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The paper discusses the difference between the kinetic and hydro-
dynamic descriptions of nonlinear wave scattering and mixing in a
plasma with an external magnetic field. Solving the kinetic equation
by the method of moments makes it possible to substantiate the va-
lidity and to find the applicability range of the fluid approach to the
study of nonlinear plasma processes. In the case of cold magnetoactive
plasmas, the nonlinear kinetic equation and the fluid-approximation
equation are shown to yield the same expression for the current that
induces scattered waves. An additional effect of electromagnetic wave
scattering caused by the thermal dispersion of fluctuations is consid-
ered. The current that induces scattered waves is analized as a function
of the scattered wave frequency.

Introduction

Electromagnetic wave scattering is a well known method of plasma diag-
nostics both in experimental fusion devices and near-Earth space environ-
ment. It is peculiar of the electromagnetic wave scattering in plasmas that
along with Thomsom scattering (incoherent scattering by individual parti-
cles) there occurs as well scattering by collective plasma excitations - the
combination scattering. The phenomenon of electromagnetic wave combi-
nation scattering and transformation by collective plasma excitations was
considered for the first time in [1]. A detailed theory of electromagnetic
wave scattering in plasmas with and without external fields was developed
in papers [2-5] and, independently, in [6-8]. ' '

The main problem in calculating the quantitative characteristics of elec-
tromagnetic wave scattering in plasmas is to find the current produced by
the nonlinear interaction of the incident wave with the fluctuations of plas-
ma parameters. This current determines the scattered wave field. In [4], a
cold plasma without external magnetic fields was considered, and nonlinear
hydrodynamic equations and nonlinear kinetic equation with self-consistent
field were shown to yield the same result for the current that induces scat-
tered waves.

In view of extensive studies of plasma dynamics in fusion devices, much
interest has been attracted to the calculations of electromagnetic wave scat-
tering spectra for nonequilibrium plasmas with strong magnetic fields. A
series of such calculations was performed in [9-14]. Some of them ([12-14])
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doubt the hydrodynamic approach applicability to the treatment of nonlin-
ear effects even in cold plasmas. In paper [15] we showed that the reasoning
of [13,14] concerning the inapplicability of the fluid approximation for the
study of nonlinear phenomena in plasmas had been erroneous. We con-
sidered a simple case of two-wave interaction in a plasma without external
magnetic field to illustrate the identity of the results obtained by means of
kinetic and fluid approaches in the limiting case of cold plasmas.

Insofar as the approach in terms of hydrodynamic equations considerably
simplifies the treatment of nonlinear scattering in a plasma, it is a matter of
principle to substantiate the fluid approximation applicability and to reveal
the relation between the results obtained by kinetic and fluid approaches.
The problem is considered in this paper.

Electromagnetic field in a medium

The study of electromagnetic field in any medium implies solving Maxwell’s
equations along with consitutiwe equations which describe the self-consis-
tent interaction of component charged particles and determine the relation-
ship between the current and the electric field in the medium,

j :j(E) +jezt’ (1)

where jez: is the external current. The general relation between the current
j and the electric field E is nonlinear. If the field is weak, this relation may
be written as an expansion in power series of the field, i.e.,

. 0. .
J(E) = 5. (2E + 2EE + ..), (2)

where ® and %(?) are the linear and the nonlinear quadratic electric sus-
ceptibilities of the plasma. Taking into account the quadratic term in the
expansion (2) provides, in particular, a possibility to describe the wave mix-
ing.
If expansion (2) is restricted to the linear term, i.e.,

J(E) = —iwaE, (3)

" then the field in the homogeneous stationary medium is described by the
usual Maxwell equation

1

A(wak)Ekw = _;jezh (4)

with the tensor A(w,k) being a function of the dielectric permittivity & of
the medium, i.e., :

kik' k202
Ao =e@ )+ (G -6) i =T ()

w

With regard for the fluctuations of the medium parameters responsible for
its electromagnetic properties (charged particle and current densities, ex-
ternal magnetic field), the linear relation (3) reduces to

i(E) = —iwsE — iwb2E, (6)
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where 62 is the fluctuation addition to the linear susceptibility tensor. Then
the electromagnetic field in the medium with no external currents (jez: = 0)

is desctribed by an equation of the type (4), with je,: being replaced by the
curren

J = —iwbRE, (7)

that is produced by electromagnetic field interaction with fluctuations. This
~ interaction can give rise to the scattering of electromagnetic waves.
Assuming the fluctuations to be small, one can easily describe the elec-
tromagnetic wave scattering in terms of the perturbation theory.
Suppose that, in the case of no fluctuations, an electromagnetic wave Eg
with the frequency wo and the wave vector ko propagates in the medium,
ie.,

Aij(wo, ko) E = 0. (8)

Interaction of this wave with the fluctuations produces the field E of
scattered waves with frequencies w and wave vectors k that is governed by
the equation

A(w,k)Ey, = —ngw, Iy, = iwbz(Aw, q)Eo, (9)

where
Aw=w—wy, q=k-ke.

If fluctuations do not depend on the self-consistent electromagnetic inter-
action of medium particles, then there occurs incoherent wave scattering.
The incoherent fluctuation spectrum contains a broad maximum for low
frequencies Aw whose width is determined by the temperature. Thus, the
incoherent wave scattering is accompanied by small frequency shifts.

The self-consistent interaction of medium particles produces coherent
fluctuations (collective fluctuation excitations) associated with sharp max-
ima in the spectrum at eigenfrequencies wy. Inasmuch as in this case the
excitation 6z depends on the fluctuation field (is proportional to the field),
the inducing current in (91) is quadratic with respect to the field. Therefore,
the wave scattering by collective fluctuations may be regarded as mixing of
the incident wave (wo, ko) and the fluctuation wave Aw = wq, q), accom-

panied by the appearance of the wave (w, k).

Reduction of the kinetic equation to the chain of
moment equations

The main task in calculating the cross-sections of wave scattering or mixing
is to derive from the constitutive equation an expression for the current given
rise to by the incident wave nonlinear interaction with fluctuations, and
determines the scattered wave field. The nonlinear constitutive equation for
the plasma, and hence the scattered-wave-inducing current, may be derived
from kinetic or hydrodynamic equations for the electron and ion plasma
components. Since the difference between electron and lon masses is very
large, the consideration may be restricted to the electron component only.
The relevant kinetic equation may be written as

oF OF e 1 oF
E+VE+E(E+Z[V,BQ+B]>E‘—“O, (1)



Description of wave scattering in plasmas . .. 195

where F(v) is the electron distribution function, Bg is the external mag-
netic field, E and B are self-consistent electric and magnetic fields. The
kinetic equation (10) is nonlinear with regard for the self-consisted electron
interaction.

In order to compare the results obtained by kinetic and hydrodynamic
approaches, we solve the kinetic equation by the method of moments. Then
nonlinear equation (10) reduces to an infinite chain of equations for the
distribution function moments

?E + 61/1’ =0

ot or; -

allz' allij _ [ 1

5T T m {WE+ € vi(Bow + L) ()
Ovij  Ovije e 1

_6_tl 79—# = {Vz‘Ej + Ev; + 'C'(Eikl Vik+ €jr Vi )(Bor + Bl)}

and so on, where N = [ dv F is the electron density, v; = [ dvv,F is the elec-
tron flux density, vi;; = [dvuvv;F and vk = [dvo;v;opF are the second-
and third-order moments. We note that
vv;
vij = # + Ay, (12)

where A;; is the pressure tensor given by

Aij = /dv (vi - %) (vj'— %—) F. ’ (13)

With no heat fluxes, we have

[ (5= ) (- 2) (- 2) £ =0

and the chain of equations (11) is cut off by virtue of the relation

1 1 :
vijk = Jrgvivive + 7 (Biive + Dievj + Ajkvi). (14)

Having substituted (14) into the third equation of the set (11), we obtain
an equation for the quantity A;;, i.e.,

BA,»]-
ot

Aij .
= -e_(Eikl Akt €k DAix) B — —N—’—dwu -

mc

Aij e ﬁ)_ ._a_(ﬁ) 15
a3 - dug () - g (5 (15)

(for the sake of convenience we moved all the nonlinear terms into the right-
hand part). The plasma current j is immediately determined by the electron
flux density v,

€.
- —n;(eikl Ajk+ €jr1 Aik)Bor =

j=ev. (16)

The second equation %11), combined with relation (12) and equation (15),
makes it possible to find the current and thus, together with Maxwell’s
equations, completely determines the electromagnetic field in the plasma.



196 O.H. Sytenko

Fluid approximation

The set of simplified equations derived from the kinetic equation, corre-
sponds to the fluid approximation with regard for the thermal effects. The
hydrodynamic velocity u is determined by the relation

-y an

According to the definition (13), the quantity A;;, in case the local distri-
bution is isotropic, reduces to

A = Ad;;. ‘ (18)
In the case of local equilibrium we have
A=L p=nNT, , (19)
m
where pis the plasma pressure, T is the plasma temperature. Then equation

(15) reduces to the usual thermal energy balance equation. Thus, (11) yields
a set of hydrodynamic equations

0N

bR 1 -

T + divNu = 0,

Ou 1 e 1

S+ (aVu= ——=Vpt E(E +~[u,Bo + B]),

oT 2, ..

—5? + (IIV)T = —glevu. (20)
The current j and the hydrodynamic velocity u satisfy the nonlinear relation

j=eNu. : (21)

The limiting case of cold plasmas

In the cold plasma limiting case, we can neglect the quantity A;; or the
pressure (p = 0) in the equation for the flux density v [the second equation
of the set (11)] or for the hydrodynamic velocity U [the second equation of
the set (20)]. We also disregard the nonlinear terms and thus obtain the
.consitutive equation in the form

jkw = _i""’é(w)Ekwa (22)

where a"egw) is the dielectric permittivity tensor of a cold magnetoactive
plasma. It is given by

w? WR w?
— P . ; g —ZBpp.
&ij(w) - —47r(w2 — w%) 61] + 1 w E’L]k bk 2 bth . (23)

2
D

cyclotron frequency, b = %—g is the unit vector directed along the magnetic
field Bo.

_ dwelng _ eBp
Here w? = #7€-%2 is the square of the plasma frequency, wg = 72 1s the
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We denote the incident wave frequency and wave vector by wo and ko,
those of the scattered wave by w and k; the fluctuation frequency and
wave vector are Aw = w —wp and q = k — ko. In what follows we label
the quantities corresponding to the incident wave by the subscript 0; the
fluctuation amplitudes are tilded. We treat both incident and scattered
waves in the linear approximation. In the case of cold plasma (when for

the incident wave A?j — 0 and for fluctuation excitations Z&,-J- — 0 ),the

right-hand part of the equation for the scattered wave (1521 vanishes, i.e., we
find the equation for the quantity Agj associated with the scattered wave

to be
0A;;
ot

Under the assumption that Aj; harmonically depends on time, this equation
has an unique solution A;; +0. Hence, in the case under consideration, the
current that induces scattered waves is determined by the equation for the
flux density

— wp(€im Ajrt €k Aik)br = 0. (24)

1
A NE+—C-[u,B0+B]}. (25)

Taking into account the nonlinear terms (which are, however, linear with

respect to the incident wave and fluctuation amplitudes), we obtain an
expression for the current that induces scattered waves, i.e.,

Jgo = -—i%a’e(u){ﬁquEo + nOEqu +
1. 1 .0 &
+_C'[Vqu,BO] + Z[Voa Bqu] -

_i—e%; ((pqau)® + (k¥)vqaw) }- (26)

With the continuity equation %]ti + dive = 0 being satisfied, equation (25)
for the flux density v is equivalent to the equation for the hydrodynamic
velocity u, i.e.,

du e 1
4+ (uVu=— E+ - Bo+ B 27
ot (uV)u m ( c[u’ 0 ]> T (27)

This means that, in the cold plasma limiting case, the reqults of the fluid
approximation reproduce the results obtained by the kinetic approach.

Is there ambiguity in the use of fluid equations?

The direct use of equation (27) and current definition (21) results in.different
from (26) expression for the scattered-waves-inducing current [3],i.e.,

W0 [ v no, -

Jeo = it ’nquaé(wo)E0+—ko?B(WO)EquAW‘*'
no Wo
n

1 ~ -
+ ’EW{E(W) [_“qua Bo] + [uO’ Bqu] -
wo c

: —i%((koﬁqm)“o +(qu”)igan) ]} (28)
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In particular, the factor in the terms of equations (26) and (28) which
describe wave scattering by electron density fluctuations, depends on differ-
ent frequencies. The factor in (26) depends on the scattered frequency w,
whereas the one in (28) depends on the incident wave frequency wp. The
difference between the expressions (26) and (28) which are derived from
equivalent hydrodynamical equations (25) and (27), suggested an idea to
the author of [13] that the fluid approach is inapplicable for the study of
nonlinear processes in plasmas. Actually, however, expressions (26) and (28)
are equivalent in the limiting case of cold plasma (this is just the case for
which the hydrodynamic equations are applicable). For cold plasmas, one
may disregard the thermal effects (i.e. thermal corrections in the dispersion
wave equations) and the Langevin source in the constitutive equation for
fluctuations.

We remind the reader that, when treating thermal fluctuations in a
medium, one usually introduces in the constitutive equation an additional
Langevin source Jo whose spectral distribution is assumed to be given, i.e.,

Jgo = —iwa(@)Bqs + Jo, - (29)

This source is then employed to find the fluctuation spectral distributions
for various quantities. : :

We substitute k — kg in the last term within the curly braces in §28),
and k — q for kg in the term last but one. Then, within the context of the
. relations

kOjO = —in (koé(WO)EO) EO, q:i'qu = Aweﬁqu,

and the identity &(w)& ' (w) = 1, we find that the expression for the current
(28) reduces to

v . w ~ ~ wo A =1 wAw
Iy, = —zn—o&(w) {nqu: (ae (w)+ 4r 2

) d(wo)E%+

p

1/,
+ien > (a‘a‘l(w) + 4‘%’—) iiqaw + o[ ({qaw, B +
) p

+u, Baaul) i ((Kigau)u + (ku%)igan)| . (30

The factor at the first term within the curly braces in the right-hand part
of (30) takes the form '

wAw w o, _
= —& Ywo),
0

o1
& (w) + 47 o ==

and therefore the first term in (30) reduces to first term of (26). In a similar
- manner, we employ the relation

) 4 4r Y
& (w)+47rw—g-_ A

27 (Aw)

and rewrite (29) (in which Jg is neglected) as

é_l (AUJ)quw - zAUJEqu.
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Now we see that the second term in (30) reproduces the second term of
(26). Thus we have shown that the expressions for the current that induces
scattered waves, derived from the hydrodynamic equations (25) and (27),
are equivalent provided we neglect the source Jg in (29). In other words, in

the limiting case of a cold plasma, derivation of the inducing current does
not lead to any ambiguities. ' '

Effect of thermal dispersion of fluctuations

The phase velocities of the incident and scattered electromagnetic waves are
much greater that the electron thermal velocity and hence thermal correc-
tions to the dispersion of these waves may be disregarded. However, phase
velocities of fluctuation excitations are of the same order of magnitude as
the electron thermal velocity and therefore, under certain conditions, their
thermal dispersion may considerably influence the wave scattering. If the
distribution function F' is isotropic with respect to the velocity deviations
from the mean value, then for fluctuation excitations we have

A;; = As;;.
As follows from the thermal balance equation,

- 5T ,
Aqaw = 3 -Rqdw- (31)

We disregard thermal dispersion corrections for the incident and scattered
waves. At the same time, in the equation for the flux density v associated
with the scattered wave, we allow for the thermal correction A;; in the
second moment. This correction is proportional to the temperature and,
according to (15), is determined by the equation '

Ak ,w) - i%z( €irt Ajr(k,w)+ (€jn Aik(k,w)) =.9;;(k,w), (32)

where
5
3 mnow

Sij(k,w) =

(kuoéij + k?l/? + k?l/?) ﬁqu- (33)

The equation for the scattered wave flux density contains only the scalar
product Ak. In order to find it from the tensor equation §32),Awe employ
the simplified set of vector equations [16] for the quantities Ak, Alk,b], and
Ab. The solution of this set is given by

Ak, w)k = -%’;{(w — wp)28(w — wp)Q-(k,w) +

Ho +wh)e(w +wp)Qi(w)}, ,_ (34)

- where the quantities Q+(w) are defined by

Qs(k,w) = {80k W)k
;47r“:"—f(kb)se(w)§(k,w)b + ik, w)[k, bl }. (35)

P
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The additional inducing current, associated with the effect of electron ther-
mal motion on the fluctuation dispersion, is described by the expression

37 = =™ a(w)A .
kw enowm(w)A(kaw)k' | | (36)

Unlike the hydrodynamical current (26) which corresponds to zero plasma
temperature, the thermal current (36), treated as a function of the scattered

wave frequency, within the context of (34) has singularities at multiples of
the cyclotron frequency, i.e.,

w = £2B. (@37

Therefore, if the incident wave {requency is close to twice the cyclotron
frequency, the spectrum of incoherent scattering (associated with small fre-
quency shifts) considerably depends on thermal dispersion of fluctuations.
Singularities in the spectrum of electromagnetic wave scattering in mag-
netoactive plasmas were discovered in paper [17] by means of the kinetic
approach. ,

We note that the linear set of fluid-approximation equations with regard
for thermal effects yields thermal corrections to wave dispersion which differ
by factors from the analogous kinetic-approximation corrections. Therefore
it is clear that the nonlinear set of hydrodynamic equations, obtained by
truncating the infinite chain 311), provides only qualitative description of
the scattering coefficient peculiarities associated with thermal effects. The
~ quantitative study of thermal effects must be based on the kinetic descrip-
tion.

Concluding remarks

Thus, solving the kinetic equation by the method of moments allows one to
prove that the fluid approximation is valid for the treatment of nonlinear
processes in magnetoactive plasmas, and to find its applicability range. The
results of the fluid-approximation study of nonlinear processes in plasmas,
obtained within its applicability range, are shown to be in accordance with
the results of the kinetic treatment.

In the case of wave transformation, when mixed waves satisfy linear
wave equations, both fluid and kinetic approaches yield similar expressions
for the inducing current. In the case of electromagnetic wave scattering by
thermal fluctuations, the results of the fluid and kinetic approaches are in
accordance only in the limiting case of cold plasmas when thermal effects
may be completely disregarded (these are corrections to the wave dispersion
equation and the additional Langevin source in the constitutive equation for
fluctuations). Different expressions for inducing current, obtained from var-

ious versions of hydrodynamic equations, reduce to the same form in the
cold plasma limiting case. Inasmuch as fluctuation oscillations in the spec-
tral ranges close to plasma eigenfrequencies are characterized, allong with
dispersion and polarization, by the same relations between various quanti-
ties as for eigenoscillations, the use of fluid approximation in the study of
electromagnetic wave scattering by fluctuation eigenoscillations is quite rea-
sonable. At last, thermal corrections to the fluctuation dispersion relations
are shown to be responsible for the singularities of the inducing current re-
garded as a function of the scattered wave frequency. The singularities occur
at multiples of the cyclotron frequency. However, the fluid approximation

provides only qualitative description of thermal effects.
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KIHETUYHUA TA TIIPOOIUHAMIUHUHN OIINC
PO3CISSHHSA XBWJIb TA HIEPETBOPEHHSA ¥ IJIA3MI

O.I'. CuterKO

B 1t po6oTi 06roBopr06THCA PI3HULLA MiX KIHETUUHMM Ta IiIpo-
- IVHAMIYHMM ONMCOM HEJIHIAHOrO PO3CiAHHA XBUIb Ta Jepeminny-
BaHHA y MJIa3Mi B 30BHIIHBOMY MarHiTHOMY no. Po3p’asok Kine-
THYHOT'0 DIBHAHHA METOJOM MOMEHTIB JO3BOJIAE 3HANTH o6iacThb
3aCTOCYBAaHHA PIIMHHOTO MIX0NY N0 BUBYEHHA HEIIHIHMX POLeCiB
y nnasmi. IlokasyeTbcd, Mo y BUMAAKY XOJONHOI MArHITOAK TUBHO]
n1a3MK HeliHilHe KiHeTHWUHE DIBHAHHA Ta DIBHAHHA ¥ PiIMHHOMY
HaG/IMKeHH I JaloTh TOW CaMU BUPA3 NJIA MOTOKY, WO IHIYKYEThb-
cf poacigHumMM XBUIAMM. PosrianyTo nonatkoBuit edext po3cisn-
Hf €JIeKTPOMAlHITHUX XBUIIb, MO CIPUYMHEHUA TEPMOIMCIIEPCiSIo
dnykryauin. ITorik, mo mnyxysn,ca PO3CIAHMMU XBHIAMM, aHAJI-
3yEThCA AK dpym(ulﬂ YaCTOTH PO3CIAHMX XBHIb.



