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A system of N atoms of liquid *He is under consideration. The
calculation of the one-particle density matrix based on the pair-corre-
lation function method is presented. Number of terms is factorized and
summized with extracting the small terms. The results obtained have
the form of the two terms sum where the first term have the structure
similar to the density matrix of ideal bose-gas. The equations for
calculating the temperature of bose-condensation are presented.

1. Introduction

In this paper we present the result of a calculation of the single-particle
reduced density matrix of superfluid *He. Our method of calculation is to
apply pair-correlation function method, developed in [1,2].

In section III and IV the different ways to obtain the equation for the
temperature of phase transition in *He based on density matrix are outlined.

We try to obtain the results rested on the measured values only. It
can be fulfilled by representing the results into the forms, where the liquid-
structure function S(k) is the single parameter. Then we can take S(k) for
example from the experimental studies of liquid helium.

2. Basic assumption

We consider a system of N atoms of “He, enclosed in the volume V at the
temperature 1. By definition the s-particle reduced density matrix of such
system is:

VS
Fy(rq,...,rs|ry, ... rL) = 7 /drs+1.../drNRN(rl,...,rN|r’1,...,ri\I),
N

where the general density matrix:

Ry(rq,...,rN|T), ... ry) = Z\I/Z(r'l,...,ri\]) e*ﬁﬁN\Iln(rl, .o, rN);(2.1)
ZN:/dr1.../drNRN(rl,...,rN|r1,...,rN)
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— partition function of the system described by the Hamiltonian operator
Hy . For the s-particle reduced density matrix s=1,2,3,..., and in the bulk
limit s/N — 0; with the condition N — oo , V. — oo , N/V = p — const.

The momentum distribution of atoms is given by the single-particle re-
duced density matrix F(r|r’) :

N .
N, = v /e"qRFl(R)dR, R=r -1,

a

where
F(r|r") = Fi(Jr — 1'|).

We start from the expression for the general density matrix obtained in
[3]:
Ry(z|z') = Py(z|a") Ry (z]a"),

0 , 1] mx 12V mE ;N2
Ry (ol = 5 |53 S | g o - re)) (n (22)

j=1
where the sum goes over all permutations of the coordinates ry,...ry.
Py(z|z") = e P00y (2" )W (z) VY,

where

a#0

Uy (z) = Ty(ry,...,ry) = \/‘lf_Nexp {% Za2(q)pqp_q}

— the wave function of ground state of the system,

N(N —-1) 1 , h2q?
EO = 72‘/ Vg — Z Z (Oéq - ].) 2m s
q#0
2N  h2¢? a, —1
%::w+vﬂﬁa’ ax(9) = ——5—

The density matrix RY, corresponds to the formation of the bose-con-
densate fraction. It also should be noted, that the mass of particles was
transformed (m — m*), according to the equation:

mo_ 1 (Sq—1)?
m BN 22 S, +1

it is clear that m* > m, that means the decrease of bose-condensation
temperature. This equation must be solved numerically. Calculation of this
type have been performed in [4-6]. For the effective mass of liquid *He at
the density p = 0.021854°2 yet m? = 1.7m [17,18].

The factor Py(z|z') in (1.2) takes into account the hard-core repulsion
of atoms due to the decrease of the free volume per particle that results in
the increase of the phase transition temperature.
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3. Omne-particle redused density matrix

Single-particle density matrix can be obtained by integration of general
density matrix:

1 L1 ,
—Fi(r|r})) = —/dr2...drNR?V(rl,...,rN|r1,r2...,rN)x
V ZN
1 /!
€xXp {_5E0 + 5 Z a2(k) [,Okpfk + ,Okp,k] } . (31)
K£0

Note that the structure of density matrix RY, mentioned in (2.2) is
similar to the structure of N range determinant, in which all terms will be
taken with 7+7:

K, K, ... ... KV
i , LIRS, 1 L KO
RN(rl,...,rer,rQ...,rN):W K%, K% 1 ... K%| - (32
Ky K%y oo . 1|,
Here a matrix element is
N —ﬁi(ri—rﬁ
g,:< m ) e A . (3.3)
J 27 Bh?

Let us expand the determinant (3.2) and extract the terms with indexes
1" and 1 in each term. Next we shall construct the number of elements
containing all permutations of first s elements. Extracting the first row
of the determinant, next, the first column, we can separate the multiplier
depending on r; and r} in each term. Afterwards we shall continue this
process with the minors of rank N — 2, N — 3, etc.

The set of terms received has the structure of product of first s elements
of the determinant into the new determinant rank N — s. All new deter-
minants are composed according to the following rules: the determinant
rank N — 2 does not contain first and j-th rows, and first (to index 1’) and
j-th columns, etc. Arranging the sum over the indexes of the elements with
simultaneous addition of all permutations of elements of mute indexes we
can symmetrize all terms of the sum, beginning from the third one.

The density matrix (3.2) can be rewriten in the form of number of terms
containing the density matrices of the system of N — s particles, where
s=1,2,...,N — 1. Let us note these matrices are R}_,. It should be also
noted that all obtained density matrices do not depend on r; and r}.

Thus we can write:

1 1
R?V(rla- .. ,I'N|I'11,I'2 A ’I‘?V) = NK?I’R?Vfl + m X
1
> K)Kjiq"Ry_,+ > |KLKLKS +
2<<N Y NN -1)(N -2) 2<j¢z‘<N[ T
1
KO K%K?,| RS
+ 1572 ji 21] N73+N(N_1)(N_2)(N_3)x
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> [KLKGKGKS, + KU KGKSKD, + KGR KL KD, +

2<i<j<IKN
KX KYKLKY, + + KO KL KO KDY, + KYKOKDKS, | RS, + ... (3.4)

It is helpful now to introduce the collective variables py and & according
to the relations (see [1,2]):

N—s —ikr;
Px -~ UN —s Z e
- S] s+1
1 )
e = —Ze_’k”, (3.5)
VN =

N —s s
p=y\—x Pkt

Substituting (3.5) into (3.1) we are able to reduce the density matrix to the
sum of the terms including the density matrices RY,_,, according to (3.4).
Thus we can separate the integration over (N — s) variables (on which R},

that is

depend) and next step is an integration over ry,...,r,.
Introduction of the collective variables permit us to split the density
matrix into parts, each one being dependent on the r, +1,...,ry or on the

first s coordinates. Only after that we have a possibility to separate these
parts completely.

Let us introduce the notation follows. We can define the function de-
pendent only on the first s coordinates by:

95(1,2,...,s|1',2,...,s) = exp {% ZaQ(k) (6e& x +§{(§'k)} X

k#£0

<exp{l§%a2 \/7 p58(5k+§'_k)}>N_s

where (...)y_, denote:

(Inee=

g /drs+1 /drN VRS (s 41,...,N)x
N-—s

Xexp{2a2 N s N skas}a

Qn_, is the part of density matrix depending on the rest (N —s) coordinates,
which are introduced by the relations

/drsH /drNR (s+1,...,N) x

N—s
eXP{2ao+Zaz( — skas}- (3.6)

k#£0
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It should be also noted that () x_, is quite similar to the partition func-
tion of the system of (N — s) particles, but differs in by some constants. It
follows immediately from (3.6) . Qn_, goes to the partition function only
in the bulk limit, thus we will keep our definition.

After all transformations we have to rewrite the one-particle density
matrix in the form:

V Qn_ V Qn_
Fuleile) = 3 K 110) & D [ drakh K,
V Qn_
92(1,2[1',2) + NQ5N3 /drg/dr3K?2Kg3K§1,gg(l,2,3|1',2,3) +
V Qn_
N%VN“ / dr, / dr; / dr, K% K9, K% K?, x
9:(1,2,3,4]1',2,3,4) + ... . (3.7)

Next let us evaluate g, and @ y_,. For this goal we are to find g, first. We
suppress the dependence on coordinates and use the abbreviated notations:

9s =9s(1,2,...,8]1",2,...,9).

gs may be considered as exponent of irreducible "averages”. Due to the
translational invariancy of pp ~* the first irreduceble average is equal to
zero. First term tends to zero because (p; —*) = 0.

It follows also that (p} ~*pp, %) _, # 0 only for ki = —ks.

Finally one can write g, by:

k0

gs = exp {% > [aa(k) (Gebre + &L +

) 50 6+ 6| (38)

where we consider only two first terms. The liquid-structure function
SN=s(k) for N — s particles is

¥ () = (PN (39)
In the same approximation for QQx_, we have:
1 N—5 v s
Qn_s = Z5% . exp {_EI;IH [1 - 2a2(k)TSéV (k)}} (3.10)

Z8% . = /drs+1.../drNR?V_S(s—i—l,...,N),

where S5’ *(k)—the liquid-structure function of ideal Bose-gas.

As was mentioned above (Qy_, is not exactly the partition function of
the system. It has an additional exponent as it follows immediately from
the right-hand side of the equation (3.10).
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Next it is possible to expand Qn_s/Qx in powers of the s/N

1 2a2 (k)pdse(k) ’
li - = ’ 9N 3
Jim Qn—s/Qn (z eXp{ 2N > 1 — 2a(k)So (k) }) "

k=0
1 2as (k) S, (k)
eXp{_ﬁsé 1 —2a2(k)50(k)}’ (3:.11)

where 2° = Z% | /Z% and it can be defined by 2° = e’#0 y;—the chemical
potential.

Let us turn back to (3.9). The liquid-structure function SV=%(k) may
be obtained in the form of derivative of (Qx_, so that the final result is:

N=s(1) — Sq (k)
S PN (L= )

N

We are still faced with the task of collecting F; (r|r’). For this goal we
have to decompose g;.

For the decomposition of the g, we shall factorize it using the collective
variables & for each s. So equation(3.6) can be modified to read

o= Foexp {_ L za2<k><so<k>—1>}, 5.12)

2N k#£0 1 — 2a,(k)S, (k)
where
Fo= R VEa)Eay) 1 F.9),
i=2 2<i<j<s
1 a3 (k)So (k) , )
FO 11’ = eX — 2 ezk(rl—rl) -1 ’
o(1) p{Nl;l_gaQ(k)So(k)( )
Fo(i,jli,5) = FO(3i,5) = e ®rimmib),

Exponent in (3.12) may be added to 2° in each term of density matrix.
Let us label this part z.
Thus, adopting the mentioned factorization, we arrive at the expression:

.
Fi(milry) = (1Y) {K 427 [ arakty [B9(L 2K [BR(12) +

ZS/er/dr3K§’2,/F20(1,2)K33F20(2,3)K§1,,/Fg(1',3) X
F20(1,3)F20(1’,2)+z4/dr2/drg/dr4Kf2\/F20(1,2) X

K3, F9(2,3) K5, F9(3, ) K,/ F (11, 4)\/F9 (1, ) F9(1.3)

\/Fg(1,4)F§(1', 2)FO(1',3) FY(2,4) + .. } .(3.13)
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4. Summation of the density matrix

Let us transform (3.13) in the form which allows to collect F(r;|r}). In this
case, we shall separate the leading terms in the one-particle density matrix.
Let us introduce

hy = \JFS(L,3)F(1,2) 1,
he = JES(1,3)FY(1,4)F9 (1, 2) F9(1',3)F3(2,4) — 1,

Thus
1 ; zQ(K*)Q
Fi(rr}) = Ff(lll’)ﬁgeqR{l_iquﬁzK? +
0 ! V n
RUNL S 2D, (4.1)
Nn)S
D, = /dr2.../drNKf2\/F2(](1,2)Kf,n\/F20(1’,n) I [KSFG )R-
2<i<j<n

K: = / K*(R)e"RdR, K*(R) = K°(R)\/FJ(R);
K, = / K(R)e"RdR, K(R) = K°(R)F3(R);
K’ = / K°(R)e "RdR,
R = r-r;
Or, under the assumption D, = 0:
Fi(nlry) = P e § 200
! ! N 4 1-ZK

Note, that equation (4.2) for ideal Bose-gas passes into

1 . 2K°
F,u N — iqR q .
(rlry) qu ¢ 1-2K7

From the normalization condition the equation (4.2) we obtain for z,
2(Kr)?

1
1=— K"
NZ{1—qu+z Q}’

q

that yields 1 —z.K, = 0 in the A-point. Therefore for z, we have z. = 1/ K,
where Ky = K,(qg = 0).
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The equation for the critical temperature after substituting z. yet:
1 (K!/Ky)?* K?
1=— —— + 1. 4.3
qu:{l—Kq/Ko Ko (43
Now we turn to our assumption for D,,. Let us consider a few first terms
Dy = / drs / drs KO [F9(1,2) KO, FO (2, 3) K2, /FO (1", 3) g
D, = /er/dr3/dr3K FY(1,2) K3, F3 (2,3) Ky, FY(3,4) K}, x

FO(1',4)hy

Unfortunately, these terms are difficult to be estimated. The terms
involving h; are expected to be small in interesting temperature range. We
remain the numerical calculations of this problem for the future.

5. Different form of equation for density matrix

An alternative form of equation (4.1) can be obtained by rewriting equation
(3.13) in the different form. We shall write the coefficients

hy = \JF(L2)FS(1',2) - FY(L2)F (', 2);

By = \JF9(L,2)FS(1,3)FS (1, 2)FS (L', 3)F9(2,3) —
F(1,2)F;(2,3)F; (1',2);
VES(L,2) F9(1,3) F9 (1, 4) F9 (1, 2) F (1", 3) FS (1", 4)
F{(2,3)F9(3,4)F2(2,4) — F{(1,2)FY (2,3)F9(3,4) FY (1", 4)

>
%
I

In this case for F; we obtain:

Fi(nlr) = Ff(1|1')%§eiqR{%+zKo}
FY(1]1") Zz”D;;, (5.1)
n>3
where
D; Z/drgK&K{{Qh;, D; :/er/dr3K32Kf,2h;,
and

/ dr,.. / dryKLKD, [ Kjhs

2<i<j<n
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K, and K are defined by relations in (4.1).
The equation for the A-point temperature yet

_ 1 (K,/Ko)* | K|
I_NZ{erE}' (5.2)

q

where D are neglected.

Note, that different ways to collect the equation for density matrix exist,
as we have shown above. Thus we obtain some similar equations for finding
Ty. It is clear that it requires more detailed numerical calculations of D,
and D} which were neglected without sufficient proves. A final remark must
be made concerning the use of formal parameters. We need only the liquid-
structure factor of system to solve equation (4.3) and equation (5.2). So it
is possible to make use of data from the experimental works of a number of
papers [7-11] or from the theoretical calculations.
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PO3PAXYHOK MATPUIII I'YCTUHU PITKOTI'O “He

I.Bakapuyk, K.Bacuaura

B craTTi posraamyTta cuctema N aToMmis pizkoro  He. 3 nosuoi
MaTPHULi I'yCTUHU CUCTEMY, IPU IOMOMO3i METOmy HmapHUX KOope-
JAUITHUX QYHKIIA, OTPUMAaHA OTHOYACTUHKOBA MATPUIA I'yCTUHU
Yy BUIJIAOI CYMU €JIEMEHTIB, fKi mimimaraioTs gaktopwm3sanii. Ilicas
BUMOIJIEHHsA MajgNUX YJEHIB Ta 3TOPTAHHA pALy OyB OTPUMAHUI BU-
pas IJisg OTHOYACTUHKOBOI MATPUIl T'YCTUHU y BUTJALI CyMU IBOX
IONAHKIB, MEpMNil 3 AKUX N0 CTPYKTYpPi momiOHM# mo MaTpumi ry-
cTuHU ineannuoro 6oze-raszy. Hasemeni Gpopmysam mis po3paxyHKy
TeMIepaTypu 003e-KOHIeHcaIlii.



