence for the symmetrical mixture one can separate
exactly the gas-liquid and the demixing-mixing critical temperature lines.
An existence of the point 7 for which (3.13) holds is connected with the
simplicity of the model under consideration. On the other hand, an existence
of ‘a point on the critical curve in which the gas-liquid and the gas-gas
separation critical temperatures coincide was confirmed experimentally. It
is the so-called critical double point [16].

It can readily be shown that the gas-liquid critical temperatures 5!

satisly the equation @(0) + ag(0) + Wi(oi = 0 and the separation critical

temperatures 857 satisfy the equation a(0) — a.4(0) + % = 0.

Hence in the case of the binary symmetrical mixture we can make the
following conclusions: 1) as a result of the square form diagonalization in
(2.5) two subspaces of CV were separated: the first with the order parameter



132 O.V. Patsahan

0.06 ¢
005% IR
T004§ ! .
003% / >

0022' S

0.01F

0_00 ........ Lo o ssoyea L cuaaaa Iisaaaaig
0. . . .

Figure 2. Dependence of critical temperatures of the binary mixture on the
packing fraction (@ = 1, ¢ =1, = 0.6, » = 0.8 (solid curves) and r = 1.2
(dashed curve)) ‘

and with the critical temperature 8! and the second with the order pa-
rameter and with the critical temperature 85°F-; 2) the CV describing phase
transitions being the variables p and ¢, the variable po describes the long-
. wavelength fluctuation mode of the total particle number N = N, + N; (or
total density) and is connected with the order parameter nonzero value of
which arises below the gas-liquid critical point, the variable ¢y describes the
long-wavelength fluctuation mode of the relative particle number N, — N,
(or relative density) and is connected with the order parameter for the sep-
aration phase transition. The priority of the gas-liquid and the separation
phase transitions depends on microscopical properties of the system.

b) Asymmetrical mixture. In the case of an asymmetrical binary mix-
ture the CV, connected with the order parameter are the variables £y ;. We
can present & ; in the form of the linear combination of CV pg and ¢y with
some cocfficients dependent on the temperature, characteristics of the RS
and ¢,s(k). Therefore, both gas-liquid and separation phase instabilities in
such a system are accompanied by fluctuations of the density as well as of the
concentration. The study of a specific role of the density and the concentra-
tion fluctuations in gas-liquid and mixing-demixing phase transitions will be
an purpose of the other paper. Now we consider a small deviation from the
symmetry and its influence on a trend of critical temperature curves 65(n)

and 85(7). In Fig. 2 it is shown 65(n) and 85(n) (6(n) = 6¢n/(|#ws(0)]p))
at & = 0aa/0m = 1, ¢ = ~$aa(0)/]¢es(0)] = 1, = 0.6 and r = 0.8 (solid
curves) and 65(n) at @ = 1,9 = 1, & = 0.6, » = 1.2 (the dashed curve). Asit

is seen the solid curves 85(n) and 65(n) do not have a contact point although
one approaches the other. Also these curves have distinct extreme points.
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Figure 3. Dependence of critical temperatures of the binary asymmetrical
mixture on the packing fraction (a = 0.8, ¢ = 1, z = 0.4, r = 0.8 (solid
curves) and' r = 1.2 (dashed curve))

Fig. 3 and 4 present the curves #5(n) and 85(n) for the binary fluid with
larger deviations from the symmetry. The shape of curves 8{(n) is similar
in both figures. The behaviour of #5(n) on the contrary is very sensitive

to changes of microscopical parameters: the curve #5(n) has a minimum
(Fig. 3) or has not a minimum (Fig. 4). We can draw an analogy with
experimental critical lines in the pressure temperature plot [16,17]. Two
different kinds of gas-gas equilibria can be distinguished: the first type and
the second type. In the first case the critical line starts at the critical point
of the least volatile component and moves to higher temperatures and higher
pressures. In the second case the curve first moves to lower temperature at
increasing pressure and then, via a temperature minimum, again to higher
temperatures. The point of a temperature minimum is the so-called critical
double point: gas-liquid and gas-gas separation critical points coincide at
this point. '

4. An application: the binary hard-core
Yukawa fluid

Now we shall consider the binary mixture of hard spheres interacting via
Yukawa attractive potentials. The following division of interacting potential
Ui;(r) is associated with this model:

0, 1< .
) ={ & 1508 (1)

< Oij

; N
ij(r) = { —Efiexp[—z(r —oi)], T _>_ oij (4.2)
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Figure 4. Dependence of critical temperatures of the binary asymmetrical
mixture on the packing fraction (o = 0.8, ¢ = 1, z = 0.6, r = 0.8 (solid
curves) and 7 = 1.2 (dashed curve))

Therefore, we shall use formulae from the Appendix C for S;;(0). Fourier
transforms of interacting potentials (4.2) at £ = 0 have the following form:

~ ' . 4Ar
¢i;(0) = ~Kij—3 (1 + z03j).

a) Symmetrical Yukawa fluid (K,,' = Kpp = K,045 = 03 = 0). In
Fig. 5.curves §{ and 65 are shown (#¢ = 650/K). Parameters are chosen
as in Ref[4]: K,. = Ky = —0,55 (¢ = 1), Kz = —0,45 (r = 0,82),
zo = 1,8;2,5. Comparison of the curves derived in our approach with those
derived in Ref.[4] exhibits the following: a) the maximum on the curve 65
in Fig. 5 lies a bit lower than the maximum in Fig.4 [4]; b) the location of 7
(see formula (3.13)) does not depend on z in Fig. 5 (in Ref.[4] the solution
is depended on z).

Dependence of critical temperatures 8§ and 85 on the unlike interaction

strength r is presented in Fig. 6. In contrast to results of Ref.[10], where
only one curve with minimum has been obtained we have obtained two
curves: one with minimum and the other with maximum at the same ». For
the binary hard-core Yukawa fluid with parameters ¢ = 1, z = 0.5, zo = 4,
n = 0.26 extremes are reached at r = 0.774 that is in perfect agreement
with Ref.[10].

b) Asymmetrical mixture. In Fig. 7 curves 85{n) and 85(n) are shown
(6f = 6£040/K,q). Parameters are chosen-as in Ref.[5] for mixture M1:
o = 0gaf/0p = 0.67, ¢ = aKua/Kyp = 0.9, 7 = 20K,/((1 + @)K,,) = 0.8,
2040 = 1.8, = 0.35 (solid line) and « = 0.5 (dashed line).In Fig. 7 the
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Figure 5. Dependence of critical temperatures of the symmetrical Yukawa
fluid on the packing fraction (r = 0.82, zo = 1.8 (dashed curves) and

zo = 2.5 (solid curves))
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Figure 6. Dependence of critical temperatures of the symmetrical Yukawa
fluid on the unlike interaction strength (7 = 0.26, z0 = 48)
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Figure 7. Dependence of critical temperatures of the asymmetrical Yukawa,
fluid on the packing fraction (a = 0.67, ¢ = 0.9, r = 0.8, 20,, = 1.8,
z = 0.35 (solid line), z = 0.5 (dashed line))

behaviour 65 with 7 is the same as in Ref. f{5].The peak of 65 lies a bit lower
as it took place above for a symmetrical fluid. The location of n at which
#5(n) has a minimum or a bend depends on z. The presence of curve 65 in
Fig. 7 is the main difference from results obtained in Ref.[5]. Fig. 8 shows
the locus of critical temperatures for three different values of concentration
z for the mixture with parameters corresponding to the mixture M2 from
Ref. [5]: @ = 0.86, ¢ = 1.2, 7 = 1.39, Zo,, = 1.8, z = 0.25,0.5,0.75. In
this case r > 1, so there ex1sts only one curve 65 (77) for each concentratlon
( 65 takes on negatlve values), and 65(n) is the curve of the gas-liquid phase
equlhbrlum The curves in Fig. 8 are in good agreement with corresponding
curves from Ref.[5] (see Fig. 1 and 2 in [5]).

In Fig. 9 curves 65(r) and 65(r) are shown in comparison with corre-
sponding curve from Ref.[10] (see Fig.8 in [10]). Again, the presence of two
curves is the main difference here: one curve with the minimum (the curve
65(r)) as it was obtained in [10] and the other curve with the maximum (the
curve 65(r)) and 05(rmax) # 05(7min)- It is evident that the more the mix-
ture differs from the symmetrical one the less pronounced is the extreme on
the curve 85(r) or 65(r) and the distance ryay from ry;, extends. This fact
confirms the conclusion made in Ref.[10] that the point r* which is defined
from the equation 86°/0r = 0 is not a separation point of gas-liquid and
mixing-demixing phase instabilities for the asymmetrical mixture.

5. Conclusions

The CV method witn RS is used in the investigation of phase instabilities in
the binary fluid system. The Gaussian approximation of the functional of
the grand partition function is studied in detail. The explicit expressions for
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1.6

0.25

Figure 8. Dependence of gas-liquid critical temperatures of the asymmet-
rical Yukawa fluid on the packing fraction (o = 0.86, ¢ = 1.2, r = 1.39,

20,, = 1.8,z = 0.25,0.5,0.75 )

1.0

Figure 9. Dependence of critical temperatures of the asymmetrical Yukawa
" fluid on the unlike interaction strength (n = 0.26, z0 = 4, a = 1, ¢ = 1,
z=0.7)
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Figure 10. Dependence of critical temperatures of the asymmetrical Yukawa
fluid on the unlike interaction strength (n = 0.26, 20 = 4, a =1, ¢ = 2,
z =0.7) ' ‘

critical temperatures of a two-component system of different size particles
interacting via different attractive potentials are obtained. Two subspaces
of CV, (£, ; and £, ¢ ) are distinguished by diagonalization the square form.

It is shown that on the critical lines gas-liquid and separation critical points
can be identified completely in the case of the symmetrical mixture. In this
case when the gas-liquid critical point is approached, total density fluctua-
tions grow and when the separation critical point is approached, fluctuations
of relative density (or concentration) grow. For asymmetrical mixture the
point identification on the critical line is not such a simple task and both
gas-liquid and separation phase transitions are accompanied by total den-
sity fluctuations as well as by relative density fluctuations. For a binary
symmetrical system the relationships between the microscopic parameters
of Hamiltonian which determine alternation of gas-liquid and separation
phase transitions are found.

In Sec.4 critical temperatures for binary hard sphere fluid with Yukawa
attractive potentials are calculated by means of formula (3.1). The results
are compared with the already known ones obtained by the integral equation
method. The main difference of our results is the presence of the second
branch of critical temperatures. Numerical results are in a good agreement
with those obtained by. the integral equation method.
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Appendix A

In general all the cumulants M, ,.(0,...,0) are the functions of chemical
potentials of the RS (see Ref. [14]) For M,m2 (0,0) we have

1B
M’n"/z(o'o) = Ed:tl_g’

where B is a square (m X m) matrix, elements of which are

b ( g’ )
Y172 8<th> V'T'N‘Yk .

B, ., is an algebraic adjunct of an element b.,,, of the matrix B. Higher
order cumulants can be obtained with the help of recurrent formula

M. M., ., (0,...,0
11__,1,1(0,...,0):( - 35,1%" )>VT
vuo

Appendix B

The quantities A, ;(k) have the forms:

Doi = V2| — ags|[4a?, + (aaa — ap)? £ (aga — as) X

\/(aa.a - abb)2 + 40’26]_17
\/5 | - aabl

Ay o= - (“aw) [Gaa — ass £
V/(@aa — a1s)? + 402,][40%, + (Gaq — a15)? % (2aa — at) X
V(@aa — aw)? + 402, 7,
where the signs '+’ and ’-’ correspond to i = 1 and i = 2 respectively.

Appendix C

In Fourier space the Ornstein-Zernike equation may be written in matrix

form as _ _
S(k)(I- C(k)) =
where
& Sulk) Si2(k
SFk) - ( Slzgkg 4522&% )
and

ew=(ald) i) )
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I is the identity matrlx As a result for S1;(k), S22(k) and S12(k) we have
the following expressxons

Sll(k) = I:l - P1511(k) — Lgéiz(_kl_] B

1- pozz(k)
S12(k) = . \/,széu(k)

(1= p1&ua(k))(1 = paéna(k)) — p1paciy(k)
Using the results of Ref.[18] we have obtained the explicit forms for:
éj(k =0) in PY approximation (see Ref.[19]):

p1é11(0) = —2m (4 + 361 + 271),
p2022(0) = —2n9(4az + 362 + 2110-3),

. 1 .
1/p1p2612(0) = —37{4044 + B[10ﬁ12(4a + 3) +
+6712(5@ + 4) + 471(6a + 5)]},

where
(1-gx)ey ]
nl:z+(1—z)a3’ n2=m+(1—m)a3’
. l-«o
n=m+n a=o011/02, &= 20
o1 = (1—_117—)4{1 — 4 (m + ) (P + 4L+ 7)) —
—-3m2(1 — @) [(L+m +e(l+m))(1 - n+3nm) +
+771(1 - 77)]},
a'= {01 = %)+ (m + &) (? +4(1 + 7))
a®(1—n)*

=3m(1 - @)*[(1+m + (1 + 7)) (1 - 7+ 3m) +
+a772(1 - "7)]},

1
b= _6[7719%1 + an(l + a)zagfg],
1 -
Ba=  —6[nagl, +me 31+ a)’gyls
Bra= —=3a(l - o)(e g1 + Magaz)o12,

1
7 5(’71“1 + &®nay),

1~—a

Yi2= 27
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gu = (1_1 )[1+Z+1 m2(e - 1)],
922 = (1_17])-2[ +TI+1 771(a 1— 1)),
12 = iz 1 )2[ +;’38+ ;(771 772)],

' 5a1(1+ a)*B
A= ;(&—3"—)—‘, B = 4!\./0437717727
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DOCJHIN>KEHHA ®A30BHUX IIEPEXOIOIB
Y BIHAPHUX CHUCTEMAX
METOIOM KOJIEKTUBHMUX 3MIHHNX .

O.B. Ilanaran

MeTon K0NeKTUBHNX 3MIHHMAX (K3) 3 BUIOIJIEHOIO CUCTEMOIO Bil-
aiky (CB) 3aCTOCOBYETLCH 10 HOCHIKEHHA (Pa30BUX [IEPEXOLIB Yy
6iHapHUX cyMnnax Iaa ,IIBOKOMI’IOHeHTHOI CMCTEMM YACTHHOK Pi3-
HUX PO3MIpIB, Kl B3a6MOIiI0OTh 3 PI3HMMHM TOTEHIaJaMU TIPUTHA-
raHHA OTPMMaHO B rayCoBOMY HabJIMKEHHI ABHI BUPa3! IJA KpU-
TUYHNX TEMIEPATYP. Busnaueno ¢a3oBuil npocTip KOJIEKTUBHUX
3MIHHUX, 3B” A32HUX 3 MapaMeTpamu nopAnKy. [leranbHo po3ras-
HYTO Bpmanox cuMeTpuU4HOi cyMimi. PesynbTaTu mopiBHIOIOTLCA -
3 yXe BIJIOMPIMPI OTPMMaHUMM METOIaMM iHTErpasibHUX DIBHAHb
IJIA CYMIII TBEpAMX cdep, B3a6MOJIIIOUMX 3 noreﬂulanamn IOKaBn
OCHOBHO}O BIIMIHHICTIO € IPUCYTHICTH Ha (a30Biit giarpami Ipy-
rol I'JKY K pUTUYHUX TeMITepaTyp. UYUCaoBi pe3yabTaTu nobpe y3-
E‘omxy)}ou:bul 3 OTPUMaHUMHU B CEPETHbOCHEPUYHOMY HabIMKeEHH]

CCH



