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'The connection between the method of collective variables and the
field theory methods is analyzed using as an example the relativistic
system of charged particles. It is shown that partition sum can be
written in the form of integral by the paths of particles in the con-
figuration space, classical action of which is not additive, after the
elimination of field variables. The correction to the energy of heat
radiation is calculated.

Introduction

The method of collective variables is one of the original mathematical meth-
ods in modern statistical physics. It’s basis was created more than 40 years
ago mainly by Bohm, Pines, Bogolubov, Zubarev, while considering the
problems of plasma theory and superfluidity. The subsequent development
of the method and it’s application to the different problems of equilibri-
um statistical theory were carried out by Yukhnovskii. In early sixties he
proposed “The method of displacements and collective variables”, where
classical and quantum schemes of collective approach were put together
and which was successfully applied to the studies of quantum plasma and
non-ideal bose-gas. At the same time Dr. Yukhnovskii and his followers
developed the traditional approach of the method of collective variables
(MCV), basing on the use of transition function. This approach appeared
to be widely used in the classical system of particles with complex electro-
static interaction, in the theory of metals and liquids and in the theory of
phase transitions. The results of the studies mentioned above and bibliog-
raphy can be found in the monographs [1-3], in the review [4] and some
papers included into journal [5].

The Method of Collective Variables is rested on the idea of introduc-
ing along with individual variables some additional (collective) variables,
which describe the collective motion of the particles. Therefore, the in-
troducing of collective coordinates can be considered as the turn from the
theory of direct particles interactions to some kind of fields theory, which
is formulated in terms of path integrations. The field aspect of collective
integrations method becomes particularly clear if this method is applied
to the equilibrium system of charged particles in weak relativistic (post-
Newton) approximation. This approach was proposed in joint publication
[6] of Yukhnovskii and the author. Here the possibility of generalization of
this approach to the relativistic case is considered.
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1. Path integral for statistical density matrix

Consider the system of N spinless particles, having mass m and charge e. In
post-Newton approximation this system is described by Darvin Hamiltonian

. ’U2~ 1/2
L =Lg+ Ly, LO:—;mcz(l—c—;) ,
(1.1)

=Yy 2w - $<k§j)(kvz>] b
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here v, ¢ - speed of the particles and light, correspondingly, r;; = r;—r;, V -
system volume. It is convenient to preserve the exact relativistic expression
for Lg.

The traditional approach of statistic mechanics is based on Hamiltonian
function use. However, the transition to the hamiltonian variables is not
obvious since L complicatedly depends on particles velocities. Particularly,
it can be shown that finding the velocities as functions of momentums de-
mands, in case of long-range interactions, the consideration of all 1/c power
terms in the formal series. It is due to the fact that all these terms are
of the same order of magnitude if one considers the thermodynamical limit
(the existence of the latter is necessary to take into account in statistical
mechanics.) The formulation of statistical mechanics in terms of functional
integrals has been developed in author’s papers [7,8]; in this approach all
initial relations of the theory are expressed in terms of Lagrange function
variables only. The formulation stems from certain modification of Feynman
method of integration over variables. For example, the statistical density
matrix

K(r,x';3) = e'"ﬂf[ H&(rj - ),
J

(H - Hamilton operator, 3! — temperature) can be written in the form of
path integral by the paths in configuration space, particularly:

B
K(r,x';8) = regC?’N/D3Nu(T)eWH5 rj —r;— h/druj(‘r) , (1.2)
A J 0

8
W = /dTL(iu(T),‘r(T)), (1.3)

0
Du(r) = H du(r), —oo < u(r) < 400,
0<r<p

B
Cc7! = /Dz(r)exp —-;-/drzz(r) .
0 :

The functional L(iu(7),r(r)) can be.derived from classical Lagrange func-
tion of the system, if in the latter one substitutes the velocities v; by 4u;(7)
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(12 = —1), and coordinates r; by expressions

I T
ri(t)=r; — h/dr'u]-(rl) or r;(t)= r;» + h/dr'uj-(rl). (1.4)
T 0

W has the meaning of classical action being dependent on Lagrange function
variables for the theory with imaginary time t = A8/ (Euclidian theory).
The "reg” symbol means that the result of path integral calculation has
to be regularized. This regularization means emission of the terms, which

are proportional to [6(0)]n(n =1,2,..,8(0) = 6(7)};=0, 6(7)- Dirac delta-

function. In the approximation of path integral by finite number of usual
integrals the role of §(0) plays 1/A7. We won’t use symbol "reg” in the fu-
ture, however, we'll keep in mind the necessity, if required, of regularization
mentioned above, ,

The relations for matrix K listed above are general. Obviously, the func-
tional W in case of post-Newton system of charged particles is determined
by formulas (1.3), (1.1). It can be easily written in the form

W:W()-|-WS+W1, (15)

I
Wy = —/dTZm(?2<l + ujz-(r)/cz)l/z,
0 J

I}
1
W, = §/drzj:Xk:ezuﬁfﬁ(T),
0

Here we use the following notations:

Xpe(r) = 3 ee Oy (r), (X = =Xy,
k 11k 4
W)= s )] = (16)

Let’s point out that term Wy in (1.5) is introduced in order to compensate
self-action terms in W; which are absent in initial expression (1.1).

To finish this part we write the formula for partition sum, derived by
integration of diagonal elements of matrix K:

B
Zn = /dSNrCSN/D3Nu(r)eW°+W'5'+W1 H6 h/druj(r) . (1.7
J 0
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In non-relativistic case (¢ — oo) Lagrange function (1.1) is equal to the dif-
ference between kinetics energy of the particles and the energy of Coulumb
interaction. One can show that in this case the relation (1.1) has the form
of usual Feynman integral by the paths.

2. The introduction of field variables

We introduce in (1.7) the additional integration over the field variables. It
can be done by expressing exp W in terms of Gauss path integral, particu-
larly

B
e = exp l/dTZUﬁ (Xk(T)X_k(7)) = (2.1)
2 J ”

B
B/DRk(T) exp!dr%{%(Rk(T)R_k(T)) - in(Rk(T)X_k(T))}.

The constant B is derived using the condition which demands the integral
over Ry to be equal to 1 while X} = 0. Let’s point out that variable
Ry (7) is complex. Since Xg = ~X_x and so Ry = —R*,, therefore

Ryy = R + ¢R{. Then

1 1 1 2 c\2 s
3 2 (RiRos) = =5 3 IRy = 3Rl —kzw{(Rk) + (R}

and the right-hand part in (2.1) is the shortened form of the following ex-
pression

B/U {dRo(r) 11 de((r)de{(r)} expjdr {—%Rg - iuo(ROXo)} <

k>0
<)
xexp [ dr Y {~(Rj)? ~ (R})? — 2ind(REX) - 2im(RiXi,)}.
0 k>0
Substituting (2.1) into (1.7), we obtain

ZN:/dSNTC3N/D3Nu(T) x (2.2)
B
B / DRy (r)e VRS T] 5 | 1 / dru;(r) |,
J 0
WR,u,r] = W, + Wi + Wy, W, =W, + W,,

B
Wy =3 [ 3 (Ru(rRsin),
I¢]

Wing = — /dTZin(Rk(T)X—k(ITDa

k
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here Wy, W,, Xy are derived from formulas (1.5), (1.6).
The relation (2.2) can be derived using collective variables method as
well, if Xy

B
e = /de(T)J[Zk; u, r]exp%ﬂ/dek:in{ (Zk(T)Z—-k(T))v

here transition function J is chosen by infinite product of é-functions [6]:

J = ITI]_;[é (Zk(T) — e emilain) {% + % [%uj(r)] }) :

7

Now, using the integral representation of § function and calculating Gauss
path integral by Zy(7), one can obtain formula (2.1) for exp W;.

Let’s write Zx in the form, convenient for further calculations. Partic-
ularly, we change the integration order over rj,u;(r) Ry(7) and take into
account that W, and W,,,; are unar quantities. Tf]en one can easily get the
expression for Z ~ in the following form

Zy =B / DRi(1)e%! (Zy(R)N . (2.3)

Here Z;(R) is one-particle partition sum
B
Zy(R) = / &Prc® / D*u(r)e? W5 | & / dru(r) |, (2.4)
0

and W(1) is defined by the expression which is summed over the particles
in Wp + Wint- . '

The integral (2.3) has to be regularized also. It is due to the change of
integration order while moving from formula (2.2) to (2.3).

3. Relativistic system of charged particles

Let’s consider the relations from previous chapter in more detail. As it
can be seen from (2.2), the functional W[R, u, r] has the form of action for
the system of particles and some fictitious field Ry (7). The structure of
Wint allows to identify the field variables. Indeed, the part of action which
describes the interaction of charged particles and electromagnetic field has
the following form in Euclidian theory:

s |
= Yk {i2 (W(DAKD) —earm}, @)

here @y (1) Ag(r) — Fourier representation for scalar and vector potentials
of electromagnetic field. Considering notations (1.6) we can easily conclude
that Wi, in (2.2) is equal to expression in (3.1) if

VarV VarVvV
- 1T(kRk) = ¢k, —T[kRk] = Ay. (3.2)
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That is, the integration variable Ry (7) can be related to the electromagnetic
field potentials in the following way:

Ry = m{[mk] + ik | (3.3)

Substituting (3.3) to the formula for Wf we obtain

B I

- k2 1

Wy = [ar Y oo il = 1A} = [ar S o (Bl — 1}
4] k 0 k

(3.4)
here Ey, Hy are Fourie representations for electrical and magnetic field.
Therefore, the expression Wf[R,u,r] which is integrated in (2.2) can be
said to be the action integral for charged particles and field in post-Newton
approximation.

The structure of functional W[R, u, r] enables to make generalization of
post-Newton relations onto relativistic case. Indeed, the expressions for Wy,
Wi, have the same form in the relativistic theory of charged particles. We
can expect that in order to obtain a relativistic formula for partition sum one
can just substitute the “static action” Wy in W{R, u, r] by exact relation for
free electromagnetic field action integral, that is, to replace the fictitious field
by the real one. To take into account field’s degrees of freedom one should
complement the expression in brackets (3.4) by the term —|Ay|?/(hck)?,
here the point means the derivation over 7. Considering relations (3.2) we
write action integral in the following form:

B8

Wy =1 [ar S {(RaR w0 + sy [(Rac) - (ORa eRi0/K7] |
o k

(3.5)

This permits to describe the partition sum of relativistic system ”charged
particles + field” by the following formula:

== /dSNrC:*N./ D¥Nu(7)B '/.DRk(T)H(S h/ﬁdruj(r) X

exp(Wy + Wo + Wy + Wine), (3.6)

here Wy is defined from (3.5), Wy, W, Wip, are the same as in (2.2), con-

stant B is derived in order to find the partition sum of free electromagnetic
field in case of particles absence. It is obvious that formula (3.6) can be
rewritten in the form

== B/DRk(r)ve [Zy(R)NY (3.7)

with the same Z;(R) as in (2.3). Let’s point out that integral over field
variables in (3.6) is the regular Feynman integral by paths.

The relations for = listed above are complied with the results obtained
in the fields theory. It becomes clear if we change the integration over Ry(7)
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in (3.6) to the integration over Ay(7), ¢i(7). Then the expression Wy +
Wy + Wint would have the usual form of action integral for charged particles
and field. Substitution of three integrals by four leads to appearance of
extra multiplier T, [Tx 6(kAy) in integral, as it should be expected since
electromagnetic field is gauged. (It is well-known [9] that quantization of
gauged fields is done by path integration of expressions @ exp %[action],
here the functional @ sets the type of gauging.) Therefore, the relation
(3.6) differs from the similar formula in fields theory by self-action terms
only - they are partially eliminated in post Newton approximation, but are
present if field approach is applied. The reason for it is that the fields theory
has "naked” masses and charges and it’s results should be renormalized.
Particularly, in weak relativistic approximation, using Lagrange formulation
of the theory, this renormalization actually leads to the elimination of self-
action and substitution of "naked” masses and charges by physical ones.
This is why, formula (3.6) should be considered as the result of fields theory,
where renormalization is partially done.

4. Path integral for partition sum of the particles having
non-additive action

The path integral (3.6) is Gauss-type as to variables Ry (7). This makes
feasible to write = in the form of product of free field partition sum and
partition sum of particles with direct interaction. We consider free field case

first (N = 0). It is convenient to change temporarily integration variables
in (3.7), according to Ry,

R : 2
R — = R zwnr, W = —n.
k(7) 3 n:z_m K,n€ Wn = —gn
Then,
=(N =0) = B[/HHde,n exp ®, (4.1)
k n
1 1 “n 2 v
®=25 Ekj {; [%u +lu (ﬂ) } Rk + (Rk,oR—k,o)} ;

here 1, v = {z,y, 2}, I - transformation Jacobi factor, 8,,,- Cronecker factor,
Liy = by — Kk /K? = 6, — Il

Reducing @ to canonical form and returning back to initial variables Ri(7),

we found
-1/2
2
L (% :
6#V+lﬂu (hck> '} X

B
B/DRk(T)exp%/dTZ(RkR_k). (4.2)
0k

E(N =0)= {HHdet

k n#0
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The calculation of product over n is not difficult. It can be shown that if B
match the condition

k n#0

g8
. X
(TIII 42 B/DRk(T)exp§0/dT§(RkR_k) -1,

one can deduce from (4.2) the partition sum of harmonic oscillators:

Z(N =0) = exp {—QZln(l — g Pheky _ ﬂthk}
k k
= Zyexp(—B8 Y hck), (4.3)
k

here Z; is partition sum of free field.

The integration over Ry(7) in case of N # 0 is done in the same way.
The integral over field variables in (3.6) differs from (4.1) by presence of the
additional term in exponent, which is linear by Ry, . It can be eliminated
by shift transformation. After calculations are made, we get = = Z,ZN,

here Zy is defined by formula (1.7) in which W; is substituted by

I¢] B
;oL T T e2vd exp L i(kri (1)) = (kry(7'
51 = 20/d O/d S5 o {illay(r) - tkn ()}
[5(7‘ -+ Cl—zltyu?(r)u}’(T')Dk(T - TI)] ; (4.4)

1 too ; ' W 2]~}
Di(r =1 = 3 Z elon(T=7) 1y 4 (h—nk'> =
c

n=—oo

%hck ch [hck (g o TI|>] sh [hcké—i} . (4.5)

Derived expression Zy can be considered as partition sum of relativis-
tic particles having direct (non-field) interaction. The expression (4.5)
is temperature photon Green function. In post Newton approximation
Di(r —7') = §(r — 7). Then S; = W; and Zy complies with (1.7).

It is worthwhile mentioning that the same result for Zy can be derived
in a different way. Let’s eliminate from the very beginning the field variables
in action integral for charged particles and field. It can be easily shown that
field equations 6( Wy + Wiy,,) = 0 in terms of Ry (7) and their solutions have
the following form:

1 " .
(f—'},—ck_)zltuRk — Rﬁ + leXl‘:(T) = 0,

2 .—1
— 1 Wn v
Ry, = i {l'u'u + [1 + (ﬂ) l } X
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Using the last relation in expressions for action we find Wi+ Wine = 51.
This approach of field degrees of freedom elimination is typical for Wheleer-
Feynman electrodynamics. Therefore the functional Wy + §; = S can be
considered as the alternative to Wheeler-Feynman theory with imaginary
time. The presence of two integrations over 7 in (4.4) means that action
is not additive. For such systems Hamilton and Lagrange functions do not
exist in traditional sense. Assuming that formula (1.2) is correct in case of
non-additive action as well, one can easily find that the above relation for

Zy is derived by simple substitution the functional W in (1,2) by 5.

5. Classical relativistic gas of charged particles

As it follows from (3.7), in order to find = we should calculate one-particle
partition sum Z;(R) determined by relation (2.4). We restrict ourselves
to consideration of charged particles classical gas model. In this case the
expression for one - particle action gets simplified since, accordingly to (1.4),
the functional dependence of coordinates on velocities disappears when A =
0. Then, we use cumulant expansion for Z;(R). Considering terms having
first order of charge magnitude in cumulant powers we obtain

I} .
Zi(R) = Z0exp % / dr 3 et (£ (r))+
| 5k

B B
[ [ 4 SR RO RAGSOREN | (1)
o 0 k

| =

here Z - partition sum of one particle and

G
(. )) = iO/d3rc3/D3u(7)(...)eW°<1>5 h/dru(r) . (52)
73 ¥
Path integrals (5.2) are calculated using the following relations [8]:

g
regC’3/D3u(T) [...u(r)..]eWog h/dru(r) =
0

(;f P e heg [ 4 wfm) " %s(p - ¢(m)).- | R

E(p) = (m2et 4 2p?)1/2,
It can be shown then that
(Fe (AN = 1 = Ul xll 4 Lot
{(fe(M N = T — 15, Brté(r = ),

| __ [P =kpP/E\ [ PP\ 1
rll=1, b= < o) = sy ) = =569
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here (...)o means averaging over Maxwell distribution. Using these results
in (3.7) we find '

= = (Z9)N exp {% Z Z:—;ww} B / DRy (7)exp ®[R], (5.4)
k

B
EESY [ dr (R REAT) + RV R () (hek)?) +
k {o
8 8 22
/dT/dr’quuRi‘((T)R‘ik(r) , (5.5)
0 0

Yoo = b + L5 k26 = WA+ 1Lyt HP=4nxNEB/V. (5.6)

As in case of free field the integration over Ry(7) leads to changes in vari-
ables, which, in turn, brings @ to canonical flt()rm. We reduce to this form

the first term in (5.5). As the result, the tensors lj,,, 7, are replaced
by (ItY~Y)uw, (771w, here 7! - matrix inverse to 7. It can be easily
shown that (Ity~1),, = 1L /9t (7y VD = M xll/yt + ILat/yt. Ja
cobian of transformation should be put 1 due to the relation [Ja(r) =

%
exp{6(0) [ drIna(r)} and regularization mentioned above. Later, changing
the variables into Ry ,,, we get integral (5.4) in the form which differs from
(4.1) by the relation for ® function only. Now it is defined by relation

1 Lfwn N2 1| o oo
*=25 Xk: {gé% [6“” + (hck) 7l] FBienfont

Hz -1 B v
6“,,+k—2(1r7 Vuv Rk,oR—k,—o . (5.7)

We point out the renormalization of photon energy spectra - we have fick

instead of )‘Lclc:(*yJ-E/2 = @in (4.1). Repeating the calculations from previous
section we found =. Let’s write the result in the following form:

m[E/(20N] =% {—ﬂhd; — 21In(1 — ™M) 4 %{k—i(wﬂ +2rt)-
k

1 H2 n " Hz J- -l.
iln(l+ﬁw/7)—ln(l+—k—2—w /v .
Free energy is derived from this relation. Considering values 7, v in (5.3),
(5.6) we obtain

F=Fon+Fl+Ft 4 F;+ Fy, (5.8)
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N SR Ik 0 B S n

FL_ %zk:{%_m (1+%)}
Fy ==Y (1= exp [-ney/b2 #1/1]).

k

Fy =Y hey/k? + H2/6.

k

Here Fyp is free energy of relativistic non-interacting particles. FIl : pL
set the corrections (adjustments) due to Coulomb and magnetic interaction
and have the same form as in the weak relativistic theory. After calculation
of the sums we find

1 .
Flp pt = ——§N62H(1 —2/6%1%). (5.9)

In the post Newton approximation § = Smc? and (5.8) coincides with Debay

correction for the weak relativistic electron gas [7]. Fy is "field” part in the
expression for free energy. It can be written in the following form:

_ ‘ o 2 _ 233/2
Fr= s [ d e )"
3m2p4(he)d e¥ —1

a

. @ = (Bhuo)’ [[’ ";"'2] V,

here wy - frequency of plasma oscillations. If value of a is small

. Vr? me?
~ - N
Fr =~ amen * Nighes

=F;+ F. (5.10)

The first term here is the free energy of the field. The second one can be
associated with the energy of charged particles radiation. Indeed, in non-
relativistic approximation the energy of charged particle radiation is defined

by the formula £’ = %rzAt. Under the heat motion #2At ~ VZ/At =
3/BmAt. Taking into account that in Euclidian theory At ~ S we found
& = 2e?/hB%*me3. This result qualitatively complies with (5.10). If § =
pmect  H(BF'N) = —re? [3h8*med. The last term in (5.8) is responsible
for the energy of zero oscillations. In post-Newton approximation Fy does

not depend on the temperature. Therefore, F, can be associated with the
energy of field in vacuum state,
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IMOJILOBI ACITIEKTH
METOIY KOJIEKTUBHUMX 3MIHHUX
IOJIsI CUCTEM 3APAINKEHUX HACTMNHOK

JI.d.BnaxuescbKun

Ha npuksiaml peisATUBICTCHKOI CHCTEMHU 3apANKeHUX YaCTUHOK
y CTaHi CTaATUCTUYHOI PIBHOBArM aHAMI3yeThCA 3B’ A30K MeTOLy Ko-
JIeKTUBHUX 3MIHHKX 3 MoJkoBoIo Teopiew. [lokasano, mo nicisa BU-
KJIIOUEHHS M0JbOBUX 3MIHHUX CTATUCTUYHY CYMY CUCTEMM MOXKHA
3alMCATH y BUIVIAN IHTerpaJia 3a TPasKTOpiAMK KOHQIrypamiiHo-
ro IpoCTOPY YACTMHOK, KJIaCUYHA [IiA [UIA AKAX Ma€ HeallMTUBHAN
xapakTep. Ofunciena MoNpaBKa 10 eHepril TeMIOBOro BUMPOMIiHIO-
BaHHA.



