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The problems of taking account of interactions in the statistical
theory of ion-molecular systems are considered. The procedure pro-
posed is based on dividing the interparticle potential into three parts:
a short-range repulsion, a strong intermediate-range attraction, and
long-range electrostatic interactions. Optimized cluster expansions of
the correlation functions are proposed. Various types of models de-
scribing an ion-molecular systern are studied: multipole models, site-
site ones, associative ones, realistic models that using computer simu-
lation of the reference system. The problems of description of spatially
inhomogeneous ion-molecular systems are discussed.

1. Introduction

The problem of a microscopic theory of electrolyte solutions entails an ex-
plicit consideration of the solute jons and the solvent polar molecules as
well as proper taking into account all the various interactions between the
solution particles. Over many years, in the theory of electrolytes the pri-
mary attention was paid to allow for the Coulomb interactions between
ions, the long-range character of which results in strong interparticle corre-
lations. The Debye-Hiickel theory [1] was the first of such theories that gave
a quantitative description of the idea of screening the Coulomb interactions.
However it appears to be valid ouly in the region of infinitely diluted solu-
tions since that theory does not consider solvent molecules as well as the
effect of short-range non-Coulomb interactions.

M. M. Bogolubov originally obtained Debye-Hiickel’s results proceeding
from the statistical-mechanical method [2]. He not only pointed out the way
to improve the theory, but also demonstrated rigorously that the short- and
long-range interactions are characterized with different small parameters
and this is why in approximate calculations they require different methods
to be treated. One way to solve this problem properly is the method of
collective variables evolved by I. R. Yukhnovsky f3—6]. In its framework the
system is described in the extended space comprising fluctuative oscillation
modes of density waves of the electric charge of collective variables as well
as individual coordinates of particles. Therewith the individual coordinates
of particles are used to describe short-range parts of the interactions, and
the collective variables for long-range ones.

Two variants of construction of cluster expansions are developed accord-
ing to the technique of taking into account short-range interactions. In the
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former case, expansions of the electrostatic part of the free energy are built
up in the framework of the method of collective variables [3,4]. The short-
range interactions are allowed for by the functional differentiation. This
way to calculate the thermodynamic and structural properties leads to gen-
eralization of Mayer expansions to systems with an electrostatic interaction.
In the process the long-range interaction is so renormalized that the cluster
expansions are set up basing on screened and short-range potentials. This
eliminates the divergence of the expressions for the thermodynamic and
structure functions at large interparticle distances. In the latter case, first
the contribution of short-range interactions is separated out, and thereafter
long-range interactions in the system are allowed for [5-9]. This way to take
short-range interactions into account is most acceptable to describe dense
systems, among them liquids and solutions.

The method of collective variables generalized by 1. R. Yukhnovsky first
to ion-dipole systems [10-12] and next to systems with an arbitrary electro-
static interaction [13] initiated development of the ion-molecular approach
in the theory of electrolytes. The explicit consideration of a molecular sol-
vent opened up crucially new opportunities for construction of a microscopic
theory of electrolyte solutions. In particular, it has been made feasible to
quantitatively describe ionic solvation and study its changes in dependence
on the jonic concentration and the solvent properties. Taking into account
the specific features of ion-molecular and intermolecular interactions along
with interionic ones forms a basis for the ion-molecular approach.

However the division of interparticle potentials into the short- and long-
range parts appeared inadequate. The strongly attractive part of interpar-
ticle potentials gives rise to various complexes which must be allowed for in
a microscopic theory of electrolyte solutions. Therefore proper taking the
interactions into account requires to divide the potentials into three parts:
a short-range repulsion at small distances, a strong short-range attraction
at middle distances, and long-range electrostatic interactions at large inter-
particle distances. It is clear that correct consideration of these interaction
parts calls for different approximate methods of description of their contri-
butions. Such a theory is based on the procedures which are worked out in
the theory of associative liquids {14-16] and was first used to describe ionic
systems in [17-19].

When describing surface phenomena in electrolyte solutions, in addition
to the above-listed problems there appear the issues of correct consideration
of external field potentials responsible for an interface structure. The micro-
scopic approach to description of surface phenomena in electrolyte solutions
developed in the framework of the method of collective variables provides
a tool of consistent allowing for particles of the confining surface as well as
ions and molecules of the electrolyte solution.

In this work we will dwell on the analysis of these aspects of taking ac-
count of interactions when constructing the microscopic theory of electrolyte
solutions.

2. Cluster expansions of the free energy and correlation
functions

We begin to take account of interactions in the statistical theory of elec-
trolytes from considering cluster expansions for the free energy and corre-
lation functions of systems in which the interaction can be presented as a
sum of two parts,

Uab(12) = 0ap(12) + D45(12), (2.1)
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where <pab(12? and ®,;(12) are the short- and long-range parts of the interac-
tion potential, respectively; a, b, ... denote species of particles; 1,2,... mean
the set of particle coordinates which, in general, can include coordinates of
orientational and internal degrees of freedom besides Cartesian ones.

The cluster expansions of the free energy and binary distribution func-
tions obtained in the method of collective variables have gained wide ac-
ceptance in the description of ionic and ion-molecular systems. Following
[20-22], in this work we will consider a somewhat different way to build
up cluster expansions, which next will be extended to site-site correlation
functions and to the case of the presence of associative interactions. The
approach under consideration is based on the results of a diagram analysis
of Mayer cluster expansions [23-24], whereby the binary distribution func-
tions of systems with the pair interaction potentials (2.1) can be presented

as
gab(12) = exP['—ﬁUub(lz) + hab(lQ) - cab(12) + Eab(lz)]v (22)

where hq,5(12) = gap(12) — 1 and ¢,4(12) are respectively the pair and direct
correlation functions related to each other by the set of Ornstein-Zernike
(OZ) equations

has(12) = cap(12) + ch/d3cac(l3)hcb(32), (2.3)

pc is the density of particles of sort ¢, E,(12) is the collection of elementary
diagrams, § = 1/kT inverse temperature.
In accordance with (2.2), the direct correlation function

cab(12) = hap(12) — Ingap(12) — BUb(12) + Eqp(12) (2.4)

has the asymptotics identical to that of the potential U,;(12). Therefore it
is sensible to write the correlation functions as

cap(12) = 2,(12) — B844(12) + bcap(12) = Cap(12) + beap(12), 25)

hab(12) hoy(12) = Gop(12) + 6hap(12) = Hap(12) + Shep(12),
where A2, (12) and c% (12) are the corresponding correlation functions of the
subsystem with the short-range interaction.

Substituting (2.5) into (2.2) yields the following form of the binary func-
tions:

9a6(12) = g, (12) exp[Gap(12) + 6hep(12) — Seap(12) 4 6 Eqp(12)],  (2.6)

where 6 Eq5(12) = Eo(12) — E° (12). The functions G44(12) play the role of
screened potentials and are determined through the functions Hy,(12) and
C4(12) introduced according to (2.5) which are related by the Ornstein-
Zernike equations

Ha(12) = Cap(12) + 3 pe / d3Ce(13) Hop(32) (2.7)

which provide the contribution of the short-range interactions into the
screened potentials. Another contributor of the short-range interactions
into the screened potentials appears when using the condition of optimal
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division of interactions [25] which is motivated by the strongly repulsive
character of the interaction at short distances. In the case of the model of
hard spheres with a long-range interaction it reduces to the exact condition

92,(12) + Go(12) = 0, T < Oy, (2.8)

where o,, are the sizes of the hard spheres. When describing the hard
spheres in the Percus-Yevick (PY) approximation which writes as

¢2,(12) = 0 for r > 045, we get
Cuw(12) = —89,,(12) for 7> 04, (2.9)

which is peculiar to the mean spherical approximation.

The cluster expansions and the integral equations derived from it corre-
spond to the optimized cluster theory. To build them up, subtract equations
(2.7) from (2.3), which gives the set of equations

de
8hap(12) — ey (12) = SN H e g IR (2.10)
According to (2.6),
Seas(12) = gus(12) — ¢2,(12) — In 2U2) 4 5 199, (2.11)
gab(lg)

It is significant that the functions éc,;(12) have generally a short-range
character, which in line with (2.5) ensures the asymptotics of the direct
correlation functions c,3(12) to be correct and the related peculiarities of
systems with an electrostatic interaction to be covered [5].

The relations (2.6) and (2.10) are in fact the set of integral equations for
the binary distribution functions, whose closure is allied to the manner of
definition of the functions § E,;(12). In particular, specifying 6 E,, = 0 yields
the reference hypernetted chain approximation (RHNC). Making use of the
iteration procedure leads to cluster expansions built up on the screened
potentials G,;(12) [20-22]. In the process, taking

9ar(12) = ¢°,(12) exp(Gap(12)) (2.12)

as the first exponential approximation (EXP2), and collecting in (2.6) the di-
agrams with one field point in (2.6), we arrive at the third-cluster-coefficient
approximation (EXP3),

9as(12) = g%(12) exp(Gas(12) + ¢3(12)), (2.13)
where
gP2)= A- A, (2.14)
— = ¢%.(12) exp(Ga(12) — 1, (2.15)
o = Hab(12)‘

The next iteration gives the fourth-cluster-coefficient approximation and so
on.

Having the binary distribution functions, from the known relations we
get the cluster expansions for the free energy [22]

F = Fy+ Fyra+ Frpa — kT(By+ Bs +...), (2.16)
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where Fj is the free energy of the subsystem with the short-range interac-
tion,

1
Fyra = EZPuPb /dld?q’ab(w)ggb(l?) (2.17)
ab ) .

is the high-temperature approximation,

1
1
Frpa = §Zpapb/dld2/dEGab(12,€) (2.18)
a.‘b 0
is the random-phase approximation, Bs, Bs, ... are the corresponding clus-

ter coefficients. In so doing the structure of the cluster expansions of both
the free energy and the binary distribution functions remains the same as
was obtained in the method of collective variables when allowing for short-
range forces by the functional differentiation method; only the diagram
notation is changed in accordance with (2.15).

3. Jon-molecular models

The ion-molecular models employed in constructing the theory of electrolyte
solutions differ in the way of description of ion-molecular and intermolec-
ular interactions. Among them one distinguishes models involving multi-
pole expansions to describe long-range interactions with the participation
of molecules. Another means of description consists in mimicing molecules
with a set of sites and using site-site distribution functions to describe them.
More complicated ion-molecular models are employed in modern computer
simulations.

In this section we consider the application of the cluster expansions
obtained above to describe and analyze these three types of ion-molecular
models. :

3.1. Ion-dipole models

The simplest among the ion-multipole models is the ion-dipole one, in which
the molecule is characterized with dipole moment p; !. As a consequence,
the long-range parts of interion, ion-molecular, and intermolecular poten-
tials have the Coulomb, ion-dipole, and dipole-dipole character, respective-

ly,

A 1
Qaf)(r) = 7_‘ ba q)as(ra ‘1)2) = —CZaps"Tfi cos 7)2’

(3.1)

1 . .
&, (r,v1,02,0) = —pi;—g(‘Z COS V| COS Uy — SiI V1 8iN vz €COS @),

where 7is the interparticle distance; (v, ) are the polar angles between the
dipole-moment vector and the axis r; Z,, Zy the corresponding ion valences.

The early studies where carried out in the framework of cluster expan-
sions obtained when allowing for short-range interactions by the functional-
differentiation technique [3-6]. The numerical calculations of the binary

'From here on, we denote molecules with the letter s keeping the notations a,b,... for
particle sorts.
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distribution functions performed in doing so made it possible to reveal a
fundamental role of a solvent in describing ionic solvation, the specifics of
a short-range order, and the peculiarities of effective interionic interactions
in solutions [26-29].

Treating short-range interactions as a reference system and separating
out long-range ones optimally make it feasible to describe some of these ef-
fects analytically making the calculations in the lowest approximations. In
this strategy, screened potentials have first to be obtained, which amounts
to solving the Ornstein-Zernike equations in the mean spherical approxima-
tion (MSA), i.e. the set (2.7) complemented with the conditions (2.8) and
(2.9), where the long-range potentials ®,;(12) for an ion-dipole system are
specified by (3.1).

The trait of solution of the MSA in this case stems, first of all, from the
necessity to allow for orientational dependencies correctly, which brings on
the ion-molecular and intermolecular correlation functions to be presented
in the orientationally-invariant form {5, 30, 31]

hao(12) = 3 AT ()™ (Q, 02, Qr), (3.2)
mnl

where §2; are the Euler angles that specify the molecule orientation, 2, sets
the orientation of vector r,

¢m"’(91,92,9bh) = \/(2m+ 1)(2n + l)z <:Z/Ti\l> X

uv A

X Dyt (Q1)Dg,(Q2)Dh (L), (3.3)

Ou

where Wigner’s 3j-symbols and the generalized spherical harmonics are de-
noted with the standard quantum-mechanical notations [32].

On integrating over the orientations of the third particle and changing
to the orientations €; and Q; measured with respect to the axis ryy, the
Ornstein-Zernike equation reduces to the set of equations for the coefficients
of the orientationally invariant expansion. In the Fourier space it writes as

HT(R) = CRmy(k) + D> (=1 p HI% (k)OS (3.4)
c {

where

HEnk) = [ dr () + e )
0
(3.5)

mnl\ T T mn
TTk) = 2w(-1)AE(_M0) [ AR (),
! r

Tns(k) are similar to (3.5), P(r/R) are the Legendre polynomials.

The set (3.4) breaks up into two independent subsystems for A = 0 and
A = 1, respectively. The equation for A = 1 is in fact similar to the case
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of a pure dipole system which, as is known, reduces to the Percus-Yevick
equation for hard spheres with the effective density b,/12, where -

1 5 1
by = ——67rp.,.c7:3/—d7‘hl:2(7‘). (3.6)
V30 b "

Solving the set (3.4) at A = 0 employs the Winer-Hopf factorization
technique. The Wertheim-Baxter correlation functions [33-34] introduced
in the process have the form

1
Oa T < Aba - _(Ub - Ua)
2
'(rlnl;n(r) = q;ri;n(r) - Zaal?v )‘bu S r S Oub (37)
1
_Zaa;;’ T > 0qp = i(aa - Ub)

where the functions ¢73"(r) are polynomials such that ¢"(r = 0,4) = 0.

The relationship between the coefficients of the factorizing functions
Qu"(r) and the corresponding parameters of the system was found first for
the simplified model with all the sort of particles equal in size [35-36] and
then more generally in [37-40]. The expressions for the screened potentials
in case of equal sizes were obtained independently in [41] and [42], and in a
more general case in [39-40].

Consider thoroughly the properties of the somewhat simplified three-
sort model comprising molecules with size o, and dipole moment p,, and
lons with equal sizes 04 = o_ = ¢ and valences Zy = —Z_ = Z;. In
this case the behavior of the screened potentials is determined by the three
parameters & = Ko, y = %wpsﬂpz, and o = 0;/0,, where the parameters
and y characterize intensity of the ionic and dipole interactions, respectively,
and & is the inverse Debye radius. For small values of the parameters z and
Yy, the screened potentials display a monotonic behavior. However when
increasing z, y, they become oscillating which is representative of ordering
in the system [6, 43]. As this takes place, the increase in the parameter
y characterizes the influence of solvation effects on screening. With rise in
the parameter z, there appear specific features of screening bound up with
the occurrence of short-range ordering peculiar to ionic melts [44). Figure 1
displays the ionic screened potentials for three characteristic region in the
case of o; = 0, and various 8} = fe?Z?/o.

As it must, in the region of small jonic concentrations the screened
potentials have the Debye asymptotics at large distances,

Gal12) = ~0.(V)Q(~V) - expl =), (38)

where (4(V) is the generalized charge which coincides with the charge eZ,
in the case of ions, and is Q4(V) = (p,V) for molecules. The effect of dipoles
appears as the rise of the dielectric permittivity

€= 1+ 3y8,/ 5 (3.9)

which decreases with increasing the ion concentration, and for the infinite
dilution coincides with the corresponding Wertheim’s expression [45]. The
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Figure 1.  The ionic screened potentials: (a) the Debye-Hiickel region
0

(z = 0.3,y = 0.5, 87 = 50); (b) the solvation region (z = 1.33, y = 9.85,
Br = 185); (c) the high-ionic-concentration region (z = 16.1, y = 0.16,
B = 30).

values fB39. = 1+ (=1)"b3/(3 - 2") are represented by the parameter b,
defined from (3.6).

Having screened potentials, one can proceed to a study of the thermody-
namic, structure, and other properties of electrolyte solutions. In contrast
to the traditional ionic approaches, the explicit consideration of solvent
molecules enables to describe the concentration dependencies as well as the
temperature and pressure ones, and to calculate the properties of infinitely
dilute solutions known as standard states. :

The three-sort model considered above was used in [46-48] to describe
the thermodynamic properties of aqueous electrolyte solutions. This gives
the expressions for the thermodynamic functions comprising four terms; for
instance, the ionic chemical potentials are

i = g 4 el (3.10)

where u? are the chemical potential values in the hard-spheres model which
can be described using the Mansoori-Carnahan-Starling-Leland approxima-
tion [49], u?¢ is the contribution coming from non-electrostatic interactions
(inductive and dispersive forces) which can be allowed for in the framework
of the high-temperature approximation (HTA), uf' the contribution from
electrostatic interactions which can be done in the framework of the opti-
mized randon-phase approximation (ORPA), ui™ the term related to the
change in the standard-solution density.
The chemical potentials are usually presented as a sum:

1
o= pf o+ g (3.11)

where u® is the standard value of the chemical potential which corresponds
to the infinite dilution of ions, v; are the ionic activity coefficients.
Figure 2 exhibits the temperature dependencies of the standard enthalpy

values h = p? — T("’T“Ti »» the partial molar volume V;* = T(a—;;)qw, and

the hydration sbeciﬁc heat C’g, = -T( "’;;f ), calculated in this way for
the NaCl aqueous solution. A comparison between the theoretical curves
and the corresponding experimental data shows a satisfactory quantitative

description, in particular, for high temperature and pressure.
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Figure 2. Theoretical values of the standard properties of NaCl aqueous
electrolyte solution at various temperature T and pressure p as compared
to experimental data. AP is the hydration enthalpy, V;* is the hydration
volume, cg’- is the hydration specific heat.
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Figure 3. Calculated and experimental concentration dependencies of mean
ionic activity coefficients v4 for NaCl aqueous electrolyte solution.

Figure 3 depicts the concentration dependencies of the ionic activity
coefficients for the NaCl aqueous solution calculated according to (3.10) -
(3.11). As seen from the picture, at the normal conditions the calculated
values of the coefficients =; fit the experimental ones for the concentration
up to 1 mol/kg. At the same time, in the region of high temperature and
pressure the calculated and experimental results agree in the whole range
of the concentrations considered.

As is evident, the ion-dipole model can be used successfully to treat
experimental data and to describe semiquantitatively the thermodynamic
properties of salt-aqueous solutions in a wide range of the thermodynamic
parameters. However, to represent the thermodynamic derivatives with
respect to temperature and pressure requires the ion-dipole model to be
improved essentially (especially for normal conditions).

The general expressions for screened potentials obtained in [39-40] have
been employed in [50-51] to make a microscopic analysis of a nature of hydra-
tion forces. There have been obtained a number of important corrections to
the classical Derjaguin-Landau-Verwej-Overbeek theory [52], among which
is the effect of dipole alignment near macroions.

The inclusion of a compensating background appeared to be another
important application of the results got in [40]. Such a two-sort model was
employed in [53-54] as basic to describe the structure properties of metal-
ammonia solutions. Figure 4 shows the binary distribution functions of
the kalium-ammonia solution calculated for this model in the approxima-
tion (2.12). The calculations intimate that the ammonia structure has a
density-controlled-ordering character and depends only slightly on the ion
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Figure 4. The distribution functions for Na-NH, solution: (a) N-N pair
distribution function g,,(r) at Na concentration z = 0.001, (———) theory,
(----- YMD, (- - - - ) experiment; (b) Na-Na distribution function g,,,,(r)
at (1) z = 0.05, (2) z = 0.1 .

concentration. The comparison drawn in Figure 4 for the radial function
gss(r) exhibits satisfactory agreement between the curve obtained and the
experimental data as well as the computer simulation data. At the same
time the ion functions vary from the form typical for the solvation region
with the Debye asymptotics at small concentrations to that inherent in
density-controlled ordering for the metallic region.

3.2. Ion-site-site models

The necessity of more realistic modelling interactions that involve molecules,
in particular, correct allowing for electrostatic interactions without resorting
to multipole expansions caused the description of ion-molecular systems to
be performed with the site-site approach [5, 55]. Here each molecule is
represented as a set of sites, with the result that the ion-molecular and
intermolecular potentials write as a sum of ion-site and site-site potentials:

U..(12) = STU(rap),  Uas(12) =3 Uss(Taa), (3.12)
aff o ’

where r,, and 7,5 are the corresponding distances between the interacting
sites.

In the process the system can be described with the site-site, ion-site,
and ion-ion binary distribution functions giving the probability density of
distribution of two sites that appear in the different particles. The site-site

binary distribution functions ¢°’(r) are related to the intermolecular ones
9as(12) by

9% (rag) = /dld?gab(IQ)é(ra Cry = 19)8(r — 1y — 1), (3.13)

where r; and r, are the molecule center-of-mass coordinates, 12 and 1 the
relative site coordinates.

Besides the functions g7/ (r), of great importance in the site-site ap-
proach are also the intramolecular distribution functions w®?(r) which have
a 6-like shape. The presence of these functions modifies the Ornstein-Zernike
equation which assumes the following matrix form in the site-site case:

" h(k) = S(k)e(k)S(k) + S(k)c(k)ph(k), (3.14)
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where h%P(k) and ¢2?(k) are the Fourier-transforms of the corresponding
pair and direct site-site correlation functions, p is the diagonal matrix com-
prising the elements p,6.,0,5. For rigid molecules, the elements of the ma-

trix S(k) write as

N sin k[2P
Sabﬂ(k’) = 6ab (6uﬁ + (] - (5(,[3) k;[aﬁ ) ’ (315)

where [9? is the distance between two sites of the same particle of sort a.
Following [56], first generalize the cluster expansions presented in the

previous section to the site-site case. To do this, we divide the site-site

potentials into the short- and long-range parts similarly to (2.1),

Ul (r) = @S0 (r) + 2 (r). (3.16)

In the same way to (2.5), we present the site-site correlation functions in
the form

f(r) D% () — BRI (1) + e3P (r) = C2P(r) + 820 (),

haf(r) = B (r) + Gaf(r) + 8h3 (r) = H(r) + 60 (r),

(3.17)

where the functions H2f () and C%f(r) are related by the site-site Ornstein-
Zernike equations analogous to (3.14), which are closed by the MSA-like
conditions

G+ g =0 for r<alf,
(3.18)
CH(r)=-po2 (r) for 1> 00,

where 0%/ = s(o2 + 07) are the sizes of the corresponding sites.
Asqummg the site-site binary functions can be presented in the form
simnilar to (2.2), the substitution (3.17) yields the expression

920 (r) = g (r) exp (G2 (r) + 860 (r) — 8¢5 () + 8B (), (3.19)

where 6h;’f( ) and (5(‘2’5( ) are related by the set of equations akin to (3.14)
with S(k) replaced by S(k) + p H(k), 6B/ (r) = Egf(r) = ES)(r).

As is evident, an exponential approximation similar to (2.12) can be
chosen to be the zeroth approximation to the site-site binary functions:

ge(r) = ¢ (r) exp(Gef (1)) (3.20)
By way of illustration, we will enlarge on the simplified three-sort model
consisting of positively and negatively charged ions of valences Z, = —Z_ =

Z; and symmetric molecules with n, sites, half of which have charge eZ,,
and the other —eZ,. Figure 5 sketches three of such models. For simplicity
sake all the ions and sites will be considered to be of the same size . In
this case the set of site-site Ornstein-Zernike equations in the mean spherical
approximation breaks up into two subsets

O (k) w(k)e(k)w(k) + w(k)cO(k)ph©(k),

(3.21)
G(k) = W(k)COR)W(k)+ W(E)CH(k)pG(k),
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(@ ® ()

Figure 5. The models of molecules with (a) two and (b) four charged sites,
and with (c) two auxiliary charged sites.

which are closed respectively by the conditions

hOk)=-1, r<o G(r) =0, r<o
and ‘
. A
cO(r) =0, r>0o CO(r)= -+ r>o0
T

where we introduced the two-dimensional matrices

( Gii(k) Gis(k) )
G(k) =
Goi(k) Gis(k)

and h(O(k), c((k), C(k) along similar lines,

1 0 10
w(k) = k) =
*) (0 1+(n5—1)5(k)>7 W) (0 1—S(k))’

pi O zt 7z,
p= ( ) ,  Z'= :
0 mn,p, Z,Z; 7
where S(k) = Si’;—lkll,ls is the equilibrium distance between the sites in the
molecule.
The former equation of (3.21) describes the basic model and was solved
in [57]. The latter governs the screened potentials and its solution was

considered in [58]. Solving these equations rests on employing the Winer-
Hopf factorization technique. A peculiarity of its use in this case is due
to the presence of the matrices w(k) and W(k). In particular, the Baxter
factorizing functions for the screened potentials are

Q™ (1) = qun(r) — Zim — Z Xim €xp(—16,7), (3.23)
n#0

where 8, are the non-zero roots of the equation

sin(6,, L) ﬂ B
I =0, L=1,/o.
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Figure 6. The ion-ion radial distribution functions for the ion-molecular
system with polar hard dumb-bells at n, = 0.12; «,, = 2.18, L = 0.5.
Curves (1) m = 0.25, ki =10.0; (2): 7 =03, Ky =13.8; (—)
gi(r)y (----- ) 944 (7).

Although the short-range part of the Baxter function ¢,,(r) = 0 for r > o,
the presence of w(k) brings about a discontinuity of the function g¢,,(r),
determined by the condition

1

ssls O—ssls_ = T 5
@s(ls +0) — qss(ls = 0) AL

(3.24)

where n, = éﬂ'psasns. On the contrary to the ion-dipole case, the functions
qim(r) are more complicated and are not polynomials. The particular form of
@im(7) essentially depends on L. For densities 7, corresponding to a liquid
solute, the last term in (3.23) can be neglected. This so-called zero-pole
approximation (ZPA) is frequently used in analytical calculations.

The factorizing functions have a similar form when obtaining the dis-
tribution functions of the reference system as well, however with the long-
range term Z;, missing. The properties of the ion-molecular system under
examination are governed by the set of six parameters, namely, the re-
duced ionic and molecular densities 7; = tmp;0® and 7, determiping the
reference-system properties, the reduced ionic and molecular parameters
kK% = 24n,e?Z:Bo~! and k2, = 24n,e*Z2B0~" responsible for the features
of the screened-potentials, and also the parameters L and n, specifying the
structure of the molecule. Based on the EXP-like approximation (3.20),
the studies of the site-site binary distribution functions make it apparent
that, as for the ion-dipole system, three characteristic regions can be clearly
distinguished depending on ratio between the parameters just listed: the re-
gions of density-controlled ordering, solvation, and ion-controlled ordering.
The distinctive behavior of the distribution functions for the last-named
region is illustrated in Figure 6.

There has been made an investigation of the effect of the molecule shape
and the molecule charge distribution on the characteristic features of the
short-range order in the system, holding the ionic parameters ; and 2
as well as the reduced molecule dlpole moment p, and the the packmg
factor 70 constant (u? = 18e?Z2L’n,0~1, n® = p,V,, V, is the volume of the

molecule). The behavior of the ion-ion distribution function is demonstrated
not to be uniquely determined by the above-listed parameters but to be
dependent on the molecule shape as well, which is enhanced with increasing
p2. This shape sensitivity of the ion-ion functions is pictured in Figure 7.
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Figure 7. The ion-ion radial distribution functions for the ion-molecular
systems with polar hard dumb-bells (———), polar hard tetraatomics
(----- ), and hard spheres with two charged auxiliary sites (- -- - - ) at
L =05, 1 =003, ki =1.56, n°=0.5, js, = 7.95.

3.3. Application of the computer simulation methods to describe
the reference system

Correct description of the properties of electrolyte solutions requires using
more realistic ion-molecular models. First of all, the short-range interac-
tions should be described with smooth repulsive potentials instead of the
hard-sphere model employed above. In [44] the Weeks-Chandler- Andersen
(WCA) formalism [59] on taking account of softness of a short-range repul-
sion was extended to ionic systems, which gave good agreement between the
calculated radial distribution functions of alkaline-haloid melts and experi-
mental data.

However, in the majority of electrolyte solutions the short-range inter-
action is more complicated. Besides a repulsion, it comprises strongly at-
tractive short-range interactions which can be strictly directed. In the case
of water, for instance, it gives rise to a network of hydrogen bonds.

Such a reference system can be described by computer simulation meth-
ods, allowing for the long-range interactions by the cluster expansions con-
sidered in the previous section. This idea lies at the basis of the technique of
description of aqueous electrolyte solutions combining the computer simu-
lation methods with the analytical ones [60]. In line with the cluster expan-
sions develaped above, the proposed procedure implies dividing the starting
potential into long- and short-range parts according to (2.1). In doing so,
one has to match the conditions of computer simulation, ¢g(r) = 0 and

g*“’— = 0 for r < r,, where r, < L/2, and L is the sxmulatlon box size.

Clearly the cutoff parameter r, has to be sufficiently large to include the
potential well into ¢,;(r) giving rise to hydrogen bonds and other association
effects. A computer simulation is performed w1th the use of the short-range
part ¢q;(r), which yields the binary functions ¢Z(r) for r < L/2. Next the
Ornstein-Zernike equation ‘

e () = €ai'(riz) = e [ b)) (3:29)

with the closure
KOy =hey for  r<r, < L)2,

(3.26)
cfl%)(r) =0 for r>r,
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is solved numerically to give the correlation functions of the reference system
hg},)(r) for r > r, and ¢(r) for r < 7,.

Then, to calculate the screened potentials, a set of equations like to (2.7)
is solved with the closure (2.8)-(2.9) replaced by

CHow(r) = h3(r) for r < dg,
(3.27)
cap(r) = D(r) = BBu(r) for > dg,

where the parameters d,; specify the optimization region. Besides the area
where g,;(r) = 0, there is good reason to include into it intramolecular parts
of gap(r) as well.

The gained solution gives the screened potentials G4;(r) by (2.5) to yield
the binary distribution functions with the known relations. The technique
worked out makes it possible not only to correctly allow for the contribution
of long-range interactions, but also to extend the correlation functions to the
distances much larger than a computer-simulation box, which is important
in calculation of the corresponding integral characteristics.

In [60-62] the devised approach has been employed to examine water in
the framework of the Bopp-Jancso-Heinzinger (BJH) model [63]. The binary
distribution functions calculated already in the simplest approximation

gar(r) = ¢(r) + Gup(r) (3.28)

for the distances r < L/2 actually coincide with the computer-simulation
data using the Ewald method. At the same time the knowledge of g,;(r) for
r > L/2 is found to be essential for calculation of the thermodynamic and
structure properties of water as well as the behavior of its structure factors
in the region of a small wave vector k. The results for the intermolecular
part of the internal energy U, the pressure P, the isothermal compressibility
k1, and the dielectric constant ¢ obtained in this way are tabulated in Table
1. As is seen from the table, proper allowing for the electrostatic part of the
interaction improves agreement with experimental data greatly. The exten-
sion of g,;(r) to larger distances appeared to be essential also for calculation
of the structure factors in the small-wave-vector region. In particular, the
- calculations revealed the presence of a pre-peak in the structure factor of
water at 0.6 A~!, which is an indication of the existence of spatial corre-
lations between the tetrahedral-like water configurations at the distances

about 10 A.

4. Taking account of associative interactions

As we noted above, for real electrolyte solutions, the short-range potential
needs to include besides repulsions also strongly-attractive interactions giv-
ing rise to various complexes and associates. Of intermolecular interactions,
these are the specific orientationally-directed short-range ones resulting in
hydrogen bonds and other formations common to aqueous and other solu-
tions. The strongly-attractive part of interionic interactions is responsible
for familiar ionic associates and that of ion-molecular interactions for solva-
tive ionic structures being peculiar to electrolyte solutions. Thus, in the case
of electrolyte solutions it is appropriate to divide the interparticle potentials
into three parts instead of (2.1),

Uas(12) = @up(12) + 05 (12) + $,5(12), (4.1)
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Table 1. Thermodynamic and dielectric properties of water for the central-
force model

MD with MD with shifted- BJH expt.
Ewald switching force model
summ. function | potential
model

U, kJ/mol —-39.70) | —-41.259 | —34.409 | —40.63% | -41.42
Z =BP/p 2.7 2.36 £0.06° | 2.7% 1.3%) 0.07
kp,Pa~1-10-11 | 33.00% — 41.36° | 45.25
€ 77+ 149 —~ - 79.295) 80

1) F. H. Stillinger, A. Rahman J.Chem.Phys., 1978, 68, 666

2; D. E. Smith, A. D. J. Haymet J.Chem.Phys., 1992, 96, 8450

3) I. Ruff, D. J. Diestler, J.Chem.Phys., 1990, 93, 2032

4) T. A. Andrea, W. C. Swope, H. C. Andersen, Mol.Phys., 1983, 79, 4576
5) from [63
6) from [61

where (,,(12) is the short-range repulsion part of the potential, ¥,,(12) the
short-range strongly-attractive one which will be termed associative below,
®,,(12) the long-range one.

The distinctive feature of associative interactions is that the bonds aris-
ing due to them are saturated. Since they can be allowed for correctly by
expansion in terms of activity [18, 64-65], the problem of description of
liquids and solutions with associative interactions requires combining the
traditional methods to take into account short- and long-range interactions
with activity expansions to do associative ones. In the process the topolog-
ical reduction of the diagrams results in the corresponding generalization
of the Ornstein-Zernike equations, in which due to the presence of asso-
ciative interactions the particle densities break up into a sum of densities,
each being a density of complexes existing in the system. The correspond-
ing technique of description of molecular systems in the framework of the °
multidensity formalism was proposed by Wertheim [14-15] and in [16] was
extended to central-force-like spherically-symmetric models. Below we will
enlarge on the simplest approximation that considers only dimers, although
generalization to the case of more complicated formations, among them
polymer chains, a network of bonds, etc., presents no fundamental prob-
lems.

In the dimer approximation the particle density breaks up into two ones,

Pa = Pa + Pus (4.2)

where pf and p! are respectively the densities of non-associated and associ-
ated particles of sort ¢. Accordingly the pair correlation functions

har(12) = R35(12) + z,hY5(10) + z,A%(01) + zazphly(11), (4.3)

where z, = p%/p,, and h2P(12) are the partial pair correlation functions,
are related to the corresponding direct correlation functions ¢7(12) by the
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associative Ornstein-Zernike equations which in the two-density formalism
write in the matrix form as

has(12) = €a(12) + 3 / d3c,e(13)pehe(32), (4.4)

where the two-dimensional matrices are

A k) S e o
h,, = 10 " y Cab = o 11 y Pa = 0 ’ (45)
h’ab h’ab Cab  Cab Pa 0

and the upper indices denote non-associated or associated particles.
The densities p, and p? are related by the self-consistent equation

=+ R [ d2gmai)sz2), (4.6)

where g%(12) = 1 + h%)(12), and f2(12) = exp(—B¥,(12)) - 1.

The diagram analysis of the Mayer cluster expansions enables the partial
distribution functions to be presented as

905(12) = exp(=PBpu(12) — fPas(12) + 757(12)),
g%(12) = g¢n(12)72(12),

9:5(12) = ga3(12)757(12),

9a(12) 9av(12) (15, (12) + 72 (12)73 (12) + f37(12)),

where roP(12) = h%F(12) — C2F(12) + E2F(12). (4.8)

As before, present the partial correlation functions in the form

(4.7)

ref(12) = RD*(12) + G2 (12) + 6r2P(12) =

= HJ (12)+ 6h3)(12),
(4.9)
P(12) = Q*P(12) — B8,,(12)8a0dp0 + 6c2F(12) =

= Car(12) +6cg(12),

where h{9*#(12) and ¢{9*?(12) are the corresponding partial correlation
functions in the absence of the long-range interactions ®,,(12), G2 (12) are
the screened potentials defined through the functions H’(12) and C2f (12)
related by the associative Ornstein-Zernike equations akin to (4.4) with the
associative mean-spherical-approximation-like (AMSA) closure

H:bﬂ(u) = —ba06p0
for r < g4,
(4.10)

—B8%4,(12)8a0850 + 922(12) F157(12)6 61851
forr > o4.

Cay(12)
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Substituting (4.9) into (4.7) gives

%(12) = g°(12)exp (GH(12) + 67%(12)),

0%(12) = exp(GR(12)+67(12)) x
x (99°1(12) + ¢°(12)(GA(12) + 6754(12)) ,
gi(12) = exp(GY(12)+679(12)) (" (12)+

(4.11)
g% (12)(Go(12) + 6781 (12))+ |

+
+ g (A2)(GR(12) + 6T2(12))+
+ g (2)(GR(12) + 670(12))(GA(12)87%(12))+
+ GLi(12)+ ér11(12))),

where 6727 (12) = 6h2P(12) — 6¢2P(12) — 6EZP(12).

Setting § EZP(12) = 0 for closure, we arrive at the associative reference
hypernetted chain (ARHNC) approximation.

Putting 67%7(12) = 0, we get the exponential approximation (EXP2),
0?3(12) = 95" (12) exp(GS(12)),

gab(12)

(69 (12) + ¢97(12)6%(12)) exp(G%(12)),

9:(12) ( O1(12) + g8 (12)GoU (12)+ (4.12)

+ g9 (12)GL(12) + ¢8°(12)(GL(12)Go%(12)+

+  Go(12))exp(G3(12)),

which can serve as a zeroth iteration when building up cluster expansions.

It should be pointed out that unlike the approaches discussed in the
previous section, different approximations yield distinct forms of the func-
tions ¢%(12), by (4.6) resulting in distinct values of the concentration of
non-associated particles as well. Therefore even the reference system is
dependent on the long-range contribution into g%(12).

Solving the associative version of the MSA and obtammg the screened
potentials employ the scheme of orientationally-invariant expansions and
the Winer-Hopf factorization technique. In this case the Wertheim-Baxter
factorizing functions are similar to 23.7) but with the difference that they
have a discontinuity at the point r = [, = o due to the presence of associative
interactions as in the site-site case.

An analytical solution for dimerizing hard spheres in the Percus-Yevick
approximation is found in [67] and then generalized to the multicomponent
mixture of dimerizing hard spheres [68]. The case of I, < o is studied in
[69-70], and in [71-72] the results are extended to polymerizing hard spheres.
The most general case has been considered in the recent work [73].
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At present, much efforts are underwent to apply the devised technique
to describe various ionic and ion-molecular systems. The AMSA solution
for dimerizing ionic systems with equal sizes has been found in [17] and
extended to the multicomponent case with different sizes in [74-75].

Notice that associative effects can be brought about by electrostatic
interactions as well. Recently this has been used to treat the model of
charged hard spheres [18-19]. The associative potential is presented by a
sum of the Yukawa-like potentials separated out from the pure Coulomb
interaction. The thermodynamic and structure properties of ionic systems
calculated in this way are in good agreement with computer-simulation data.

A peculiar associative version of the integral equations arises for poly-
electrolytes. Due to the strong asymmetry in sizes and charges we can
treat each counterion as singly bondable, while each polyion can bind to
an arbitrary number of counterions. This investigation was carried out in
the framework of the hypernetted chain approximation [76-77]. Recently
analytical solutions have been found first for the corresponding reference
system [78] and thereafter in the mean spherical approximation as well [79].

5. ‘Spatially inhomogeneous ion-molecular systems

The presence of a spatial inhomogeneity modifies strongly the results dis-
cussed above. With an interface present, the unary distribution function
depends on the distance of the particle from the interface, and the binary
one does on the distance of the two particles from the surface as well as on
their separation. In particular, the Ornstein-Zernike equation for spatially
inhomogeneous systems assumes the form

has(12) = cqp(12) + Z/dch(3)cac(13)hcb(32) (5.1)

which has to be complemented, besides a usual closure, with a relation
between the unary functions p,(1) and the pair correlation functions. Such
a relation can be chosen to be, for instance, the first of the Bogolubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy [2, 5] or the Wertheim-Lovett-
Mou-Buff (WLMB) relation [5, 80]. Therefore the spatial inhomogeneity
causes modification of the above-discussed cluster expansions of the free
energy and the distribution functions. The corresponding cluster expansions
for spatially confined ion-molecular systems by means of the method of
collective variables were obtained in [81-84].

As before, the first step to use cluster expansions is calculation of screen-
ed potentials. Commonly such a problem is quite complicated for analytical
description when taking account of short-range interactions in a reference
system, and considering the unary and binary distribution functions self-
consistently. Therefore we will restrict the discussion to the case of point
particles. In [85] the equation (5.1) is solved for the system of point ions,
approximating their distribution by the function

pall) = PP exp(az) + pi) exp(-az)
¢ exp(az;) + exp(—az;)

; (5.2)

where p{t) and p{~) are the bulk densities of ion of sort a above and below the
interface, respectively; the smoothness parameter a has to be determined
from the relation between p,(1) and the binary distribution functions.
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In the case of point ions we have
cab(12) = —,B@ab(l2),
hab(12) = Gﬂb(12).
* Then the Fourier transformation turns equation (5.1) into

8rip

Py (k1)g(ky — ia) + P-(k1)g(k: + ia) = = é(k1 + k), (5.3)

where

Pe(ki) = K} +ai(k,),

(5.4)
o (k) = kI+ki,

k, is the projection of the vector k, on the axis oz, k, is the projection
of the vector k; — k, on the interface plane, k1 are the bulk values of the
inverse Debye radius in the upper (+) and lower (-) half-planes, §(k) the
Fourier transform of the auxiliary function related to the screened potential

by :
1 Ga.b
e2Z,7, exp(az;) + exp(az;)’

9(12) = (5.5)
¢ is the dielectric constant of the medium. Because the ions are point,
factorization of the equation with an argument shift (5.3) is possible in the
Fourier space. It consists in presenting the ratio of the binomials P.(ky)
and P_(k,) as

P—(kl) _ Q(kl + ia‘). (56)

P(ki) — Q(ky - da)
Here the function Q(q) has a meaning of the Wertheim-Baxter factorizing
function similarly to (3.7), and from (5.5) is equal to
T ((a+ ay(k,) + ik1)/2a)T ((a + a_(k,) — ik1)/2a)
T ((a + ay(k,) — ik1)/20) T ((a + a_(k,) + ik,)/2a)’
where I'(z) is the Gamma-function.

Factorizing equation (5.3) and simple rearranging give the screened po-
tential as ‘

Q(’ﬁ) = (5-7)

1
2Tae

Gab(12) = - ,H€2ZaZb Cosh(azl)/}csdks.]o(k_,su) X
0

X

00 1 ‘ .
_ZO dkl'-Q(—kl*)‘ exp(—zklzl) X

/ dsz(—k'g —ia) exp(—ikyzs) (5.8)

Pi(ky) cosh(Z(k; +ks))
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In the case of an infinitely thin interface region between two electrolyte
solutions being in contact (a — 00), equation (5.3) goes over into the famil-
iar Riemann problem [86]

8rip

€

Py (k)G (ki) = P- (k)G (ki) = =—=8(ky + k), (5.9)

where G (k;) and G_(k,) are analytical in respectively the upper and lower
parts of the function complex plane, and satisfy (5.9) on the real axis. The
Fourier transform of the screened potential is defined by the relation -

Gky) = Go(ky) — G_(ky). (5.10)

The problem (5.9) permits extending to an ion-molecular two-phase system
of point particles. In [87-88] there have been obtained the expressions for
the screened potentials of a spatially inhomogeneous two-phase system with
a planar interface specified by

n{t) for 2z >0
pa(1) = (5.11)

n-) for 2z, <0

a

in the case of molecules possessing quadrupole as well as dipole moments.
For the sake of simplicity, restrict the discussion to a two-phase ion-
dipole system. In this case the Riemann problem writes as

€+ Py (k)G (k) — e_P_(k)G_(ky) = H(ky), (5.12)
where
Pi(ky) = kP +ali(k,),

(5.13)
ai(k,) = ki+ri/es,

€4 is the bulk value of the self-consistent part of the dielectric permittivity
respectively in the upper and lower half-spaces. Unlike (5.9), the constant
term of the Riemann problem is

II(kl) = -—471',3(5([91 + kg) e (€+ - €_)G0k1, (514)
where (G is determined from the condition
kléi(kl) -0 as k — foco. (5.15)

Factorizing equation (5.12) consists in presenting the ratio P_(k;)/Pi(k:)
as that of the functions @, (k;)/@Q_(k;) analytical respectively in the upper
and lower half-planes of the complex plane. The Wertheim-Baxter functions
in this case are

kl + ia_(k,)
= AT e (k) =

k1 + 1o, (k,) Q-(k1)
Dividing both the sides of equation (5.12) by P+(k1?Q+(k1) and presenting
the constant term as the difference of functions analytical in the upper and

kl at ia+(k,)

Q4 (k) ki — ia_(k,)

(5.16)
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lower half-planes of the complex plane yields a solution of the Riemann
problem. Making use of the condition (5.15) gives the screened potentials
Ff :it two-phase ion-dipole system of point particles with a planar interface
87

Gu(12) = —céa(l)c)b(v*/z)ﬁi— JE IR
0
1
X (Ol+(ks) exp(——a+(k5)|zl -z2|)+ (517&)

1 €+C¥+(k3) _ 6—a—(ks)
ay(ks) epay(ky) +ea_(k)

X exp(—ay(ky)(21 — 23)) for z;,2, > 0;

Gup(12) = —Qa(ﬁl)c}b(ﬁz)ﬂ/ks:dks.}o(k,su)x
0

5 ) (5.18b)
erai(ks) +e_a_(k,)

x exp(—ay(ks)z + a_(ks)z) for 2, > 0,2, < 05

X

Gu(12) = —Qa(§1)Qb(§2)ﬁ€i/k,dk,.]o(ksslz)x
X (a_( s) exp(_a+(k3)|zl - z2|)— (519C)

eroy (k) — e_a_(k)
erar(k,) + eca_(k,)

x exp(a_(k,)(z1 + 22)))  for 21,2, < 0.

The screened potentials gained are in complete agreement with those
obtained by other means in [89-90]. It should be noted that they go over
into the corresponding bulk expressions as the particles are away from the
interface because the image forces fall off rapidly with distance from the
surface. In the absence of an ion subsystem in one of the two half-spaces
the two-particle correlations along the interface have a dipole-like decay
character, no matter what half-space the particles are located in.

The expressions (5.17) allow to get one-particle screened potentials de-
fined as a screened interaction of the particle with its own electrostatic
image:
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Ga(]‘) - —Qa(61)éa(ﬁl)£:/8/ksdks‘]o(kssl'z)x
o 1 can(k) - ca (k) (5.20)
o (k) epag (k) +eca (k)
X exp(—2a4(k,)z) for z > 0.

A similar relation holds in the case of z; < 0.

The one- as well as two-particle screened potentials made it possible
to examine the distribution of ions and dipole molecules near an interface
within the framework of the two-phase ion-molecular model of point par-
ticles. Enrichment or depletion of the upper half-space in ions have been
demonstrated to occur depending on the dielectric constants ratio, € < €
or €, > €_, respectively. Therewith the thickness of the adsorption layer
for ions is proportional to the Debye radius in the given half-space, whereas
that for dipoles amounts to several molecular layers. A tendency for ionic
ordering of the interface layer arises with increase in the electrolyte concen-
tration.

Another way of description of spatially confined ion-molecular systems
is based on the Henderson-Abraham-Barker (HAB) approach [91] which re-
gards the unary distribution function as the wall-particle binary one. This
permits the bulk results to be drawn on for description of the surface prop-
erties by making the size of one sort of particles tend to infinity and their
concentration do to zero. Although this approach offers means of taking
account of short-range interactions with relative ease, studying the effect
of images on the interface structure requires the corresponding diagrams in
the cluster expansions to be calculated and resumed [92-93]). The calcula-
tions carried out in [94-96] make it possible to inquire into the character of
ion and dipole ordering in dependence on the surface charge and the ionic
concentration. Within the framework of the HAB model, recent attempts
are made to allow for the influence of association effects in ionic systems
[97-98] as well as a surface crystalline structure [99-101] on the near-surface
properties.

A vital issue in description of an interface is investigation of changes in
the quantum properties of particles near the surface. We considered such a
problem within the model of a hydrogen-like atom near a hard wall [102-106).
This approach can be used for description of shallow donors and excitons
located near a semiconductor-electrolyte interface. The results obtained
revealed that the surface causes a significant decrease in the ionization en-
ergy of a donor as well as exciton [102], and yet little affects the binding
energy of a donor-exciton complex [103-104]. Further studies involve more
realistic models allowing for finiteness of a surface potential barrier [105], a
surface structure, and a self-consistent action of adsorbed particles on the
adsorbate.
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PO BPAXYBAHHSA B3AEMOJIN B CTATUCTUUHIN
TEOPII PO3YHWHIB EJIEKTPOJIITIB

M.®d.T'onosko, 6.M.Con’sk

PosraanaiooTbcesa npo6aeMu BpaxyBaHHA B3A8MOIN B CTATUCTUY-
HINl Teopil ioHHO-MoOJIeKyaApHuX cuctem. IlponoHoBaHa mMeTomMKa
6a3yeThCA HA BUIIJIEHH] B MOTEHIIAaX MIXKYACTUHKOBO] B3a6MOil
KOPOTKOCAXHOI BIIITOBXYBaJbHOI YACTHHMA Ha MAaJMX BIICTAHAX,
KOPOTKOCAXKHOIO MPUTAraHHA Ha MPOMIXKHMX BIICTAHAX | NajieKo-
CAXHUX €/IeKTPOCTATUYHMX B3a6MOIil Ha BeJIMKMX BincTanax. Huaa
KOpenAmAHNX ¢ YHKIL 3aNpONoHOBaHO ONTMMI30BaHI TPYIOBI Po3-
BMHeHHA. PosraapaloTbcs pisHi ciocobu MomemoBaHHA 10HHO-MO-
JIEKY IAPHUX CUCTEM: 10HHO-MYJILTUTIOAbHI MOJ€JIl; ATOM-aTOMHI MO-
men; acoliaTUBHI MojeJi; peaJicCTU4HI Moleli, B AKUX npu onuci
6a3MCHO] MICUCTEMM BUKOPUCTOBYIOTHCA Pe3yAbTaTH KOMITIOTEp-
Horo moneoBaHHA. O6rosBopoIOThHCA Mpo6ieMu oUCy NMpocTopo-
BO 06MEXEHUX 10HHO-MOJIEeKYJIAPHUX CUCTEM.



