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The present work is devoted to the modelling which is based on the modified Cahn-Hilliard equation, the inter-
play of equilibrium and non-equilibrium phase transitions. The non-equilibrium phase transitions are modelled
by the Schlögl reactions systems. We consider the advancing fronts which combine these both transitions. The
traveling wave solutions are obtained; the conditions of their existence and dependence on the parameters of
the models are studied in detail. The possibility of the existance of non-equilibrated phase is discussed.
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1. Introduction
The present work is devoted to the modelling based on the modified Cahn-Hilliard equation, the

interplay of equilibrium and non-equilibrium phase transitions. We consider the advancing fronts which
“combine”, in some sense, these both transitions. To understand the meaning of our modifications, we
need to give some insight into the history and into the existing modifications of this equation. The
Cahn-Hilliard equation [1–4] is now a well-established model in the theory of phase transitions as well
as in several other fields. The basic underlying idea of this model is that for inhomogeneous system,
e.g., a system undergoing a phase transition, the thermodynamic potential (e.g., a free energy) should
depend not only on the order parameter u but also on its gradient. The idea of such dependence was
already introduced by Van der Waals [5] in his theory of capillarity. For an inhomogeneous system, the
local chemical potential µ is defined as variational derivative of thermodynamic potential functional. If
thermodynamic potential is the simplest symmetric-quadratic-function of the gradient, this leads to the
local chemical potential µwhich depends on Laplacian, while for the one-dimensional case it depends on
the second order derivative of the order parameter. The diffusional flux J is proportional to the gradient of
chemical potential ∇µ; the coefficient of proportionality is called mobility M [6]. With such expression
for the flux, the diffusion equation instead of the usual second order equation becomes a forth-order PDE
for the order parameter u (herein our notations differ from the notations in the original papers):

∂u
∂t ′
= ∇ [M∇µ] , (1.1)

µ = −ε̄2
∆u + f (u). (1.2)

Here, M is mobility, ε̄ is usually assumed to be proportional to the capillarity length, and f (u) = dΦ(u)
du ,

where Φ(u) is homogeneous part of the thermodynamic potential. In the present communication, we
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take f (u) in the form of the cubic polynomial (corresponding to the fourth-order polynomial for the
homogeneous part of thermodynamic potential):

f (u) = u3 − δu2 − su; (1.3)

rescaling u, the coefficient at u3 could be always scaled to one. In the present paper, u is assumed
to be non-negative, so, even for a symmetric potential, δ , 0; furthermore, the asymmetric potential
naturally appears in some modifications of the Cahn-Hilliard equation [4]. In this phenomenological
model, we always consider the isothermal situation, so we do not show the temperature dependence of
the coefficients in (1.3) explicitly. However, if we want to model the approach to the critical state for
such a model, the approach to critical temperature will be manifested by merging the stationary states
together, i.e., by two non-zero roots of the right-hand side of (1.3) approaching the third zero root.

The classic Cahn-Hilliard equation was introduced as early as 1958 [1, 2]; the stationary solutions
were considered, the linearized version was treated and the corresponding instability of homogeneous
state was identified. However, an intensive study of the fully nonlinear form of this equation started
much later [7]. At present, an impressive amount of work is done on nonlinear Cahn-Hilliard equation,
as well as on its numerous modifications, see [3, 4]. An important modification was done by Novick-
Cohen [8]. Taking into account the dissipation effects which are neglected in the derivation of the classic
Cahn-Hilliard equation, she introduced the viscous Cahn-Hilliard (VCH) equation

∂u
∂t ′
= ∇

[
M∇

(
µ + η̄

∂u
∂t ′

)]
, (1.4)

where the coefficient η̄ is called viscosity. It was also noticed that VCH equation could be derived as
a certain limit of the classic Phase-Field model [9]. Later on, several authors considered the nonlinear
convective Cahn-Hilliard equation (CCH) in one space dimension [10–12]

∂u
∂t ′
− ᾱu

∂u
∂x ′
=

∂

∂x ′

(
∂µ

∂x ′

)
. (1.5)

Leung [10] proposed this equation as a continual description of lattice gas phase separation under the
action of an external field. Similarly, Emmott and Bray [12] proposed this equation as a model for the
spinodal decomposition of a binary alloy in an external field E. As they noticed, if the mobility M [6] is
independent of the order parameter (concentration), the term involvingEwill drop out of the dynamics. To
get nontrivial results, they assumed the simplest possible symmetric dependence of mobility on the order
parameter, viz. M ∼ 1−ru2. Then, they obtained the Burgers-type convection term in equation (1.5) with
the coefficient ᾱ = 2rE . Thus, the sign of ᾱ depends both on the direction of the field and on the sign of r .
Witelski [11] introduced the equation (1.5) as a generalization of the classic Cahn-Hilliard equation or as
a generalization of the Kuramoto-Sivashinsky equation [13, 14] by including a nonlinear diffusion term.
In [10–12], and in [15, 16], several approximate solutions and only two exact static kink and anti-kink
solutions were obtained. The “coarsening” of domains separated by kinks and by anti-kinks was also
discussed. To study the joint effects of nonlinear convection and viscosity, Witelski [17] introduced the
convective-viscous-Cahn-Hilliard equation (CVCHE) with a general symmetric double-well potential
Φ(u):

∂u
∂t ′
− ᾱu

∂u
∂x ′
=

∂

∂x ′

[
M

∂

∂x ′

(
µ + η̄

∂u
∂t ′

)]
, (1.6)

µ = −ε̄2 ∂
2u

∂x′2
+

dΦ(u)
du

. (1.7)

It is worth noting that all results, including the stability of solutions, were obtained without specifying a
particular functional form of the potential. Thus, they are valid both for the polynomial and logarithmic
[3, 4] potential. Moreover, with a constraint imposed on nonlinearity and viscosity, the approximate
travelling-wave solutions were obtained. In [18], for equation (1.6) with polynomial potential, see (1.3),
and the balance between the applied field and viscosity, several exact single- and two-wave solutions
were obtained.

33602-2



Cahn-Hilliard model with Schlögl reactions

Another modification of the nonlinear Cahn-Hilliard equation which attracted much interest is the
insertion of linear or nonlinear sink/source terms, e.g., due to a chemical reaction, into this equation.
Such a study was pioneered by Huberman [19]. He introduced Cahn-Hilliard equation with additional
kinetic terms corresponding to the reversible first-order autocatalytic chemical reaction and analyzed the
linear stability of stationary states. Cohen andMurray [20] considered the same equation in the biological
context: they used quadratic nonlinearity to describe the growth and dispersal in the population model;
they studied the stability and identified bifurcations to spatial structures. Similar equation (with additional
nonlinear term) was used in [21] to study the segregation dynamics of binary mixtures coupled with
the chemical reaction. The same equation as in [19, 20] was used to describe phase transitions in a
chemisorbed layer [22] and to model the system of cells that move, proliferate and interact via adhesion
[23]. Furthermore, for the latter model, several rigorous mathematical results on the existence and
asymptotics of solutions were obtained [24, 25]. General observation is that the presence of chemical
reaction can visibly influence the equilibrium phase transition, e.g., freeze the spinodal decomposition
or coarsening, stabilizing some stationary inhomogeneous state.

On the other hand, the canonical models for non-equilibrium phase transitions in chemical reaction
systems were introduced by Schlögl [26]; here, the different “phases” correspond to different stationary
states of the system. Schlögl considered two reaction systems: the so-called “First Schlögl Reaction”

A + X � 2X, (1.8)

B + X � C, (1.9)

and the “Second Schlögl Reaction”
A + 2X � 3X, (1.10)

B + X � C. (1.11)

The concentrations of species A, B and C (which are called the “reservoir reagents”) are assumed to be
constant and only concentration of X can vary with time and space. For the first Schlögl reaction in the
absence of diffusion, the evolution of X is described by

dX
dt
= −k ′11X2 + k11 AX − k21BX + k ′21C. (1.12)

Here, the ki j , k ′i j are the rate constants for the forward and reverse reactions, respectively; the second
lower index is “1” for the first Schlögl reaction, and “2” for the second one. Correspondingly, for the
second Schlögl reaction in the absence of diffusion, the evolution of X is described by

dX
dt
= −k ′12X3 + k12 AX2 − k22BX + k ′22C. (1.13)

The first reaction exhibits a non-equilibrium phase transition of the second order, the second reaction
shows a phase transition of the first order (for details see [26]). If the system simultaneously undergoes
an equilibrium phase transition accompanied by a phase separation, it could be of considerable interest
to study the interaction of an equilibrium and non-equilibrium phase transitions. Apparently, being
unaware of Schlögl paper, Huberman [19] and Cohen and Murray [20] in fact considered the interplay
of equilibrium and (the second-order) non-equilibrium phase transitions.

In the present communication, we consider the modified Cahn-Hilliard equation complemented by
source/sink terms corresponding both to the first and the second Schlögl reactions. Let us call these mod-
ifications Cahn-Hilliard-Huberman-Cohen-Murray (CHHCM) and Cahn-Hilliard-Schlögl (CHS) equa-
tions, respectively. We also consider the influence of some additional modifications of the Cahn-Hilliard
equation, such as viscous and convective terms [8, 10–12, 17, 18].We give exact travelling-wave solutions
for these modifications. For completeness in appendix we also give an exact travelling-wave solution for
Puri-Frish modification [21]. In the second part of this paper, some additional exact solutions and stability
study are presented.
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2. Convective viscous Cahn-Hilliard-Huberman-Cohen-Murray equation
In the present sectionwe first give exact travelling-wave solutions for convective viscousCahn-Hilliard

equation with second order reaction terms. So, we first take into account the action of both external field
and dissipation [8, 10–12, 17, 18]; then, we drop the convective and viscous terms, reducing equation to
CHHCMequation. To avoid some unnecessary complications, we assume reaction (1.9) to be irreversible,
i.e., in (1.12) k ′21 = 0. In terms of Schlögl model [26], this corresponds to the “analog of zero magnetic
field” case. From (1.6), (1.2), (1.3) and (1.12) we write down the Convective Viscous CHHCM equation,
first in terms of the initial variable X (concentration):

∂X
∂t ′
− ᾱX

∂X
∂x ′
= M

∂2

∂x′2

(
µ̄ + η̄

∂X
∂t ′

)
−k ′11X2 + k11 AX − k21BX, (2.1)

µ̄ = −ε̄2 ∂
2X
∂x′2

+ f̄ (X) , (2.2)

f̄ (X) = qX3 − δ̄X2 − s̄X . (2.3)

The equations (2.1)–(2.3) implicitly assume that in the system A − B − C − X , the components A and
B are in large excess, and they are not essentially exhausted during the chemical reaction and did not
change essentially due to the phase transition; we also assume M to be a constant. Renormalizing X̄ , x ′

and t ′, we introduce
X = uX0; x ′ = xl; t ′ = tτ. (2.4)

Here, X0 =
1√
q
, τ = 1

k′11X0
=
√
q

k′11
and l =

√
Mτ =

√
M
√
q

k′11
. Denoting α = ᾱ X0τ

l = ᾱ

√
√
q

k′11M
, ε2 = ε̄2

l2
,

η =
η̄
τ , δ =

δ̄
X0
= δ̄
√

q and s = s̄q we write down equation (2.1) in the non-dimensional form,

∂u
∂t
− αu

∂u
∂x
=

∂2

∂x2

(
−ε2 ∂

2u
∂x2 + u3 − δu2 − su + η

∂u
∂t

)
− u (u − u1). (2.5)

We also introduce
u1 =

k11 A − k21B
k ′11X0

, (2.6)

assuming u1 > 0, i.e., k11 A > k21B. Looking for the travelling wave solutions of (2.5), we introduce the
travelling wave coordinate z = x − vt. This yields

d
dz

[
vu + α

u2

2
+

d
dz

(
−ε2 d2u

dz2 + u3 − δu2 − su − vη
du
dz

)]
= u (u − u1). (2.7)

We look for the solution, which connects the stationary state of the reaction system u = u1 at z = −∞
with the stationary state u = 0 at z = +∞. The simplest possible ansatz for the anti-kink solution (as
usually we call “kinks” the solutions with du

dz > 0, and “anti-kinks” — solutions with du
dz < 0) with this

property is as follows:
du
dz
= κu (u − u1) , (2.8)

where κ is presently unknown positive constant. Then, equation (2.7) could be written as

d
dz

[
vu + α

u2

2
−

1
κ

u +
d
dz

(
−ε2 d2u

dz2 + u3 − δu2 − su − vη
du
dz

)]
= 0. (2.9)

Integrating once, we get

vu + α
u2

2
−

1
κ

u +
d
dz

(
−ε2 d2u

dz2 + u3 − δu2 − su − vη
du
dz

)
= C1. (2.10)
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Regarding the ansatz (2.8), for the latter equation to be satisfied the expression under the derivative should
be proportional to u. That is, for (2.8) to give the solution of (2.5), two equations should be satisfied for
arbitrary u

vu + α
u2

2
−

1
κ

u + β
du
dz
= C1, (2.11)

− ε2 d2u
dz2 + u3 − δu2 − su − vη

du
dz
= βu + C2 , (2.12)

where β, C1 and C2 are constants. The expression for the second derivative of u is easily written as:

d2u
dz2 = κ

2
(
2u3 − 3u1u2 + u2

1u
)
. (2.13)

Then, equations (2.11), (2.12) take the form(α
2
+ βκ

)
u2 +

(
v −

1
κ
− βκu1

)
u = C1, (2.14)

−ε2κ2 [
2u3 − 3u1u2 + u2

1u
]
+u3 − δu2 − (s + β) u − vηκ

(
u2 − u1u

)
= C2 . (2.15)

Rearranging the terms and equating the coefficients at each power of u to zero, we finally obtain five
constraints on the parameters:

α

2
+ βκ = 0, (2.16)

v =
1
κ
+ βκu1, (2.17)

κ2 =
1

2ε2 , (2.18)

vηκ =
3
2

u1 − δ, (2.19)

vηκu1 =
1
2

u2
1 + s + β. (2.20)

There are five constraints (2.16)–(2.20) and only three unknowns κ, v and β. That is, for the constant
velocity transition front to exist, two additional constraints on the values of the stationary states of the
reaction system and on the values of the equilibrium states for the phase transition should be imposed.
Now, there is some freedom in selecting which parameters are “basic”, those related to the reaction
system, or those related to the “Cahn-Hilliard part”. Assuming the former to be basic, we write the
constraints as

δ =
u1
2

(
3 +

αη
√

2ε

)
− η, (2.21)

s = −
u2

1
2

(
1 +

αη
√

2ε

)
+ ηu1 +

αε
√

2
. (2.22)

If the constraints (2.16)–(2.20) are satisfied, the solution of equation (2.8) is simultaneously the
solution of the travelling-wave equation (2.7). Integrating (2.8) once, we get

u =
u1 exp {−κu1 (z + φ)}
1 + exp {−κu1 (z + φ)}

, (2.23)

where φ is an arbitrary constant. It is natural to take position of the maximal value of the derivative du
dz

(when d2u
dz2 = 0), as z = 0; then, φ = 0. The solution (2.23) could be rewritten in the form

u =
u1
2

[
1 − tanh

(
u1

2
√

2ε
(x − vt)

)]
. (2.24)
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Here, we used κ = 1√
2ε
, see (2.18); the velocity v of the transition front is given by (2.16) and (2.17),

v =
√

2ε + βκu1 =
√

2ε −
1
2
αu1. (2.25)

The roots of equation
ũ
(
ũ2 − δũ − s

)
= 0 (2.26)

correspond to the extrema of the homogeneous part of thermodynamic potential (1.2), (1.3), ũ1, ũ3 are
stable minima and ũ2 is unstable maximum. The root ũ3 = 0 coincides with one of the stationary states
of the reaction system. Substitution of (2.21) and (2.22) into the latter equation for δ and s, respectively,
yields two remaining roots, i.e., two constraints imposed on the values of ũ1, ũ2 and u1,

ũ1,2 =
1
2

[
u1
2

(
3 +

αη
√

2ε

)
− η ±

√
G

]
, (2.27)

G =
[
u1
2

(
3 +

αη
√

2ε

)
− η

]2
+ 4

[
−

u2
1

2

(
1 +

αη
√

2ε

)
+ ηu1 +

αε
√

2

]
. (2.28)

Here, the discriminator of quadratic equation is denoted by G for convenience. To understand the mutual
effect of the equilibrium and non-equilibrium transitions, it is practical to consider several special cases
of (2.27)–(2.28). First we consider the CHHCM case, i.e., the absence of the applied field and dissipation.
For α = 0 and η = 0, expression (2.28) simplifies drastically, yielding G = 1

4 u2
1. Then, (2.27) becomes

ũ1,2 =
u1
4
(3 ± 1) . (2.29)

This means that for the constant-velocity-transition front to exist, the values of the order parameter
corresponding to the equilibrium phases should coincide exactly with the values corresponding to the
stationary states of the chemical reactions system, i.e., ũ1 = u1; ũ3 = 0. The thermodynamic potential
should be symmetric, ũ2 = ũ1/2, with equal-depth wells. The velocity depends on the ε only, v =

√
2ε.

Now, let α = 0; η , 0. From (2.28) it follows

G =
(u1

2
+ η

)2
; ũ1,2 =

1
2

[
3u1
2
− η ±

(u1
2
+ η

)]
. (2.30)

That is, stationary values for the equilibrium transition should again coincide with the stationary values
for the reaction system, but the unstable value should be shifted to the lower value. As it was mentioned
in the introduction, the derivative of the homogeneous part of thermodynamic potential Φ(u) is given
by (1.3):

dΦ(u)
du

= u3 − δu2 − su. (2.31)

Integrating once and substituting values of δ and s for α = 0, we obtain the following expressions for
the potential values Φ (ũ1) and Φ (ũ3)

Φ (ũ1) = −
η

6
u3

1 + C; Φ (ũ3) = Φ (0) = C. (2.32)

That is, to compensate the dissipation, the potential well corresponding to ũ1 should be deeper. On the
other hand, if α , 0; η = 0

G =
u2

1
4
+ 4

αε
√

2
; ũ1,2 =

u1
4

3 ±
√

1 + 16
αε
√

2u2
1

 . (2.33)

This means that for positive α, the order parameter value for the final state after transition, u = u1, is
somewhat lower than the equilibrium value ũ1. To ensure the positivity of ũ2 it should be

√
2αε < u2

1;
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however, the parameter ε is small, so it is not a severe limitation. Now, let both α , 0, η , 0. The
expression for the velocity (2.25) is independent of η; for the special value α = 2

√
2

u1
ε, the velocity is zero,

i.e., for the corresponding value of the applied field, the transition front becomes static. Substitution of
this value of α into (2.27) and (2.28) yields

ũ1,2 =
u1
4

[
3 ±

√
1 +

32ε2

u3
1

]
. (2.34)

Interestingly, the viscosity η has dropped out from the latter expression. This is physically reasonable:
there is no dissipation for the static transition front; the deviation of the order parameter value u = u1 for
the final state after transition from its equilibrium value ũ1 is exactly the same as given by (2.33) (i.e., for
η = 0 case) for this special value of α.

3. Convective viscous Cahn-Hilliard-Schlögl equation
In this section we first give exact travelling-wave solutions for a convective viscous Cahn-Hilliard

equation with third order reaction terms. Again, we first take into account the effect of both external field
and dissipation [8, 10–12, 17, 18]; then, we drop the convective and viscous terms, reducing the equation
to CHS equation. To make the calculations somewhat more transparent we assume the reaction (1.11) to
be irreversible, i.e., in (1.13) k ′22 = 0. From (1.6), (1.2), (1.3) and (1.13), we write down the Convective
Viscous CHS equation, first in terms of the initial variable X (concentration):

∂X
∂t ′
− ᾱX

∂X
∂x ′
= M

∂2

∂x′2

(
µ̄ + η̄

∂X
∂t ′

)
−k ′12X3 + k12 AX2 − k22BX , (3.1)

µ̄ = −ε̄2 ∂
2X
∂x′2

+ f̄ (X) , (3.2)

f̄ (X) = qX3 − δ̄X2 − s̄X . (3.3)

Writing down equations (3.1)–(3.3), we again assume implicitly that in the system A − B − C − X the
components A and B are in large excess and are not essentially exhausted during the chemical reaction;
we also assume M to be a constant. Renormalizing X , x ′ and t ′, we introduce

X = uX0; x ′ = xl; t ′ = tτ. (3.4)

Here, X0 =
1√
q
, τ = 1

k′12X
2
0
=

q
k′12

and l =
√

Mτ =
√

M
k′12X

2
0
=

√
Mq
k′12

. Denoting α = ᾱ X0τ
l = ᾱ 1√

k′12M
;

ε2 = ε̄2

l2
; η = η̄

τ ; δ =
δ̄
X0
= δ̄
√

q ; s = s̄q; R = k12A
k′12X0

and Q = k22B
k′12X

2
0
, we write down equation (3.1) in

non-dimensional form

∂u
∂t
− αu

∂u
∂x
=

∂2

∂x2

(
−ε2 ∂

2u
∂x2 + u3 − δu2 − su + η

∂u
∂t

)
−u

(
u2 − Ru +Q

)
. (3.5)

Herein below we assume that the quadratic equation

u2 − Ru +Q = 0 (3.6)

always has real roots u1, u2, u1 > u2; i.e. R2 − 4Q > 0 which means, in terms of the parameters of the
reaction system, (k12 A)2 > 4k ′12k22B. Looking for the travelling wave solutions of (3.5), we introduce
the travelling wave coordinate z = x − vt. This yields

d
dz

[
vu + α

u2

2
+

d
dz

(
−ε2 d2u

dz2 + u3 − δu2 − su − vη
du
dz

)]
= u (u − u1) (u − u2) . (3.7)
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As in the previous section, we look for the solution, which connects the stationary state of the reaction
system u = u1 at z = −∞ with the stationary state u = 0 at z = +∞. Thus, the proper ansatz for the
anti-kink solution is again (2.8)

1
κ

du
dz
= u (u − u1) , (3.8)

where κ is presently an unknown positive constant. Then, equation (3.7) could be written as

d
dz

[
vu + α

u2

2
+

d
dz

(
−ε2 d2u

dz2 + u3 − δu2 − su − vη
du
dz

)]
=

d
dz

(
1

2κ
u2 −

u2
κ

u
)
. (3.9)

Integrating once, we get(
v +

u2
κ

)
u +

(
α −

1
κ

)
u2

2
+

d
dz

(
−ε2 d2u

dz2 + u3 − δu2 − su − vη
du
dz

)
= C1. (3.10)

Regarding the ansatz (3.8), for the latter equation to be satisfied, the expression under the derivative
should be proportional to u. That is, for (3.8) to give the solution of (3.7) two equations should be satisfied
for arbitrary u, (

v +
u2
κ

)
u +

(
α −

1
κ

)
u2

2
+ β

du
dz
= C1 , (3.11)

− ε2 d2u
dz2 + u3 − δu2 − su − vη

du
dz
= βu + C2 , (3.12)

where C1, C2 and β are constants. If the above constraints are satisfied for arbitrary u, the solution
of (3.5) is again given by (2.24), though with different values of u1, v, ε . The expression for the second
derivative of u is given again by (2.13). Then, equations (3.11), (3.12) take the form(

v +
u2
κ

)
u +

(
α −

1
κ

)
u2

2
+ βκ

(
u2 − u1u

)
= C1 , (3.13)

−ε2κ2
(
2u3 − 3u1u2 + u2

1u
)
+ u3 − δu2− (s + β) u − vηκ

(
u2 − u1u

)
= C2 . (3.14)

Rearranging the terms and equating coefficients at each power of u to zero, we finally obtain five
constraints on the parameters:

κ2 =
1

2ε2 , (3.15)

3
2

u1 − δ − vηκ = 0, (3.16)

−
1
2

u2
1 − s − β + vηκu1 = 0, (3.17)

β =
1

2κ2 −
α

2κ
, (3.18)

v = βκu1 −
u2
κ

(3.19)

Similarly to (2.16)–(2.20), there are five constraints (3.15)–(3.19) and only three unknowns κ, v and
β. That is, for the constant velocity transition front to exist, two additional constraints on the values of the
stationary states of the reaction system and on the values of the equilibrium states for the phase transition
should be imposed. Assuming, as in section 2, the parameters related to reaction system to be “basic”,
we write the constraints as

δ =
3
2

u1 −
(u1

2
− u2

)
η +

αu1

2
√

2ε
η; (3.20)

s = −
1
2

u2
1 − ε

2 +

(
u2

1
2
− u1u2

)
η +

α
√

2

(
ε −

u2
1

2ε
η

)
. (3.21)
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The latter expressions impose evident limitations on the roots of

ũ
(
ũ2 − δũ − s

)
= 0, (3.22)

i.e., on the extrema of the homogeneous part of the thermodynamic potential (1.2), (1.3), here, ũ1, ũ3
correspond to stable minima and ũ2 to unstable maximum. The root ũ3 = 0 coincides with one of the
stationary states of the reaction system. The expressions for two remaining roots yield two constraints
imposed on the values of ũ1, ũ2 and u1. The velocity of the transition front v is

v =
√

2ε
(u1

2
− u2

)
−
αu1

2
(3.23)

To understand the mutual effect of the equilibrium and non-equilibrium transitions it is again practical
to consider several special cases of (3.20) and (3.21). First we consider the CHS case, i.e., the absence
of the applied field and dissipation. For α = 0 and η = 0, these expressions simplify drastically, yielding

δ =
3
2

u1; s = −
1
2

u2
1 − ε

2 (3.24)

and, correspondingly

ũ1,2 =
u1
4

(
3 ±

√
1 −

16ε2

u2
1

)
'

u1
4

[
3 ±

(
1 − 8

ε2

u2
1

)]
. (3.25)

That is, even in the absence of the applied field and viscosity, the order parameter value for the final state
after transition, u = u1, is somewhat higher than the equilibrium value ũ1. The velocity is

v =
√

2ε
(u1

2
− u2

)
. (3.26)

Remarkably, the dependence of velocity on the stationary values of concentration, u1, u2, 0, is exactly
the same as for the well known travelling-wave solution for the diffusion equation with cubic nonlinearity;
for u2 = u1/2, the velocity is zero, that is the front becomes static. However, the coefficient in (3.26)
depends on ε, i.e., on the “Cahn-Hilliard part”. As it was mentioned in the introduction, the derivative of
the homogeneous part of the thermodynamic potential Φ(u) is given by (1.3):

dΦ(u)
du

= u3 − δu2 − su. (3.27)

Integrating once and substituting values of δ and s given by (3.24), we obtain the following expression
for the potential Φ(u)

Φ(u) =
1
4

u4 −
1
2

u1u3 +
1
2

(
1
2

u2
1 + ε

2
)

u2 + C, (3.28)

where C is a constant. Then, final (after transition) value of the potential is Φ (u1) = 1/2ε2u2
1 + C.

Taking into account ε � 1, to calculate the equilibrium value Φ (ũ1), we use the approximate expression
from (3.25), ũ1 ' u1 − 2ε2/u1. Substitution into (3.28) and neglecting higher order in ε2 terms, yields
Φ (ũ1) ' 1/2ε2u2

1 + C, i.e., it is nearly equal to the value after transition.
It means that despite the deviation of the concentration in the final state after transition from its

equilibrium value, the deviations of thermodynamic potential from its equilibrium value are of the higher
order in ε2. Now, let α = 0; η , 0 in (3.20), (3.21),

ũ1,2 =
1
2

{
3
2

u1 −
(u1

2
− u2

)
η ±

√[u1
2
+

(u1
2
− u2

)
η
]2
− 4ε2

}
. (3.29)

From (3.26)
( u1

2 − u2
)
= v√

2ε
; comparing (3.25) and (3.29) we see that the deviation term is of the

form vη
√

2ε
, i.e., multiple of velocity and viscosity. On the other hand, if α , 0; η = 0

ũ1,2 =
u1
4

[
3 ±

√
1 +

16ε
u2

1

(
α
√

2
− ε

)]
. (3.30)
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Now, let both α and η be non-zero. The expression for the velocity (3.23) is independent of η; for the
special value of α,

α =
2
√

2ε
u1

(u1
2
− u2

)
, (3.31)

the velocity is zero, i.e., for the corresponding value of the applied field, the transition front becomes
static even for u2 ,

u1
2 . Substitution of this value of α into (3.20) and (3.21) yields

s = −
1
2

u2
1 −

2ε2u2
u1

; δ =
3
2

u1 , (3.32)

and

ũ1,2 =
1
4

u1

(
3 ±

√
1 − 32

ε2u2

u3
1

)
. (3.33)

Again, the viscosity η has self-consistently dropped out of the latter expression, there is no dissipation
for the static transition front; the deviation of the order parameter value u1 after transition from its
equilibrium value ũ1 is exactly the same as given by (3.30) (i.e., for η = 0 case) for this special value
of α.

4. Discussion
In the present work we have modelled the interplay of equilibrium and non-equilibrium phase tran-

sitions. While the equilibrium phase transitions are described on the basis of modified Cahn-Hilliard
equation, the non-equilibrium phase transitions are presented by the canonical chemical models intro-
duced by Schlögl [26]. In these models, the different “phases” correspond to different stationary states of
the chemical reactions system. Schlögl considered two reaction systems: the so-called “First Schlögl Re-
action”(1.8)–(1.9), which is an analog of the second order equilibrium phase transition, and the “Second
Schlögl Reaction” (1.10)–(1.11), which is an analog of the first order equilibrium phase transition, for
details see [26]. Each of these reaction systems has four components, though the concentrations of three
reagents ( the so-called “reservoir reagents”) are assumed to be kept constant, and only the concentration
of one reagent changes in time and space. If the system is well mixed (or there is no spatial mass transfer),
the time evolution of this reagent is governed by a nonlinear ordinary differential equation. It is quadratic
polynomial nonlinearity for the First Schlögl Reaction (1.12), and the cubic nonlinearity for the Second
Schlögl Reaction (1.13). If the mass transfer should be taken into account, it is usually described by dif-
fusion equation. However, if the system is essentially inhomogeneous, e.g., undergoes a phase transition,
the proper description of the mass transfer is given by the Cahn-Hilliard equation [1–4], complemented
with nonlinear sink/source terms. For the second-order reaction system, such an approach was pioneered
by Huberman [19] and Cohen and Murray [20]. Apparently, being unaware of Schlögl paper, they in fact
considered the interplay of equilibrium and (second-order) non-equilibrium phase transitions. Huberman
introduced Cahn-Hilliard equation with additional kinetic terms corresponding to the reversible first-
order autocatalytic chemical reaction. He analyzed the linear stability of stationary states and the mutual
effect of spinodal decomposition and reaction. Cohen and Murray considered the same equation in the
biological context; using the nonlinear stability analysis based on a multi-scale perturbation method, they
identified bifurcations to spatial structures. Similar equation with an additional nonlinear derivative term
and an inverted sign of the quadratic nonlinearity was used in [21] to study the segregation dynamics of
binary mixtures coupled with chemical reaction. The same equation as in [19, 20] was used to describe
the phase transitions in chemisorbed layer [22] and to model the system of cells that move, proliferate
and interact via adhesion [23]. Furthermore, for the latter model, several rigorous mathematical results
on the existence and asymptotics of solutions were obtained in [24, 25]. On the other hand, to the best of
our knowledge, there is no study of the Cahn-Hilliard equation with the third order reaction terms in the
literature.

Our aim in the present work was to consider the possibly simple situation, where the interplay of
the equilibrium and non-equilibrium phase transitions could be observed explicitly. Thus, we considered
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the advancing fronts which “combine”, in some sense, these both transitions. We obtained several exact
travelling wave solutions, which exhibit an explicit parametric dependence. Naturally, for both transitions
to proceed simultaneously, some additional constraints should be imposed on the parameters of the
model.

To get a more direct insight here, we return to dimensional parameters. Starting from the CHHCM
equation supplemented by an additional convective term and viscosity, we see that the coexistence
of equilibrium and “second-order” non-equilibrium transformations in the form of a constant-velocity
transition front imposes quite rigid constraints on the parameters. From (2.25) the dimensional velocity
V = vl/τ is

V =
√

2
k ′11
√

q
ε̄ − ᾱX1. (4.1)

Here, X1 = u1X0 is the dimensional stationary concentration of the reaction system; from (2.6) we have

X1 = u1X0 =
k11 A − k21B

k ′11
. (4.2)

Remarkably, in the absence of the field, ᾱ = 0, the velocity does not depend on this concentration,
but on the parameters of the “Cahn-Hilliard part” q, ε and on the reaction constant for the reverse first
reaction (1.8) only

V =
√

2
k ′11
√

q
ε̄. (4.3)

In this case, the velocity of the anti-kink solution is always positive, while that of the kink-solution is
negative. That is, the stable state X1 of the chemical system always spreads on the cost of the unstable
zero state. In the absence of the field and viscosity, the constraints imposed on the stationary values of
polynomial part of the chemical potential X̃i = ũiX0 = ũi

/√
q are very rigid indeed

X̃1 = X1; X̃2 =
1
2

X1; X̃3 = 0; (4.4)

i.e., the stable stationary states for equilibrium transition should coincide with the stationary states for the
reaction system. This also means that the homogeneous part of the thermodynamic potential Φ should
be a symmetric function with equal-depth wells.

As already mentioned, we consider the isothermal situation only; still, it may be interesting to check
the limit of “critical state” for the equilibrium phase transition, i.e., for the “Cahn-Hilliard part”. As usually
for this model, it is assumed s ∼ (T −Tc) [for symmetric potential this also means δ ∼ (T −Tc)

1/2], where
Tc is the critical temperature. Then, in terms of our model, T → Tc corresponds to X̃1 → 0. Thus, the
larger equilibrium concentration scales as

X̃1 ∼ (T − Tc)
1/2. (4.5)

From (4.2) and (4.4), the compatibility of the transitions yields

k ′11 =
k11 A − k21B

X̃1
. (4.6)

Substitution of the latter expression into (4.3) shows that if the equilibrium transition approaches the
critical state, the velocity of the front diverges as

(
X̃1

)−1, i.e.,

V ∼ (T − Tc)
−1/2. (4.7)

If the viscosity is non-zero (but still ᾱ = 0), the expression for the velocity (4.3) does not change;
however, the exact expressions for the stationary values of the polynomial part of the chemical potential
become

X̃1 = X1; X̃2 =
1
2

X1 −
η̄k ′11

q
; X̃3 = 0. (4.8)
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That is, while the stationary states for the equilibrium transition should again coincide with the stationary
values for the reaction system, the unstable state should be shifted to the lower value. Thus, to compensate
the additional dissipation, the homogeneous part of the thermodynamic potential becomes asymmetric,
the potential well corresponding to X1 is now deeper, see (2.32); the difference, naturally, disappears for
zero viscosity η̄. On the other hand, if ᾱ , 0; η̄ = 0,

X̃1,2 =
X1
4

[
3 ±

√
1 + 16

ᾱε̄
√

2Mq
3
2 X2

1

]
. (4.9)

This means that for positive α, the order parameter value for the final state after transition, X = X1,
is somewhat lower than the equilibrium value X̃1; thus, the presence of the field can prevent final
equilibration. The unstable equilibrium value X̃2 should be somewhat lower too, so the potential Φ is
again asymmetric. Now, let both α , 0, η , 0. The expression for the velocity is independent of η; for
the special value

ᾱ =
2
√

2ε̄k ′11
X1
√

q
(4.10)

the velocity is zero, i.e., for the corresponding value of the applied field, the transition front becomes
static. The latter expression depends both on the Cahn-Hilliard parameters and on k ′11 and X1, so the
static front is due to the balance of equilibrium and reactive processes. The viscosity η̄ has dropped out
from the corrections to the stationary states. This is physically reasonable: there is no dissipation for the
static transition front; the deviation of the equilibrium value X̃1 of the order parameter from the final
state after transition X = X1, see (2.34), is exactly the same as given by (4.9) (i.e., for η̄ = 0 case) for this
special value of ᾱ.

In appendix we consider the model introduced by Puri and Frish [21]. While it looks similar to
CHHCM equation, for their reaction system the stable state is ψ = 0, and ψ = 1 is unstable. However,
for the homogeneous part of the thermodynamic potential, the state ψ = 0 is an unstable one. Thus, for
the simultaneous constant-velocity transition to exist, the stable state ψ3 should nearly merge with zero,
ψ3 ' −0, 212, and the potential should be very far from symmetric.

Now, considering the convective viscous CHS equation (3.1), we return to dimensional parameters
again. From (3.26), the dimensional velocity V = vl/τ is now

V =
√

2
k ′12
√

q
ε̄

(
X1
2
− X2

)
−
ᾱX1

2
(4.11)

As compared to the second order non-equilibrium phase transition, the situation for the first order non-
equilibrium phase transition is much more “flexible”. As in the section 3, we consider first the absence
of the field, ᾱ = 0:

V =
√

2
k ′12
√

q
ε̄

(
X1
2
− X2

)
. (4.12)

Comparing the latter equation with (4.3) we see that this expression is very similar to the coefficient
in (4.12) (to avoid confusion we remind that k ′11 and k ′12 have different dimensionality). However, the
dependence of velocity on the stationary values of concentration, X1, X2, 0, is exactly the same as for
the well known travelling-wave solution for the diffusion equation with cubic nonlinearity; for X2 =

X1
2 ,

the velocity is zero, that is the front becomes static. Moreover, for zero field, the viscosity η̄ enters the
constraints (3.20) and (3.21) always multiplied by

(
X1
2 − X2

)
, see (3.29). Particularly, for the static front,

the stationary concentrations X̃1, X̃2 will not depend on η̄, which is reasonable physically. If additionally
to ᾱ = 0 it is also η̄ = 0, that is the CHS-case, the final value after transition X1 will deviate from the
equilibrium value, see (3.25). Taking into account ε̄ � 1, we get

X1 ' X̃1 + 2
ε̄2k ′12

X1Mq2 . (4.13)
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Figure 1. (Colour online) The trevelling wave front in the case of the 1st Schlögl reaction for several wave
velocities v ∼ σ and u1 = 1.

That is, even in the absence of the applied field and viscosity, the order parameter value for the final state
after transition, X = X1, is somewhat higher than the equilibrium value X̃1, the phase is oversaturated
with X . However, comparing the values of the Φ (X1) and Φ

(
X̃1

)
we see that the deviation of the

thermodynamic potential from its equilibrium value is of the higher order in ε̄. Different from CHHCM
case, for CHS case in the limit of critical state for the equilibrium phase transition, i.e., for the “Cahn-
Hilliard part”, these transitions become incompatible. Indeed, for T → Tc we need to take the limit
X̃1 → 0 again. However, as it is evident from (3.25), there is a non-zero lower limit for X̃1. For smaller
values, this expression is physically senseless. Thus, if the equilibrium concentration X̃1 of the “Cahn-
Hilliard part” approaches this limit, the equilibrium and non-equilibrium transitions could not proceed
simultaneously, at the same front.

If ᾱ , 0; η̄ = 0, see (3.30), similar to convective CHHCM, the final state after transition is slightly
undersaturated by X due to the presence of the field. If both α and η are non-zero, for the special value of
ᾱ, see (3.31), the velocity is zero, i.e., for the corresponding value of the applied field, the transition front
becomes static even for X2 ,

X1
2 . Then, the viscosity η self-consistently drops out from the corrections

to the stationary states, see (3.33).
For the illustration purpose it is instructive to present the connection between the “observable”

parameters, e.g., velocity V of the transition front and the dimensional effective width of the transition
front σ. If Z is the dimensional travelling wave coordinate, the argument of tanh is

u1

2
√

2ε
z =

X1l

X02
√

2ε̄
Z
l
=

X1
√

q

2
√

2ε̄
Z . (4.14)

Then, σ = 2
√

2ε̄
X1
√
q
. This expression is the same for both reactions, though the expressions for X1 are

different, see below.
For the first reaction (without field)

V = k ′11

√
2ε̄
√

q
= k ′11

σX1
2

. (4.15)

From the definition of X1 (4.2) we find

V =
σ

2
k11 A (1 − ρ1) , (4.16)

where the parameter ρ1 = k21B/k11 A is characteristic of the first reaction: if ρ1 → 1, the difference
between stationary states disappears, if ρ1 → 0 this difference is maximal, which also corresponds to the
maximal velocity (figure 1).

For the second reaction
V =

σk ′12X1

2

(
X1
2
− X2

)
. (4.17)
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Figure 2. (Colour online) The trevelling wave front velocity in the case of 2nd Schlögl reaction as function
of the front width σ and parameter ρ2.

However, X1, X2 are now the roots of quadratic equation: u2 − Ru +Q = 0 where R = k12A
k′12X0

and Q =
k22B
k′12X

2
0
. Introducing a characteristic parameter for the second reaction ρ2,

ρ2 = 4
k ′12k22B

(k12 A)2
; 0 < ρ2 < 1,

we get

X1 =
k12 A
2k ′12

[
1 +

√
1 − ρ2

]
; X2 =

k12 A
2k ′12

[
1 −

√
1 − ρ2

]
(4.18)

and

V = σ
(k12 A)2

16k ′12

{
2
√

1 − ρ2 − 3ρ2 + 2
}
. (4.19)

The dependence of the wave front velocity on its width σ and parameter ρ2 according to the above
equation with (k12 A)2 /

(
16k ′12

)
= 1/2 is shown in figure 2.

Summing up, without viscosity and applied field, the constant-velocity combined-transition-front
model for CHHCM is not very instructive, both transitions should be too rigidly adjusted to each other
(of course, for the non-constant-velocity-fronts, the situation could be quite different). However, the
presence of the field and/or viscosity changes the situation; the concentration X in the final state may
deviate from its equilibrium value and even the transition may be stopped. On the other hand, for the CHS
equation, the effect of the non-equilibrium transition, i.e., of the reaction system, is much stronger. The
transition front may be stopped, or even reversed both by changing the stationary states of the reaction
system and by the field. The final state may be undersaturated or oversaturated, creating non-equilibrated
phases.

A. Cahn-Hilliard-Puri-Frish equation
Here, for completeness we give the exact travelling wave solution for one-dimensional version of

equation, introduced by Puri and Frish [21]. To match our consideration with [21] we use their original
notations and normalizations, which are different from these in the other parts of the present paper.
After the correction of the evident misprint and considering the generally asymmetric thermodynamic
potential, the equation (9) of [21] is

∂ψ

∂t
= −

∂2

∂x2

{
ψ + δψ2 − ψ3 +

∂2ψ

∂x2

}
− αψ (1 − ψ) +

α

σ
ψ
∂2ψ

∂x2 . (A.1)
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Here, α is a phenomenological constant, proportional to the ratio of the characteristic times for a spin
exchange and reaction, σ is proportional to the inverse square of lattice spacing. Evidently, dropping the
last term in the right-hand side of (A.1) we obtain CHHCM equation, though with an inverted sign of
the reaction term, see section 2. This means that for the reaction system the stable state is ψ = 0, while
ψ = 1 is unstable. Looking for the travelling wave solutions of (A.1), we introduce the travelling wave
coordinate z = x − vt. This yields

− v
dψ
dz
= −

d2

dz2

{
ψ + δψ2 − ψ3 +

d2ψ

dz2

}
− αψ (1 − ψ) +

α

σ
ψ

d2ψ

dz2 . (A.2)

Introducing the ansatz
dψ
dz
= κψ (1 − ψ) , (A.3)

which for the positive κ and 0 6 ψ 6 1 corresponds to the kink-like solution, the last two terms in the
right-hand side of (A.2) could be rewritten as

− αψ (1 − ψ) +
α

σ
ψ

d2ψ

dz2 =
d
dz

[
−
α

κ
ψ +

α

2σ
κψ2 −

2α
3σ

κψ3
]
. (A.4)

Substituting the latter expression into (A.2), integrating once and rearranging the terms we get(
v −

α

κ

)
ψ +

α

2σ
κψ2 −

2α
3σ

κψ3 −
d
dz

(
ψ + δψ2 − ψ3 +

d2ψ

dz2

)
= C1. (A.5)

For the latter equation to be satisfied, the expression under the derivative should be a quadratic function
of u:

ψ + δψ2 − ψ3 +
d2ψ

dz2 = βψ + γψ
2 + C2 , (A.6)(

v −
α

κ

)
ψ +

α

2σ
κψ2 −

2α
3σ

κψ3 − (β + 2γψ)
dψ
dz
= C1, (A.7)

where β, γ, C1 and C2 are constants. Substitution of the corresponding expressions for the derivatives
into (A.6) and (A.7) yields(

v −
α

κ

)
ψ +

α

2σ
κψ2 −

2α
3σ

κψ3 + κ
[
2γψ3 + (β − 2γ)ψ2 − βψ

]
= C1, (A.8)

ψ + δψ2 − ψ3 + κ2
(
2ψ3 − 3ψ2 + ψ

)
= βψ + γψ2 + C2. (A.9)

Rearranging and equating to zero coefficients at all powers of ψ, we obtain the system of constraints
imposed on the parameters.

2κ2 = 1, (A.10)

δ −
3
2
= γ, (A.11)

β =
3
2
, (A.12)

γ =
α

3σ
, (A.13)

α

2σ
+ β − 2γ = 0, (A.14)

v =
α

κ
+ κβ. (A.15)
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If these constraints are satisfied, the solutions of (A.3) are simultaneously the solutions of the travelling-
wave equation (A.2), which, quite analogously to (2.24) is

ψ =
1
2

{
1 + tanh

[
1

2
√

2
(x − vt)

]}
. (A.16)

From (A.10), (A.12) and (A.15) v =
√

2α + 3
2
√

2
, the velocity of the kink is always positive (α is

per definition positive), i.e., the stable ψ = 0 state spreads on the cost of the unstable state ψ = 1. The
constraints imposed on the parameters of the model are α = 9σ; δ = 9/2. Then, the roots of equation

ψ3 − δψ2 − ψ = 0 (A.17)

are ψ1 ' 4, 712; ψ2 = 0; ψ3 ' −0, 212, i.e., the potential Φ (ψ) should be very far from symmetric.
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Cahn-Hilliard model with Schlögl reactions

Модель Кана-Гiлiярда з реакцiями Шльогля: взаємодiя
рiвноважного i нерiвноважного фазових переходiв.
I. Розв’язок типу рухомої хвилi
П.О. Мчедлов-Петросян, Л.М. Давидов
Нацiональний науковий центр “Харкiвський фiзико-технiчний iнститут”, Харкiв, 61108, вул. Академiчна, 1
Робота присвячена моделюванню взаємодiї рiвноважних i нерiвноважних фазових переходiв. Рiвнова-
жнi фазовi переходи моделюються модифiкованим рiвнянням Кана-Хiльярда, а нерiвноважнi — систе-
мою хiмiчних реакцiй Шльогля. Ми розглядаємо фронти, що поширюються, якi поєднують обидва цi
фазовi переходи. Отримано розв’язки типу рухомої хвилi. Умови їхнього iснування i залежностi вiд па-
раметрiв моделей аналiзуються детально. Обговорюється можливiсть iснування нерiвноважних фаз.
Ключовi слова: фазовий перехiд, нерiвноважний фазовий перехiд, рiвняння Кана-Хiльярда, реакцiї
Шльогля
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