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The role of electron-phonon interaction in the formation of local |
anharmonic lattice potentials in erystal is investigated on the basis of
the simple model. The case of three particle ion cluster A — B — A is
considered. The interaction of the electron subsystem with the vibra-

. tionial modes u, and u;,, being Raman and infrared-active respectively,
is taken into account. The calculation of effective ion potentials and
distribution functions is performed. The possibility of realization of
one (2, 0) or two (w'C, +ul, ) equilibrium positions of cluster at various
values of the theory parameters, electron concentration and tempera-
ture is discussed. The ”phase” diagrams are built for the déscription of
possible states of the cluster and of the corresponding topological types
of effective potentials. The energy spectrum of the model is analyzed. .
It is shown, that the quazipolaron effect leads to the formation of dou-
blet in the low frequency range. The sublevel distance is defined by
the electron-transfer parameter renormalized due to electron-phonon
coupling. ‘

1. Introduction

The investigation of quasi-one-dimensional systems with the local anhar-
monicity is of great interest for study of ionic or crystalline systems, where
particles of some kind are moving in effective field characterized by double-
well potential. Such objects can be represented by H-bonded crystals or
complexes with anharmonic proton motion. Another example of such sys-
tems are high temperature superconducting crystals of YBaCuO type, where
chain structures consisting of O and Cu ions are observed and oxygen ion
motion possesses strong anharmonicity. The vibrations of the so-called apex
oxygen ions have the same property in such systems [1-3].

Results of the quantum ab initio calculations performed for molecular
complexes with H-bonds show that the form of the adiabatical potential
of the proton on H-bond depends on the distance between external ions
R4_4 [4-6]. Two-minima potential is typical for the distances larger then
critical one. For the smaller values of distance R,4_ 4/ only one minimum is
observed.

It must be pointed out that the potential sensitivity to the distance
R4_4 shows the strong electron-phonon coupling, so one can doubt in
fitting of the adiabatic approximation. Effective potential for the particle
B on the bond A — B — A’ must be formed self-consistently and possesses
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statistical nature, being dependent on the temperature. The problem of
the investigation of such potentials can be solved on the base of quantum
chemical calculations; it can be solved also using rather simple models.

Model which can be used in our approach was proposed in [1,7] for the
description of the O-Cu-O clusters in the YBaCuO crystals. The Hamilto-
nian of the cluster written in the strong coupling approximation includes
electron transfer as well as electron interaction with the vibrational modes
(as in Holstein model [8], only terms diagonal on the electron variables were
taken into account). Anharmonicity is absent in the initial phonon Hamil-
tonian. It was shown that anharmonicity may appear due to sufficiently
strong electron-phonon interaction. The central ion distribution function
possesses in this case two equivalent maxima reflecting the existence of two
displaced equilibrium positions.

The idea of polaron nature (as the result of electron-phonon interaction)
of the anharmonicity of the vibrations of 0-Cu-O complexes or apex oxygen
lons alone in YBaCuO-type crystals was declared also in [9,10]. In the
frame of the Holstein model the influence of the electron-electron interaction
and antiferromagnetic spin correlations on the polaron anharmonicity was
examined in [9] . Effective electron correlations that appear due to the
electron-phonon coupling were studied in [11] in the case of neglecting of the
direct Hubbard interaction. Papers [10,12] were devoted to the construction
of the effective electron Hamiltonian and to the analysis of the possibilities
of the superconducting electron pairing on the basis of the Holstein-Hubbard
model and some its generalizations. - -

However, a set of problems connected with appearance of the locally
anharmonical lattice potentials needs a more detailed study. The thermo-
dynamical criteria of the formation of such potentials as well as the role
of the Coulomb components of the interactions between excessive charges,
which appear during the displacements of ions and electron redistribution
are not studied yet. The pecularities of electron and vibrational spectra of
the crystal systems and clusters, where the local anharmonicity of the vi-
brations is caused by the above mentioned quasipolaron effect also are not .
investigated (only simple approximations were applied).

In the present paper we will examine these problems, using and gener-
alizing the simple model of 3-ion cluster proposed in [7]. We will perform
statistical averaging over the states of electron subsystem and investigate
the equilibrium states and configurations of the complex, being based on
the condition of the corresponding thermodynamic potential minimum. The
possibility of the different charge states of cluster caused by the change of
mean number of the electrons on the cluster will be taken into account. The
evaluation of the distribution function over the ions coordinates will be done
and the criteria of the appearance of the local anharmonicity in the effec-
tive potential at the presence of the Coulomb parts of the electron-electron
and electron-ion interactions will be obtained. We will also investigate the
pecularities of the energy spectrum caused by the mixing of the modes due
to the electron transfer. .

2. Model Hamiltomian

Symmetrical ion cluster A — B — A’

o0

A B A
(1) (2) (3)
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1s considered as an element of a crystal structure. The potential energy of
such cluster can be written in the harmonical approximation in the diagonal

form
2 2 2

U=k 4k Yy kg 2.1
Tkt (21

here normal coordinates u,,u;r,us depend on t,he ions displacements w;
from the initial equilibrium positions

\/E(w;; —wy);

Usr = v "2‘,\",} (w1 + w3 — 2102), (2.9)

If

Uy

Uy = m(wl +wz+ 2 w?))
M = 2m+m';
(my=mg=m;  ma=m);

u, describes mutual displacements of external ions; corresponding vibrations
can be observed in the experiments on the Raman scattering. u;, determines
-the displacement of the central ion from the centre of mass of the external
ions; such type vibrations are manifested in IR spectrum. wuy describes
displacement of the centre of mass of complex (in the case of free complex
ks =0).

With the help of the phonon creation and annihilation operators

TN LN I g
uz—\/;ﬁ Zwi(bl+bi)’ w; = m(z_r,zr) .(2.3)

the phonon Hamiltonian can be represented in the standard form (operator
of the kinetic energy is also included here) :

Hpp = 3 hw;(b}b; +1/2). ' (2.4)

Electronic part of the Hamiltonian can be written in the second quanti-
zation form on the basis of wave functions of valence electrons localized on
the separate ions. Taking into account only one orbitally nondegenerated
state for each ion (as it was done in [7]) and considering electron transfer,
Coulomb interaction between ions (U and U’) and Hubbard type Coulomb

correlation (A and A’) we can obtain:
Ha =) eni+ U(ny + na)ny + U'nyng+

’+A(TL1TTL11 + "3Tn3l) -+ A’nng2l+ (25)

+t Y (af,a20 + adpars + ad, a5, + 0t a20).
[+3

Here ¢; are the energies of corresponding localized states (¢; = €3 # €z;n; =
Y., Mic ). After the separating of the electrostatic components of the internal
fields

_ 0 _ ¢ e .
€1 = € — -d—ZQ - ﬁzl,

2
e =€) — Lz (2.6)
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U = fdi;U’ = % (zie are charges of ions (excluding valence electrons); -
21 = 23, 2d is distance between ions A and AN,

The interaction between electron and phonon subsystems can be ob-
tained when the dependence of the parameters €;,t,U and U’ on the ion
coordinates is taken into consideration. In the linear on the jon displace-
ments approximation equalities hold:

&G — € —7(w2—w1)~ﬂ(w3— wl);
€ — € —v(ws— wy)~ Bws — wy);
€ — &+ ‘Y'(wa - wy);

U(1,2) = U-a(wy - w); (2.7)
U(2,3) U - a(ws — wy); \
U(1,3) = U'-B(ws —w),

where
e? e?
T =% - g 7=’)’o+;1721;

e? _
B = —4—d—2fz1; &= EZ—; (2.8)

~ €2

g= 1z
here 7o, g being short range components of coupling constants. Similarly,

1(1,2) = t — 8(wz — wy); :
4(2,3) =t — 6(w3 — wy). (2.9)

After transition to the normal coordinates the following Hamiltonian of
the electron-phonon interaction in the cluster can be obtained

1 .
Heoph = [7-5(7 +26)(n1 + n3) — V2y'nq+
+J50n2(n1 + n3) + V201 na)u, ~
—['y(nl it n3) + Emz(nl - n3)]\/ 51‘-:7“,',--1- (210)
+o 2 (af,az + afyar, + a3, 05 + af,a0,) Jpu, -

—6 E(aitya%' + a;.aalﬂ - a;-cra"j"" - a’;-a'az”) v 7]\1;{_’““'7’
2

(we consider only the interactions with optical modes u, and u;,).
In the adopted approximation, the full cluster Hamiltonian consists of
parts (2:4), (2.5) and (2.10):

H=Hy+ Ha+ Ho_p. (2.11)

In comparison with the energy operator, which was used in [7], here, in
addition, we have the modulations of electron interaction parameters and
transfer integral at the displacements of ions.
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3. Distribution function and effective potential energy of
ion subsystem :

Our first step will be to obtain and to investigate the potential energy of
ion subsystem of the cluster as a function of ion coordinates (or normal
coordinates u, and u;). ~

Minima of the ”conditional” free energy Flu, u; (in the case of fixed
number of electrons in cluster N) ! or "conditional” thermodynamic po-
tential @y, u;, .. (in the case of the fixed value of the chemical potential)
determine equilibrium cluster configurations. Distribution function over the
normal coordinates is connected with the above mentioned thermodynami-
~ cal characteristics: ! :

flz,y) =< 8(z — u,)6(y — uir) > . (3.1)

The averaging is performed here over the statistical distribution with
the Hamiltonian (2.11). Calculating the F,® and f functions we examine -
below some particulal cases and study the role of different components, of
electron-phonon interaction.

3.1. Classical approximation

First of all let us analyse the results obtained in the classical approximation
(assuming that the normal coordinates are classical variables and neglecting
their noncommutativity with corresponding momentum operators). Such
assumption allows to diagonalize the electronic part of the Hamiltonian.

In the simplified case (which was considered in [1,7]) when the inter-
action between electrons was neglected, electron-phonon interaction was
written in the form S '

HY_ = —Arur(ny + 03 - 2n2) — Airtiir(ng — ™) (3.2)

(this coresponds to the Holstein model [8]) and spin degrees of freedom were
not considered, the electron Hamiltonian

3
H=> €ata;+ t(afa; 4+ afay + afas + af ay) -
- i=1 ‘
—A,u,(nl + n3 — 2n2) - A,‘TU{T(TL;; - nl) (33)
can be rewritten in the diagonal form using the unitary transformation
a; =3 ; W,-;lcj- to the new Fermi-operators:

3 w2 o ud
H = Z Eic;-"'ci + k,,--2—r + kir—él + K, (3.4)

=1

where K is operator of ion kinetic energy. Energies € are the functions of
U, and ;. ’ ‘

g1 = € — Arur + Ai‘ruir;
& = e+ 2 - (3.5)
& = e — A — Ajpuip;

1See Appendix 1
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Effective thermodynamic potential Z(u,,u;,) after the averaging over
the electron degrees of freedom

E(’ll",, ui'r) = Sp(el){exp['—ﬁ(ﬂ - /I,N)]} (36)
and extracting its coordinate part is equal to

Z(ur, tir) = €Xp [—g(k,,uz + kiru?,)] H [1 + e—ﬂ(éi,‘u)] ) (3.7)

1

At the fixed average number of electron in cluster, the chemical potential
can be found from the relation:

X : ‘
Ei:eﬁ(zi‘”)+1 N; 0<N<3 (3.8)

The equilibrium state in this case corresponds to the minimum of free
energy '

Fuy,uir) = ®(ur, wir) + p(ttr, wir )N
®(u,, uir) = =010 E(u,, uir), ' (3.9)

and function F(u,,u;,) has the meaning of effective potential energy.
Problem of evaluation of the chemical potential u(u,,u;,) and, respec-
tively, of the function F can be solved analytically at ¢ = 0 in the limit of
the absolute zero temperature. Since the initial Hamiltonian has diagonal
form, the chemical potential can be easily calculated. Its dependence on
the average number of electrons N is shown in Fig.1. The investigation of

the free energy profiles on the plane (u,,u;) for the different values of N
shows that single minimum of function (u?,0) as well as double symmetric
minima (u®’, 2u0.) [13] can be observed. Obtained results are presented in
the following tables.

Coordinates of minima

0<N<1 (—=%=N,0) (A.1)
(A) (R=N,+4i=N) (A.2)
1< N<2|(-8=3@-N),£32(N -1)) | (B.1)
(B) (=3 - 2N), £3i=) (B.2)

(AN, +4e(2 - N)) (B.3)
2<N <3| (-4=(2- N),i%g@ - N)) | (C.1)

© | ee-M0  |©2

Conditions ol minima realization
€ - < x T
(A) -6 >Nty (A.2)
| -6 < PE(3-N)— Be(N - 1) | B.a)
(B) | -3 (3-2N) -4z < g — e < ~R=(3-2N)+ e | (B2)
‘62—€1>—§,§-N+%§f(2—N) (B.3)
-6 <-M2-N)-N@2-N) (C.1)
(C) -6 >0 _N) (C.2)
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Figure 1. The dependence of the chemical potential on the electron number
for the model with Hamiltonian (3.4). Values of parameters Ay are taken
from the set (€1, €, €3) using the rule A; < Az < As.

As one can see in the cases (0 < N < 1) and (2 < N < 3) thereis a
possibility of simultaneous existence of the double minumum and a single
one. Conditions of their coexistence can be obtained from nonequalities
(A.1), (A.2) and (C.lf),éC.?).

imilar analysis of effective potential energy profiles was also performed
in the case p=const [13]. In this case equilibrium configurations of the
complex are determined by the function ®(u, uir). When 8 — 0, =0

2 2
&=+ kL + kit (3.10)
2 2 |
here
& =03 In(1+ e POT8) o 3 (A - p)- (3.11)
1 Aip

®' = 0 when p < min(Ay, A2) ; @' = 26 —ea —3p when p < maz (A1, Az), ; in
both cases function ® possesses minimum at the point (0;0). The analysis of
other variants, done in [13], shows, that as in.the case of N=const minima
(single as well as double ones) do exist in the other points; in some ranges
of chemical potential g value they can occur simultaneously.

At the nonzero values of transfer parameter ¢ and at nonzero temper-
ature the effective potential (F or & function) profiles were calculated nu-
merically. ' {

Obtained graphs are shown on Fig.2,3. Free energy profiles at the dif-
ferent values of electron number N, temperature T, transfer parameter ¢
and energy values €, ¢; are presented in Fig. 2. In the case 0 < N < 1 the
change of the sign of the difference €; — €3 leads to the replacement of the
double minima (Fig. 2.1) by the single one (Fig. 2.2) with the simultane-
ous change of u, sign, and at 1 < N < 2 we can observe double minuma
independently on sign of the the difference ¢; — €3. Variation of electron
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number N within mentioned intervals doesn’t change profiles qualitively,
but at 0 < N < 1 increase of N results in increasing of the distance be-
tween minima (in the case of double minima F), and at 1 < N < 2 the
influence of change of N has opposite character 1(Fig. 2.5, 2.6).

The barrier height between minima of the function F' decreases with
temperature and increases with the increase of the transfer parameter t'
(Fig. 2.3, 2.4). At the rather high temperatures minima can join together
into omne.

The specific situation takes place in the case of close values of energies
€1, €2. Asitis shown by Fig. 2.7,2.8at0 < N < 1 double minima of function
F as well as the single one can coexist when conditions given in the table are
satisfied. The relation between their minima depthes depends on the €y, €3
values. At 1 < N < 2 the tendency to appearence of the additional minima
besides the initial one can be observed while the ¢; values are coming nearer
one to another [13].

The behaviour of the thermodynamical potential €2 in the Sur, u;,) plane
at the different’ values of chemical potential u is presented at Fig. 3.~
At the chemical potential values, smaller than min(e;,€3) or greater than
max(ey, €2), function Q possesses central minimum at the point (0,0). In
addition, in the first case at the increase of y the double minimum gradual-
ly appears and becomes then the main one. At the further increase of the
chemical potential new single minimum appears (with coordinate u, # 0);

. this minimum disappears at the large positive values of chemical potential
u (see [13]). There are some ranges of chemical potential values where ther-
modynamic potential {2 possesses single and double minima simultaneously
(Fig. 3.3) or two single minima with coordinate u;, = 0 (Fig. 3.4).

The illustrations given above confirm the analytical results concerning
the conditions of the occurance of double or single minima of functions F
and Q. . ’ :

Values of parameters used for evaluation of the free energy profiles pre-
sented at Fig. 2.6 are close to the ones used in [7] for the constructing of
the distribution function over the u;, coordinate for the complex O-Cu-O -
in the Y BaCuO crystal. Double minima character of the potential in our
case is in a good agreement with the existence of the double maximum of
the distribution function obtained in [7]. »

Some quantititave difference is connected with the neglecting here the
spin degeneracy and Hubbard electron correlation, also it can be caused by
the using of classical approximation in the description of ion vibration .

3.2. Quantum description of the vibrations (the case of zero
transfer).

Let us examine now the problem of evaluation of the distrubution function

f(z,y) over the ion coordinates in the quantum case. We shall use the

simplified model, decribed in item 3.1. Passing to the quantum description

of the vibrations we shall restrict ourselves to the case ¢t = 0. 2
Hamiltonian in this approximation has the form

N 2
H = ; &n; + kz=:1 hwkb}i’bk - Al(nl + ng — 2'n2)1 /ﬁ;(bl + bil')_

~Ain(ms = m )y s (b2 + ) (3.12)

?Exact.solution of the Hubbard-Holstein model in the zero-bandwidth limit in the case
of interactions with one branch of the lattice vibrations was given in [14,15]
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~4.0 -4.0
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=50 -3.0 ~1.0 10 3.0

=50 -3.0 1.0 1.0 3.0

2.5 6

-3.0
-4.0

2.7 2.8
Figure 2. The profiles of free energy (the values of parameters correspond to

the 0—Cu-O cluster in YBaCuO crystal); classical approximation. A, = 16;
Aip =T, : ‘

21 & =-10, e =1.0, t=01, T=0014 n=05
22 ¢ =1.0, e2=-10, t=01, T=0014 n=05
23 ¢ =-1.0, ¢ = 1.0, t=05, T=0014 n=05
24 ¢ =-1.0, € =1.0, t=01 T=14 n=0.5
25 ¢ =-10, € =1.0, t=0.1, T=0.014 n=20.3
26 € =-10, e =1.0, t=0.1, T=0014 n=08
2.7 € =0.9, e = 1.0, t=01, T=0.014 n=05
28 ¢ =11, ¢ = 1.0, t=01, T=0014 n=05

=
173
@
o

The following dimensionless parameters are

Ua = Ua/\/h/wai Aa = Ao/ /Bwa(hwy); T — kT/(hjw,). The quantities

€1, €2, t and I’ are given in eV. Energy distances between the lines in figures
are 0.03 eV. :
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~50 -3 1.0 1.0 3.0 =50 -3.0 -1.0 1.0 30 ]

40
3.0
2.0
10
Q.0
10
~20 i TN ~2.0

-30 B . ~30 -30 §
-4.0 Ny -4.0 -40 §

-5.0 RN -50 -5,0 B H
=50 -30 10 1D 30 ~50 -30 -1.0 1.0 30

3.3 5.4
Figure 3. The profiles of thermodynamical potential 2; classical approxi-
mation. A, = 16; A;; = 7;¢=0.1,T = 0.014, ¢; = —-1.0,¢ = 1.0.
31p=-2032p=-1433p=~1.034pu=1.2

(indices 1,2 at the phonon operators correspond to the r and ir modes).

Due to the commutativity of the operator multipliers at (b; + 67) with
the electron part of the Hamiltonian, we can separate phonon and electron
variables with the help of the displacement Holstein-Lang-Firsov transfor-
mation [8,16]

H— 0 =efe5, (3.13)
where
S =3 apby - b); (3.14)
k=1
o = 27:(”1 %ﬂ—(nl + n3 - 2ny);
Qg = 277?0.12 ﬁ%(n;g - 77,1). (315)
Here
egn,-e‘s = n;;
eSb;e™5 = b; + ay. (3.16)

Such transformation can be represented as the transition to new opera-
tors ' -
bi = b + ay, ‘ (3.17)
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describing vibrations with respect to new equilibrium positions depending
on the electron states occupation. The transformed Hamiltonian can be
wrltten as

= (&1 — @1 — @2)(nr + n3) + (2 — dp1)ns2 + 2(p2 — 1)n1n3+

: 2 - S
-{-4991(711 + n3)n2 + 3 hwrb;"br, J (3.18)
r=1
where A2
. = r_, 3.1
¥ 2mw? (3.19)

Using the basis |nynan3 > of the electron states

|000 >=|1> (110 >=|5>

1100 >=1{2 > [101 >= |6 > (3.20)
010 >= |3 > [011 >=|7 > '

001 >=1]4> [111>=|8>

we introduce Hubbard operators X?? = |p >< ¢. In this representation

n = X22+ X55 +X66+X88, |
ng=XB¥4+ X% 4 X7} X8, (3.21)
ng = X44+X66+X77+‘X88

‘and Hamiltorﬁan, H has the diagonal form

H Z,\ X”"+Zhw,,b b 1 (3.22)

r=1

Here

| M=0 dg=X=e o @x ,
As=e—4p1;  As=A=atea— @1 — 9y (3.23)
As = 2€; —4dp1;  Ag =26 tea.

Let us evaluate function f(z,y) for the system described by the Hamil-
tonian (3.22). We are using the following representation

+ .
8z —uy) = ;ﬂ/ it (e “l)dk (3.24)

3

and the same for the 6(y — ug). Starting from the‘deﬁnition' (3.1) in accor-
dance with (3.17) and (2.3) one can obtain

f@0)= g [ T ket gitay (o~ T B o)
—-00 S .

- it — Toaft
(e O, (o (), (3.25)
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(due to the variable separation the averaging over the electron and phonon
variables is performed independently).

Let us express a, operators in terms of the X-operators using the rela-
tions (3.21); the following identity is used

X = (1 X7P) 4 e XPP, . (3.26)

As a result, averaged over the electron degrees of freedom part of (3.25)
is rewritten in the following form:

e~ krCr(n+n3=2n2) —ika C2(na—n1) _ Z e—i’;C.(”)XPP, (3.27)
P

where £ = (k1, k2); C(p) (Ca(cp)§CL(1p))

(W =(0,0); M =(-¢1,—);
W=, -Gy {9 =(2¢,0); ~ (3.28)
= (-2¢,0); {7 = (=1, G
{9 = (¢, 6 & =(0,0):

The following notation is used here:

A,
mw2 )

¢ = (3.29)

After performing the averaging procedure X?? opera,tors are replaced by
their average values:

, -1
(XPP) = e~ P(Ap—uNp) [Z e‘ﬁ(’\q—“N“)} . (3.30)

q

In this expression N, is the eigenvalue of the electron number operator
N:Eprpr- (.Nl=0;N2=N3=N4=1;N5=N6=N7=2;N8=3)

Average values of exponents including phonon operators in harmonical
approximation read:

. h I i+ k2 R oro=
(elec,- Smar (br+b,- ))51 - e—r.’%w' (2‘nr+l), (331)

where L ,
i = (b)) = (efMr = 1)L, (3.32)

Substituting expressions (3.27) and (3.31) into (3.25) after the integra-
tion over the k, one can obtain

(a=¢SP) )2 (y-cg,"))’
R [E7) (Xm’), (3,33)

flz,y) = 4T\/er
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This function has a form of the sum of Gauss distributions, centered at
the points (Cg(gp), y(p)). Their dispersions are characterized by the parame-

ters
h o Bhw,
;= co
7 e, 2
and statistical weights are determined by the occupation of the correspond-
ing electron states. Schematically it is illustrated in Fig.4 States |1 >, |3 >,
|6 >, |8 > correspond to the distributions centered at the origin of the y
variable (e.g. wuir). The pairs of states [2 >, [4 > and |5 >, |7 > corre-
spond to the distributions with double maxima. This means the particle
B displacement to the one or another side from the central position (see
Fig.5).

(3.34)

v
«(7) +In | e (4)
(1:) a+sy (g)
4 2y =
*(5) 1+ s (2)

Figure 4. Localization points of Gaussian peaks of function flz,yip) (€ =

A i = A )
ot 1=l

The realization of certain variant depends on the number of electrons in
system- (if value of IV is fixed) or on the chemical potential value. It depends
also on the relations between parameters of the theory.

The equation which connects p and N and allows to exclude one of these
quantities according to (A.26) and (A.29) has the following form

; (6(z ~ u1)é(y — ua)N)
N)lzy = =N. 3.35
To get the explicit form of this relation we can exploit the procedure,
similar to the one used for obtaining of function f(z,y). Mean value (§(z —

u1)6(y — uz)N) can be presented in the form of integral similar to (3.25)."
Averaged over the electron variables multiplier in the integrand is equal to

o _h kg =P ik
<e-21k1 Fno) a1e 2tk, Imag OQN)GI - Z elkap)Np(XPP)_ (336)
P

Finally, performing the integration over the variable £ we can obtain

(6(z —u1)é(y - w2)N) =
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Figure 5. Distribution function f(z,y;u) at different values of chemical
potential u (values of chemical potential are given in eV).

5.1 p = —1.00 ( the corresponding system state is |1)).

5.2 p=—0.77 (|1),|3))

5.3 1= 0.0 (|3))

5.4 u=0.38 (]3),]5),[7))
5.5 p = 0.5 (|5),]7))
5.6 p =0.89 (]5),|7),]8))
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) _(z—qc(f))) _(y—fé,”))? v )
_ ) ~ 2 2 ) A Der
I NCTE Zp:(’ e . : "’<‘ l
Subsequently, equation (3.35) can be presented in the form
=P =g
doe TP e (N, — N)(X™) =0, (3.38)
P

where mean values (XPP) are given by formula (3.30). :

For each Hubbard state |p) the condition of its realization at T — 0 is
the minimum condition of the energy of this state . Using this fact, one
can analyze possible situations depending on the relations between energy
parameters. Obtained results are given in the Fig.6 in the form of (¢, ¢y)-
"phase diagrams”. Lines on the diagrams separate regions with different
types of profiles of function f(z.y). When model parameters values corre-
spond to the points lying near such borders, different types of diagrams can
coexist. For example, near the border between (2.4) and (3) or (5.7) and (6)

phases function f(z,y) possesses central maximum (Cf_’;),O) as well as two

symmetrically shifted maxima (Cif}), i(é’;),). It should be noted that (I) and

(II) configurations distinguish one from the other not only in displacement
of central ion in the second case but also in the change of the cluster length.

@ |/ , (6 ) m
/ ©) )
(8) (R ING)
®) 3
|

Figure 6. (€1, €3)-"phase” diagrams (at zero transfer).

It is important to note that the states with different values of u (with
other parameters being the same) are represented on the (¢;, c3)-diagram by
points lying on the straight line ¢ = €; + 8. The position of this line depends
on the distance between energy levels of the electrons, localized on the A
and B atoms and point location is determined by the relation (e +¢,)/2 =
const — p. Taking this into account we can determine possible complex
configurations as well as the number of electrons at the different values
of chemical potential u. Type of the "phase diagram” that is realized in
some particular cases depends on the values of electron-phonon interaction
constants and on the relations between them.
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3.3. The role of the electron-electron interactions and spin de-
grees of freedom

Obtained in item 3.2 results can be generalized by taking into account the
Coulomb interactions and Hubbard correlations between electrons and by
including spin degeneracy of the orbital states as well as by going beyond
the Holstein approximation while describing the electron- phonon interaction
(formulae ( % and (2.10)). As in previous case, at zero transfer (¢t = 0) the
umtary transformatlon (3 13) (3.14) allows us to separate variables in the
similar way; in this case

1 h 1
Vg = ———4 | ——— —% — V2 !
a1 hwy \| 2muw; \/ﬁV(nl + ma) = V2y'nat

+%Em2(n1 + n3) — \/55711713]

g = —

;" (3.39)

= [v(n1 = n3) + @na(ny — ng)]
hoog 2w2 1— N3 2(n1 — na)

where 7 = v + 20.

After transformation the Hamiltonian can be written in the following
form

f{ = Zeini + U(n1 + n3)n2 + U’n1n3 + A(’nnnll + 77,317131)+
2 -~ 2
—I—A’nnggl + Z ﬁwkbzbk - E hwk&z, (3,40)
k=1 k=1

or, on the basis of states |ny1n1)n21n2) N31N3] >,

A= 2X9+3 hwgbfby (3.41)
q k

(the notations are given in Appendix 2)
Evaluation of the distribution function f(z,y) can be performed simi-

larly to the previous case (see 3.2). Expressing operators é; in terms of the
X-operators

1
s (k) x a9 42
%k hwy 2mwk Z A X (3.42)

and using the following representation
Koy e Z X 1 (3.43)

we obtain

(e ALk Z e ﬁL?Ag)(XW). (3.44)

As a result, using (3.25) and (3.31) we have,
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| (o - Ly (v - )2

1 - mw y - r'nw
fz1y = X% ex —— 1t Voex —— 2
(=) CLEVETRP Zq:( fex? An ; A

(3.45)
The last expression has a structure similar to (3.33). Coordinates of the
points corresponding to the Gaussian components maxima are determined

now by the coefficients A,(,') (their explicit expressions are given in the Ap-
pendix 3). There are much more components than in the previous case when
- we considered only Holstein type interactions. That is why Sel , €2)-diagrams

have more complicated structure and include more possible phases. Even
in the spinless case the existence of the Coulomb interactions between elec-
tron changes the geometry of the phase diagrams and causes the appearance
of their new types (see Fig. 7). Possible forms of (e, €z)-diagrams in the
case when spin variables are taken into account are given on Fig.8 for some
values of model parameters. Number of electrons on the cluster in various
states are also given there. In the states with the energies A;(one electron),
As, Ag(two electrons), Az, Azs, Ag7(three electrons), Ay3, Agq(four electrons),
Asg(five electrons) effective potential possesses two minima.

Diagrams corresponding to the case which was considered in [7] (the
cluster O —Cu—O in the crystal Y Ba;Cu3zO7_s), are presented on Fig 9,10.
The charge state 02~ — Cult — 0%~ of the cluster was taken as the initial
one (this corresponds to the values of charges z; = 23 = —2, 2, = +1); the
presence of two holes on cluster was considered. The Hamiltonian of the
cluster was written in the form (2.4),(2.5) and (2.10) with the excluding of
terms describing electron transfer. Operators a‘-t;,a,-a were considered to be
the creation and annihilation operators of the Holes. Correspondingly, the

changes were introduced into the electrostatic components of interactions:
2

Y= Y+ F2; v - 76—%21; B — 4%::21; € — €?+§22+%21, € —
6(2) + 2%2'21 . . .

Two cases were examined. In the first one as in [7] the simplified Hamil-
tonian where Coulomb interactions were not included (except Hubbard cor-
relations) was considered. The electron-vibrational interaction was written
similar to (3.12), but spin degeneracy was still present (n; = 3", nis). The
relations were assumed:

%(7 + 2ﬁ) = %7, = —A,

M'y = —A; ‘ ’ (3.46)

2m/!

According to the data, presented in the [7,9], the following values of
parameters were used:

2
e = 0.5eV; g = 500em™Y; A = -0.135

d
€2 = —0.5¢V; hw, = 600em™!; d=1.854

Obtained (€q, €2)-phase -diagrams are presented in the Fig. 9.1-9.4 for
the different values of the interactions constants A;-, A;, and A and A’ pa-
rameters. Values of parameters 7;, determining the correlational corrections
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T4 > 2T
T — T4 > T2

T > 27T
Ty — T4 < T2
213~ T < T3

2T3-— Ty < Ty

7'4<2T1
T1+T2<7'5.

T4 < 27
T5—2T4<T2—2T1
‘ 213 — Ty < T

213 — 13 < Ts

273 + T4 < 275

T4- < 27 -
273 - 27'2 < T4
273 — T < Ty

273 — Ty > Ty

Flen b
Flast
sl
X P {#%
A (s | Y
s | 1Y
Wpses [y

T4 < 27
Tt + T3 < Ts
27’3-—T2>T5

{
E
(i
{

T4 < 27‘1
273 — 273 > Ty 213 — T3 < Ts
Ts — 274 > T9 — 27

{ 211+ T2 > 75
213 + T4 > 275

27’3—-27’2<T4
To—T1 < T3 — T4

M+T—-—1m<0

{TI—T3<T4~T5
Tm+1m—T75>0

{Tl—-T3>T4—T5

T3 +712—73<0
To — Tt < T3 — T4

213 — Ty > T
T1+7'2—3>0

{7’1~T3<T4~7.'5 {TI—T3>T4—T5

Figure 7. The types of (e1,¢3)-"phase” diagrams in the spinless case taking
into account the Coulomb interactions. 7, = Ay, — 3_; &n;.
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Figure 8. (1, €3)-phase diagrams of the complex taking into account the
spin variables. :

1 =026 75=-056 75 =20.06 713 = -0.82 17 =-2.70
Tp = 0.08 Te = 0.26 T10 = -0.47 T4 = -0.76
T3 = 0.08 T7 = -0.47 11 = -1.46 T15 = -1.54
T4 = 0.14 T8 = 0 Ti2 = -0.64 Tie = -1.71

Phase (0) corresponds to the N = 0 electrons in cluster; (1),(2) - N
(3),(4)(5),(6) - N = 2 (7),(8),(9),(10) - N = 3; (11),(12),(13),(14) - N
(15),(16) - N = 5; (17) - N = 6.

to the energies of the electron states (7, = A, — Y., e,'nl(-ﬁ)) are also given
* there. Trajectories describing the change of the state of the system at the
change of chemical potential p (or , correspondingly, the change of mean
number of holes N), are depicted on figures. At N = 2 the point repre-
senting the state of system belongs to the region of the states with energies
Ag. Corresponding effective potential possesses two minima in this case;
distribution function f(z,y) has two Gaussian components centered at the

(1) (2)
points (%9;%—; i%";) (charge state of the complex is 0!~ — Cu?* — O'~ or.

2
0% — Cu®* — O'7). Such property takes place when parameter A;. ex-
ceeds some critical value and is realized in rather wide range of constants A
and A’ values (however, it dissappears at A, A’ — 0). These results are in
accordance with those of [7]. ‘

In the second considered case we start from the more general Hamiltoni-
an (2.10). The account of the electrostatic interaction shifts the trajectory
determining the change of the state of system to the positive direction of
the ordinate axis, It also changes significantly the values of correlation cor-
rections ;. Phase diagrams in this case are shown at Fig. 10.1-10.4 for the
different values of A and A’ parameters. In the first case (A = A’ = TeV) at
N = 2 only the phase with the energy A is realized. Electron distribution is
symmetrical (charge state O'~ — Cult — O~ ), effective potential posesses
only central minimum. At the dectease of the correlation energy A on the
oxygen atom the ground state is changed A;; — Ag (Fig.10.2). State with
energy As (two holes on the one of the oxygen atoms: 0° — Cu't — 0% or
02~ — Cult — 0°) is characterized by the effective potential with double:



180 , LV. Stasyuk, Yu.V. Sizonenko

e . ‘

05 A ‘ 0
; o ‘ RO R
| G) 4) I ; an - jf o | |
‘ (NI SRR v s R B T Tl
i 15 1 05 2 1 -05 f3 (7) ‘
| 8) @ P FORSEG V8 A
L e ( P 70 ao P |
- an s (13) PO j Can o Jas] (10)r (5) 1
i i 5000 - 1 |

9.1 9.2

9.3 ' 9.4
Figure 9. (€1, €;)-phase diagrams for the cluster O-Cu-O in YBaCuO crystal
(calculated on the basis of the simplified model [7]). ¢; = 0.5eV; ¢ = —0.5
eV; A, = 0.1, hw, = 500cm™!, hw;, = 600cm ™!,

91 A;=01eV A=A"=7eV
9.2 A, =02eV A=A"=7¢eV
93 A;p=02eV A=A =4eV
9.4 Ay =028V A=A =

symimnetrical minimum. When the Coulomb interactions besides the short-
range ones are included, the form of (¢, €;)-diagrams remains the same at
the change of the short range interaction parameters in sufficiently wide
range (see Fig. 10.3-10.4).

Our results show that Coulomb electron-electron and electron-ion inter-
actions ifluence to a great extent on the form of (¢, €;)-diagrams as well as
on the ground state of the complex and its configuration. They change the
criteria of apppearance of the locally anharmonical potential determining
the IR dynamics of the complex.

4. Energy spectrum at the presence of the electron transfer

Basing on the obtained above results, we will examine the role of electron
transfer in formatjon of the ground state and in dynamics of the system.
We will use simplified model, studied in item 3.1. Energy of the electron
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10.2

: 10.3 : 10.4

Figure 10. (€1, €;)-phase diagrams for cluster O-Cu-0O in YBaCuO crystal
taking into account spin degrees of freedom. €1 = 05eV; ¢ = ~0.5 eV;
Z1 = 23 = +2e, 23 = ~le, hw, = 500cm™!, fiw;, = 600cm=".

101 A=7eV, A=7eV, =0, Y =0 /

102 A=4eV, A'=7eV, ' =0, . 7 =10 :

103 A=7eV, A=7eV, 4/ =0 ) = —0.67 e2/d?

104 A=7eV, A =7eV, 4'=-05c¢%/d2, Y6 = ~1.17 e2/d?
transfer

H,, :t(af'a2+a;'a1 +a;a3+a§a2) (4.1)

is added to the Hamiltonian of the model, which at the quantum description
of vibrations has the form (3.12). :

Application of the displacement transformation (3.13) doesn’t lead at
t # 0 to the separation of the electron and phonon variables. Due to

eS‘ale—S” _ 6‘52_6.’(11;
e‘éage‘s = ¥y, ‘ L (4.2)
t?Sase—s _ E~(€1+52)q3,
where
6=\ ) 6 = g (4.3)

2mwi hui
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we can see, that
eSHtTe_S = t[a;"age‘q’fl'éz + a;aleéz—“l +
+a'2*‘aée_351“'£2 + aé’mesﬁﬁﬁ]. (4_4)
Electron transfer between ions is accompanied by the shifts of the ion equi-
librium positions; this is expressed by the existence of the exponential dis-
placement operators.

After transition to the Hubbard representation on the basis of states
(3.20) the Hamiltonian of the model becomes

H= 20X+ hobtb,+
) r
4t [(Xzs + XMt 4 (X924 XTO)ela—3 g (4.5)
(X344 X56)e~30-0(x43 4 X"'5)e351+52] .

In the case of strong coupling between electrons and phonons we can
use mean field approximation performing the decoupling

(X23+ X67)e3€1—§2 N (X23+X67)(e351—52> +
F(XP 4 X)X 4 XOT) (P07, (46)

As aresult, Hamiltonian is separated into the phonon and electron parts:

Avr = Ap + Hyp + U (4.7)

Ap =3 A XPP 4+ H(X% 4+ X% 4 X3 4 X% +
P

+X56+X65 + X67+ X76), (48)

A2 = S hug b, + (X% 4 XOT) (078 4 f30) 4
+(x34 + X56>(6—351-£2 + é3£1+§2), (49)

where .
i=te = t(e*%1)(et42) (4.10)

is the renormalized electron transfer integral 3. The mean values of electron
and phonon operators will be determined here self-consistently using the
Hamiltonians (4.8) and (4.9). In zeroth approximation

(£4%6) = o991, (¢6) = ¢, (a11)
where ' A2 Bh ‘
S 2 Wer
Lo = i coth 2, (4.12)

3Effect of band width renormalization is typical to the systems of narrow-band electron
coupled to a bosonic field (see, for example, [10])
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Factor e 9 leads to the effective decrease of the transfer parameter - .
such decrease may be significant at the A, >> 2wavmhw,.

Electron transfer leads to the splitting of the electron spectrum levels
Ag = /\4, )\2 = /\4.

v 1

A2z = 5()\2 + Az) & IIy;
A = M

5 1

Ase = 5(1\5 + ) £ Il2; (4.13)
A7 o= Ar

Az— A As — A
I = [(2—23)2 + 2823 1 = [(5—2—6)2 + 241/, (4.14)

In the case when level Ay = Ay (N = 1) determines the ground state of
the system (at ¢ = 0) a doublet caused by the influence of electron transfer
appears at e79 << t with distance between sublevels

212

A= .
Az — Ag

(4.15)

The same picture can be observed at N = 2 when instead of level A5 = A7
doublet with the distance between sublevels

212
A = 4.1
o (4.16)
appears.
Due to the different parity of the wave functions of sublevels
N 1
2> = —(|2> 4|4 >)cosb + |3 > sinby;
l ﬁ(l |4 >)cosfy + | 1
3> = ——}2.02 > |4 >)sinfy + |3 > cosby; (4.17)
~ 1
4> = -———2(|4 > —12>);
2t
sin01 = \/_ (418)

/\2—>\3;

the dipole transitions |2 >~ |4 > |4 >« |3 > are allowed. First of them
corresponds to the energy A and in the considered case can belong to the
IR-frequence tange of spectium. Energy splitting (4.15) or (4.16) between
symmetrical and antisymmetrical states is analogous to the splitting be-
tween two lowest energy levels of the particle in the double-well potential.
However, in the present case the coupled motion takes place: the ion dis-
placements are accompanied by the electron redistibution. The appearance
of the doublets with transition energies A and A’ is the result of the qusipo-
laron effect (see also [9]).

At large enough distances between the doublet and the next excited lev-
els pseudospin formalism (with effective spin S = 1/2) can be applied to the
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decription of the dipole transitions in the complex and interactions between
complexes. This fact justifies the possibility of the applying the pseudospin
model to the description of sublattice in crystal with local anharmonicity in
the case when this antharmonicity is caused by the electron-phonon interac-
tion. Such model is used in the description of dynamics of apex oxygen ions
in the high temperature superconducting systems of YBaCuO-type [17-19].

5. Conclusions

The problem concerning adiabatic potentials, ion distribution functions and
equilibrium complex configurations was investigated on the example of the
ion cluster A-B-A taken as an element of the one-dimensional structure. The
energy spectrum of the model was studied; the conditions of the formation
of locally anharmonic lattice vibrations are analyzed.

The Hamiltonian written in the strong coupling approximation for elec-
tron subsystem was used for the model description. The interaction with the
ion vibrations along the axis of the complex was considered; two harmonical
phonon modes (u,,u;;) which are infrared- and Raman-active correspond
to them. The shift of the energy levels of the electrons localized at the par-
ticular ions and change of the transfer integral values caused by the mutual
ion displacements were also taken into account.

The expression for the free energy functional F(u,,u;,), which can be
treated as the effective adiabatic potential was obtained on the basis of the
proposed model with the help of the averaging procedure -over the states
of electron subsystem. The behaviour of the function F(u,,u; ) as well as
the ion distribution function p(u,,u;;) = exp[B(F(ur, uir) — Fp)] as func-
tions of the model parameters (distance between energy levels €4, ¢p, the
coupling constants, the mean value of electron number on the complex) was
investigated.

It was shown that the effective potential can possess one (z,y) = (0,U,)
or two (z,y) = (£U;,U,) symmetrical minima; in some cases they can
coexist. At the absence of the electron transfer the distribution function
f(z,y) is of Gaussian type in the vicinity of these points and ion vibra-
tions remain harmonical due to the variable separation. The dependence of
ion distribution functions and effective potentials on temperature, coupling
constants, relative positions of electron energy levels and charge state of
A — B — A’ complex were investigated in the regimes gp=const and n=const.
The phase diagrams separating the areas of parameter values with different
topological types of effective anharmonic potentials were plotted.

It was shown that in the case of double-minima potential the doublet
is formed in the low-lying part of spectrum; this doublet can be treated
as the splitted by tunneling pair of levels (with sublevel distance of the
order of t - e~9). This is caused by quasipolaronic effect connected with
‘process of simultaneous ion displacements and redistribution of electron
density in the system. Numerical calculations were performed with the use
of parameter values corresponding to the complexes O — Cu — O in the
high-T, superconducting crystals of YBaCuO type.

Appendix 1. Distribution functions and ”conditional” ther-
modynamic functions.

Distribution function, characterizing for the thermodynamically equilibri-
um system the probabilities of the certain values of the physical variable
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described by the operator A can be introduced according to the definition

fa)=(8(a~ 4)), (A

where (...) is statistical averaging over the canonical Gibbs ensemble. Func-
tion (A.1) satisfies the following normalization condition

/ f(a)da = 1. (A
a) In the case of the system described by the canonical distribution
fa) = 2
Z(a) = Splé(a — A)e=PH); Z = Spe=FPH . (A.3)

Beside the usual statistical opefator

H

po= e " (A4)

we will use so-called extended statistical operator

p(a) = §(a — A)po, (A.5)

Po can be obtainéd‘ from (A.5) by integration over variable a

po= [ h(a)da | (A.6)
and function f(a) can be obtained by performing the trace operation

f(a) = Spp(a). (A7)
The ratio
——= = pla (A.8)

has the meaning of conditional probability density; p|, can be called ”con-
ditional” statistical operator. The following normalization condition must

be satisfied:
Sppla = 1. (A.9)

We can introduce conditional mean values similarly to the common ther-
modynamical averages (B) = §p(Bpo) in the following way:

_ 5p(Bp(a))

(B)la = Sp(Bhla) = ) (A.10)

In the last expression the nunierator

Sp(Bp(a)) = Sp(Bé(a — A)po) = (B)|af(a) = B(a) (A.11)
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plays the role of density for the (B):

/ B(a)da = Sp(Bpo) = (B). (A.12)

In particular, according to this definition we can introduce ”conditional”
internal energy: ‘

(H)lo = Ul, = Sp(ﬁg“” = ?I((Z)).

”Conditional” free énergy can be obtained from the Z(a) by means of
the following relation:

(A.13)

Z(a) = . (A.14)
In this case * )
Fla F—F|g
f(a) = 26'_0!_ =™ (A.15)
and - . o '
Fl, = —81n Z(a) = —01n Sp[6(a — A)e=PH]. (A.16)
It results, as one can see, in the following
aF|, 1 H(a) Flo = Ula :
— =InZ -t = - - (A1

this corresponds to the usual thermodynamical relation between free and
" internal energies. Using the (A.17) we can introduce function :

_OF|,
36

Sla = (A.18)

which can be interpreted as "conditional” enthropy. .

b) Relations given in item a) can be easily transferred to the case with
variable number of particles that can be described using the grand canonical
ensemble. Distribution function over the variable a now can be written

fain) = Splo(a— At B, |
Z = Spe~PH-uN) - (A19)
Using the following deﬁnition
Z(a; p) = Spld(a— A)e™? =N, (A.20)
we can write: /

fla,p) = %Z('a;u)- | | (A.21)

*Expression (A.15) is an analogy of the expression for the probability of fluctuations
( deviations from the average value ) of the physical quantities. The proposed scheme of
introducing the conditional thermodynamic functions is similar to the one used in [20].
' 5
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The ”conditional” thermodynamical potential can be introduced simi-
larly to the free energy: ' '

3|, = —01n Z(a; p). (A.22)

One can ensure that

M’la _ (I)la (ﬁ - “NHG U‘a - F|a
8 - 9 + 7 = 2 = Slas (A.23)
because
Flo = ®la + #(M)la, (A.24)
as well as "

9®|, Splé(a— AN —B(H-uN) R
- a,l - 22 f(z;;)Z ]:<N>|a- . (A25)

The last expression at given mean number of particles
(Mle =N  (A.26)

defines the value of the chemical potential as the function of the variable
a. From the other point of view, when external conditions ( thermostat) fix
the constant value of u, then in accordance with (A.25) number of particles
is the function of a. ‘
Similarly to (A.14) function f(a;u) can be represented in the following
form:
d - B,
f(a,,u) = exp(7—7—|- . (A27)

Using the condition (A.26) and expression (A.24) at the fixed value of aver-
age particles number this distribution can be rewritten similarly to (A.15).
The most probable values of a correspond to the functions f(a) or f(a;p)
maxima, or, what is the same, to the F|, or @|, minima; these minima define
the equilibrium states of the system at the given N or p values respectively.

It can be mentioned that for the grand canonical ensemble ”conditional”
statistical operator has the following form

o, = Sla= el |
Plain = fla;p)
\

(A.28)

and the conditional average of the B operator is equal to

(Bl = Sp(Bplain)- (A.29)
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Appendix 2. Basis functions [n11n1yn2tngnaing, and corre-
sponding values of energy.

P>

Ap P> [ Ay

000000 > | 1>

Al 011100 > 33 > | Agr

100000 > 2>

Ao 011010 > 34 > /\23

010000 > | [3>

/\2 011001 > 35 > ./\28

001000 > 4>

/\4 010110 > 36 > /\23

000100> | [5>

>\4 010101 > 37 > /\28

000010 > | {6 >

Ag 010011 > 38 > Aos

000001 > | |7 >

A2 'TOOTTI0 > 1(39 > [ Asr

110000 > | [8 >

Ag 001101 > | [40 > A7

101000 > | [9 >

Ag 001011 > | [41 > A23

100100 > | [10 >

Ag []000111 > [42°> | Ao

100010 > [ 11 >

/\11 111100 > 43 > | Ay3

100001 > [ [12 >

Al 111010 > 44 > /\44

011000 > | [13 >

Ag 111001 > 45 > | dyq

010100 > | 14 >

Ag 110110 > 46 > /\44

010010 > | |15 >

A1 110101 > | [47 > Adq

010001 > | |16 >

A1 110011 > 48 > | Mg

001100 > | |17 >

A7 101110 > | |49 > A4

001010 > | [18 >

Ag 101101 > 50 > /\49

001001 > | |19 >

Ag |[ [1010I1 > [ [51 > [ Ayq

000110 > | J20 >

Ag 100111 > [ [52> | Xyg

000101 > | J21 >

Ag 011110 > [ |53 > A4

000011 > [ |22 >

Ag 011101 > 54 > | Ayg

111000 > | |23 >

Agz || 1011011 > [ [55 > | Ayq

110100 > | [24 >

A3 010111 > 56 > | Ay

110010 > [ |25 >

/\25 001111 > 57 > /\43

110001 > | |26 >

/\25 111110 > 58 > /\58

101100 > | [27 >

Aoz 111101 > 59 > | Asg

101010 > | [28 >

A2g 111011 > 60 > ’\60

101001 > | |29 >

‘/\28 110111 > 61 > /\60

100110 > [ [30 >

/\28 101111 > 62 > A58

100101 > | [31 >

Aog 011111 > 63 > | Asg \

100011 > | 32 >

Ags || [IITI1T > [ [64 > | Xes

, A =0
Ay =€ — &
Ag =€y — &

Ag =260+ A—§3

Ao =264+ U" - &

A =2 +U0" - &y

M7 =26+ A"~ &7

A2z = 2€1 + €4 2U + A - £33
Aos = 3er +2U' + A — €95

/\27=€1+2€2+2U+A/—£27

Azg =2e; + €3+ 2U + U’ — £y5
Aa=261+ 20 +4U + A+ A' - £43
Aa=3+ e +3U0+2U" + A— 4y

Agg = 4 +4U’+2A—€48 (A30)
Ao =261 +20+4U+ U + A' - 549

s =361+ 26+ 6U + 20" + A+ A — £5g

‘ /\60:461+€2+4U+4U’+2A—£60

/\64:461+2€2+8U+4U,+2A+A’—€64

~
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2

&=

k=1

2mwz( Ay (A.31)

Appendix 3. Agi) coeflicients.

o> AV T A7 Tl A7 T A7 > [ a7
1 23 [ A [ AR | a5 [ AY) | AP
2 | AW AV [ oa [AT A || 46 [ A | A7
3 (AW AP [ o5 [aW ] 4 [ a7 [al) ] 4P
4 | Al 26 [ AW [ AP | a8 [ A
5 | A 21 | AW | A | a9 | ALY
6 | AN [ -4 28 | al) 50 | ALY
ARE R 51 [ al) | —al?
8 1Al ] Al |30 [af) | 52 | AL | —AP
9 (A AP | 31 |4y 53 | ALy
10 (A Al 32 (Al | AP [ 54 | Al
11 | A)) 33 [ AW | AW | 55 [ Al) [ Al
12 [ Al) 34 | A% 56 | ALY | —a)
13 (Al ] AP | 35 [ Al 57 | A | —a)
14 [AD ] AP | 36 | A% 58 | Al ] A
15 | A}) 37 | A% 59 [ AL [ af)
16 | ALY 38 [ AW | -4l | 60 | Ag)
17 [ 4l) 39 [4) [ -A%) || 61 | AL
18 | AV [ a1 a0 [ A -4 [ 62 | al) [ -AF)
19 | AV [—al [ a1 [ A [ a0 [ 63 | A) [ -AF,
20 | AD [ Al | 42 [Al) | -A%) | 64 | Ag)
21 | A [ AP [ 43 |4y | A%
22 | AD [-al | 44 [ A0 ] 4P
AP = I A =2 -7 +a+p)
A = —vay AR = V27 - 27 + 28)
A) = 2y Af) = \}5(37 ~ 27" + 3+ 45)

AP = 27 - Vay' + La AR = 2v2(7+28)
AN =VETHE) A = VA -2y e 2f)
A = —2v2y Al = 75(37 — 49’ + 6a + 40)
AV =33 -v+a)  AY =v2(27 -7 +2a+48)
AR = 57 +2v28 AG) =2v2(r - +2a+26)
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AR = L7 - 4y + 20)

| M '
Agﬂ =7y 2%' Ag?s) = —2(7 + Ol) 9m!
AP = —2v+/ M, AP = —(7+2a) M
8 2m/ 27 2

ml
M
2m/!

AP = —(v+an/H AY = -2y + 23)
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E®EKTHUBHI JIOKAJILHI ATIABATUYHI IIOTEHIIA JIA

B TBEPOVX TIJIAX. MOIOEJIbHUM IIOXII

[.B. Craciok, }0.B. Cuzorenko

Ha ocnosi mpocToi Momesti mocainKyeThCa posb eNeKTpOoH-} o-
HOHHOI B3a6MoJIli B yTBOPEHHI JIOKAJbHUX AHTaPMOHIUYHMX TIOTEH-
miamie rpatku. Ha npukiani 3-ionnoro kiactepa A-B-A posras-
Ja6ThCA B336MOIIA eJIEKTPOHHO]I MMICUCTEMH 3 KOIMBHUMYU MOIAMU
Ur Ta Uiy, AKI 6 KP- Ta IY-akTusHi Bignosigao. PozpaxoByoThcs
e eKTUBHI 10HH] IOTEHIIaNX Ta QyHKIII posmomiay. Ilpoanaizo-

BaHO MOXKJIMBICTb nosBK onHoro (ul,0) abo mBox (u'c, +ul) pisHO-
BaXXHUX MTOJIOXKeHb KJjacTepa IPH PI3HMX 3HAUEHHAX [lapaMeTpiB
Mmogeni. IToGymoBano $pa30oBi miarpamu WA XapaKTEePUCTUKH Pis-
HUX MOXKJIMBUX CTaHIB KJACTepa Ta, BIONOBINHO, Pi3HUX TOMOIOTIU-
HUX TUIIB e eKTUBHMX moTeHUianlB. JociiiXyeThcA cHEpreTHY-
HUU crieKTp Mofedi. Ilokasano, o KBa3inoJAAPOHHUI ePEKT MPU-
BOJUTH 10 yTBOPEHHA Oy0jeTy B HM3bKOYACTOTHIN MUJIAHIN CIIEK-
Tpy. Bimmann Mix #oro miApIBHAMU BU3HAYAETHECA MapaMeTpOM
€JIEKTPOHHOTO IEPEHOCY, TEPEHOPMOBAHOI0 38 PAXYHOK €JIEKTPOH-
doHoHHOI B3aeMoxil.



