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The proton ordering model of the phase transition and physical properties of antiferroelectric crystals of squaric
acid is modified by taking into account the influence of diagonal lattice strains and of the local geometry of hy-
drogen bonds, namely of the distance δ between the H-sites on a bond. Thermal expansion, the spontaneous
strain ε1 − ε3, and specific heat of squaric acid are well described by the proposed model. However, a con-sistent description of hydrostatic pressure influence on the transition temperature is possible only with further
modifications of the model.
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1. Introduction
The crystals of squaric acid, H2C4O4 (3,4-dihydroxy-3-cyclobutene-1,2-dione) are an epitome of

two-dimensional antiferroelectrics. The hydrogen bonded C4O4 groups form planes parallel to ac and
stacked along the b-axis. Below the transition at 373 K, a spontaneous polarization arises in these planes,
with the neighbouring planes polarized in the opposite directions. The crystal symmetry changes from
centrosymmetric tetragonal, I4/m, to monoclinic, P21/m, and spontaneous symmetry-changing strains
ε1 − ε3 (orthorhombic) and ε5 (monoclinic), both of Bg symmetry, arise [1–3]. The local symmetry of
the H2C4O4 groups is C1h below and above the antiferroelectric phase transition [4].

Elastic and thermoelastic properties of squaric acid are remarkably anisotropic. Compressibility and
thermal expansion [5] are much higher in a direction perpendicular to the planes of hydrogen bonds
than within the planes. The symmetry-changing strains ε1 − ε3 and ε5 are confined to the ac plane. The
anomalous parts of the diagonal strains ε1, ε3 and of ε2, caused by electrostriction, have different signs.

There is also experimental evidence for non-equivalence of hydrogen bonds going along two perpen-
dicular directions (e.g. [1, 6]). The difference between degrees of proton ordering on these bonds is about
2% at TN − 13 K and TN − 21 K [1]. The O–H and H-site distances are also found to be slightly different
for the perpendicular bonds.

Hydrostatic pressure rapidly decreases the antiferroelectric transition temperature with the slope of
about 11 K/kbar [4, 7, 8] at pressures below about 25 kbar. At higher pressures, this dependence deviates
from linearity, and around 28 kbar, the transition temperature rapidly falls to zero: a quantum paraelectric
state is induced [4]. At further increase of pressure at a constant temperature (at least for temperatures
between 100 and 300 K), another phase boundary is detected [4], at which the local symmetry of the
H2C4O4 groups changes from C1h to C4h.

Theoretical description of the antiferroelectric transition in squaric acid is usually based on some ver-
sions of the proton ordering model, either two-dimensional, invoking four-particle correlations between
protons within the planes [9–12], or one-dimensional, where either non-interacting [13] or coupled [14]
perpendicular pseudospin chains are considered. The four-particle model can be reduced to the model of
interacting one-dimensional chains by the proper choice of the model parameters [13]. The four-particle
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Hamiltonians are basically identical to those for NH4H2PO4 crystals, antiferroelectrics of the KH2PO4
family.

Deformational effects in squaric acid were first addressed in [9–11], where the coupling between spins
and spontaneous lattice distortion were included into the model. In [12] the proton-phonon coupling was
added, and hydrostatic pressure effects on the phase transition temperature and dielectric permittivity
of pure and deuterated squaric acid crystals were described by assuming the model parameters to be
pressure dependent and by performing a new fitting procedure for each considered value of pressure.

In [15, 16], the observed in [4] p − T phase diagram comprising the antiferroelectric phase with
the C4O4 groups having the local symmetry C1h, the paraelectric phase (C1h), and high-pressure para-
electric phase (C4h), was qualitatively described, using different versions of proton ordering model. The
intermediate paraelectric phase (C1h) was found to be a quantum liquid-like state.

Since the antiferroelectric phase transition in squaric acid is usually attributed to proton ordering,
which triggers displacements of heavy ions and rearrangement of electronic density, it is expected that
just like in the KH2PO4 family crystals, in the squaric acid the pressure-induced changes in the geometry
of the hydrogen bonds should play an important role in the pressure influence on the phase transition. The
distance δ between the two equilibrium positions of a proton on a hydrogen bond was found to be the most
crucial geometrical parameter here [17, 18]. For the KH2PO4 family crystals, having a three-dimensional
network of hydrogen bonds, there exists a universal linear dependence of the transition temperatures Tc

on the value of the distance δ at the transition, withTc and δ being varied by external hydrostatic pressure,
uniaxial stress p = −σ3, and by isomorphic substitution of heavy ions [17, 18]. For the squaric acid,
which H-bond network is two-dimensional, the dependence Tc(δ) under hydrostatic pressure is similar
but with a different slope.

None of the above mentioned earlier theories for the squaric acid crystals explicitly considers the role
of the geometrical parameters of hydrogen bonds in the pressure effects on the phase transition in squaric
acid. None of them includes into consideration the thermal expansion of the crystal either.

Thus, similarly to how it was done for Rochelle salt [19], we intend to develop a unified deformable
model for squaric acid that can describe the effects associated with the diagonal lattice strains: thermal
expansion and influence of external hydrostatic pressure. We shall also include the dependence of the
interaction constants on the H-site distance δ into the model.

An important question arises whether tunneling of protons on hydrogen bonds, also known to be
essentially dependent on their geometry, should be taken into account in the model. We believe that for
the reasons described below, at temperatures and pressures considered in the present paper it will suffice
to use an Ising-type model without tunneling.

The calculations performed within the framework of the proton-lattice model [12] using the random
phase approximation found tunneling to be small in squaric acid, even when it is increased by hydrostatic
pressure, as it is usually assumed. Furthermore, when the cluster approximation for the short-range
interactions is used instead of the mean-field type approximations (MFA), tunneling becomes even less
essential. Thus, for the KH2PO4 type systems, tunneling is effectively renormalized by short-range
four-particle correlations between protons [20], reducing its effective value down to tenths of that used
by the MFA calculations. Tunneling is expected to be significant at very low temperatures and at high
pressures, where quantumfluctuations suppress themacroscopic ordering, leading to the onset of quantum
paraelectricity. We, on the other hand, restrict our consideration to moderate pressures (below 15 kbar)
and higher temperatures (above 150 K), where the Tc(p) dependence remains linear. We think it safe to
assume that in our calculations tunneling can be neglected.

2. The model
There are two formula units in the low-temperature phase unit cell of squaric acid. In our model, the

unit cell consists of two C4O4 groups and four hydrogen atoms ( f = 1, 2, 3, 4, see figure 1) attached to
one of them (the A type group). All hydrogens around the B type groups are considered to belong to the
A type groups, with which the B groups are hydrogen bonded. Note that the two C4O4 groups of each
unit cell belong to different neighboring layers. The center of each hydrogen bond lies exactly above the
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center of the hydrogen bond in the layer below it (as seen along the b axis). The bonds around each A
type group are numbered counterclockwise.

Figure 1. Crystal structure of squaric acid as viewed along the b axis. Figure is taken from [21, 22]. Two
adjacent layers are shown, with black and open circles each. The A and B type C4O4 groups are indicated
(see text for explanation), and the hydrogen bonds are numbered.

As it is usual in the proton ordering models, we consider interactions between protons leading to an
ordering in their system. Motion of protons in double-well potentials is described by pseudospins, whose
two eigenvalues σ = ±1 are assigned to two equilibrium positions of the proton. We take into account
the presence of the diagonal components of the lattice strain tensor ε1, ε2, and ε3 that are induced via
thermal expansion or by application of external hydrostatic pressure.

The system Hamiltonian in the case of squaric acid

H = Useed + Hintra
long + Hinter

long + Hshort (1)

includes ferroelectric intralayer long-range interactions Hintra
long , ensuring ferroelectric ordering within each

separate layer, antiferroelectric interlayer Hinter
long responsible for alternation of polarizations in the stacked

layers, the short-range configurational interactions between protons Hshort, and the so-called “seed”
energy

Useed = vN

1
2

3∑
i j=1

c(0)i j εiεj −

3∑
i j=1

c(0)i j α
(0)
i (T − T0

i )εj

 , (2)

containing elastic and thermal expansion contributions associated with uniform lattice strains; c(0)i j are
the corresponding “seed” elastic constants, whereas α(0)i are the “seed” thermal expansion coefficients.
T0
i determines the reference point of the thermal expansion of the crystal, which can be chosen arbitrarily.
v is the unit cell volume, and N is the number of the unit cells in the crystal. Such a form of (2) later on
yields standard expressions for the strains of a stressed thermally expanding solid [see equation (25)].
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Figure 2. Lateral, diagonal, single and double ionized proton configurations around an A type C4O4
group in squaric acid. The hydrogen bonds f = 1, 2, 3, 4 are numbered. Two equilibrium positions of
each proton are shown, and the signs s f = ±1 of the eigenvalues of the σyq f operators are indicated.
Here y stands for the layer index, q is the index of the A type C4O4 group, and f is the bond index.

The short-range Hamiltonian Hshort describes the four-particle confirational correlations between
protons sitting around each C4O4 group. Similarly to how it is done for NH4H2PO4, the antiferroelectrics
of the KH2PO4 type family, it is assumed that the energy of four lateral configurations εa is the lowest
of all, where two protons are in positions close to the adjacent oxygens of the C4O4 group, whereas two
other protons are closer to the neighboring C4O4 groups (see figure 2). The next level is two diagonal
configurations with the energy εs, where the protons are close to the opposite oxygens of the C4O4 group.
Then, there are eight single-ionized configurations with three protons or only one close proton, having
the energy ε1, and two double-ionized configurations (ε0) with four or no protons at all close to the given
C4O4 group. It is believed that εa < εs � ε1 � ε0.

If two protons are in the most energetically favorable lateral configurations, the C4O4 groups are
isosceles trapezoids (point group C1h), although very close to squares (C4h). It is believed that this local
distortion is caused by two single and two double alternating covalent bonds connecting the four oxygens
to the carbons, and by formation of the double C–C bond within the C4O4 skeleton, as shown in figures 1
and 2. Double bonds are shorter than single ones between analogous atoms. Since the origin of the
skeleton distortion is the chemical bonding with the local proton configuration, rather than macroscopic
uniform lattice strains, all four lateral configurations still have the same energy of short-range interactions,
no matter what their orientation relatively to the crystallographic axes is (see table 1). The same holds for
the diagonal (point group C2h), single-ionized (point group C1), and double-ionized groups (point group
D2h). It means that no splitting of short-range energy levels by the macroscopic spontaneous strain takes
place, in contrast to what was assumed in earlier theories for squaric acid [9] or for KH2PO4 type crystals
[23, 24].

To proceed from the representation of proton configuration energies to the pseudospin representation,
we use a standard procedure, originally developed for the KH2PO4 type crystals [25, 26], where the
Hamiltonian of the short-range correlations between protons, surrounding each A type C4O4 group is
written as follows:

HA
yq =

16∑
i=1

N̂i(yq)Ei, N̂i(yq) =
4∏

f=1

1
2
(1 + s fσyq f ) (3)

where N̂i(yq) is the operator of the four-particle configuration i; s f = ±1 is the sign of the eigenvalue
of the σyq f operator in this particular configuration; Ei is the energy of the configuration. It is assumed
that s f = +1 if a proton at the f th bond is localized at the H-site proximal to the particular A type
C4O4 group, and s f = −1 if the proton is localized at the other (distal) H-site of the same bond. Using
equation (3), we arrive at the following expression for the Hamiltonian

HA
yq = V

[σyq1

2
σyq2

2
+
σyq2

2
σyq3

2
+
σyq3

2
σyq4

2
+
σyq4

2
σyq1

2

]
+U

[σyq1

2
σyq3

2
+
σyq2

2
σyq4

2

]
+ Φ

σyq1

2
σyq2

2
σyq3

2
σyq4

2
. (4)

The short-range interaction constants

V = −
ε − w1

2
, U =

ε + w1
2

, Φ = 2ε − 8w + 2w1, (5)
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Table 1. Proton configurations and their energies; εa < εs � ε1 � ε0.

i s1s2s3s4 Ei

1 + + −− εa

2 − + +−

3 − − ++

4 + − −+

5 − + −+ εs

6 + − +−

15 − − −− ε0

16 + + ++

i s1s2s3s4 Ei

7 + − −− ε1

8 − + −−

9 − − +−

10 − − −+

11 − + ++

12 + − ++

13 + + −+

14 + + +−

are linear functions of the Slater-Takagi type energy parameters

ε = εs − εa, w = ε1 − εa, w1 = ε0 − εa .

Note that the model of non-interacting perpendicular one-dimensional chains is obtained from equa-
tion (18) at Φ = V = 0, i.e. at ε = w1 = 2w, where the following order of the configuration energies
should be assumed [13] εa < ε1 < εs = ε0.

It can be shown, as it has been done for the KH2PO4 ferroelectrics, that the contributions of the
correlations from theAandB type groups to the total thermodynamic potential are equal. TheHamiltonian
of the short-range interactions in this case can be written as follows:

Hshort → 2
∑
qy

HA
qy, (6)

where the expression for HA
qy is given by equation (4).

The long-range interactions in the system Hamiltonian (1) are the dipole-dipole interactions, in
analogy to the case ofKH2PO4 [25], renormalized by the proton-lattice coupling. TheMFA is successfully
used for these interactions in the calculations for hydrogen-bonded ferroelectrics, if the fluctuations in
the vicinity of the phase transition temperature neglected in this approximation are not the subject of
special interest.

Within the MFA, we obtain the following expressions for the long-range intralayer

Hintra
long = −

1
2

Ny∑
y=1

∑
qq′

f f ′

J intraf f ′ (qq′)
σyq f

2
σyq′ f ′

2
' −2

∑
yq f

F intra
yq f

σyq f

2
+

∑
yq f

F intra
yq f

〈σyq f 〉

2
(7)
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and for interlayer

Hinter
long = −

1
2

∑
y

∑
y′,y

∑
qq′

f f ′

J interf f ′ (yy
′; qq′)

σyq f

2
σy′q′ f ′

2
' −2

∑
yq f

F inter
yq f

σyq f

2
+

∑
yq f

F inter
yq f

〈σyq f 〉

2
(8)

interactions. Here Ny is the total number of the layers. The internal mean fields are as follows:

F intra
yq f =

1
4

∑
q′ f ′

J intraf f ′ (qq′)〈σyq′ f ′〉, F inter
yq f =

1
4

∑
y′q′ f ′

J intraf f ′ (yy; qq′)〈σy′q′ f ′〉. (9)

The following symmetry of the pseudospin mean values is assumed for the antiferroelectrically
ordered two-sublattice model in the absence of external electric field

〈σyq f 〉 = exp[ik2Ry]η f . (10)

Here, k2 = (0, b2, 0); b2 is the basic vector of the reciprocal lattice; the factor exp[ik2Ry] = ±1 denotes
two sublattices of an antiferroelectric, Ry is the position vector of the y-th layer, and

η1 = −η3, η2 = −η4, η1 ≈ η2. (11)

The last relation reflects the slight non-equivalence, mentioned in introduction, of hydrogen bonds,
linking C4O4 groups along the a and c axes.

Even though each particular interaction parameter J intra
f f ′
(qq′) and J inter

f f ′
(yy′; qq′) is obviously changed

by the strains ε1 and ε3, the symmetry of the long-range interaction matrices Fourier transforms

J intraf f ′ (0) =
∑
q′

J intraf f ′ (qq′), J interf f ′ (k2) =
∑
q−q′

∑
y−y′

J interf f ′ (yy
′; qq′) exp[ik2(Ry − Ry′)]

over the bond indices f and f ′, as can be easily checked, remains unchanged in the presence of the
orthorhombic strain ε1 − ε3:

J11 = J22 = J33 = J44, J12 = J23 = J34 = J41, J13 = J24 (12)

both for J intra(0) and J inter
f f ′
(k2). The symmetry (12) is obvious for strictly square-shaped C4O4 groups

(point group C4h). This is a statistically average symmetry of the paraelectric phase, where the hydrogens
are placed, also statistically, in the middle of the hydrogen bonds.

Taking into account equations (10)–(12), we can write the Hamiltonians of the long-range interactions
as follows:

Hlong = Hintra
long + Hinter

long = Nν[η2
1 + η

2
2] − 2ν

∑
yq

exp[ik2Ry]

[
η1
σqy1 − σqy3

2
+ η2

σqy2 − σqy4

2

]
, (13)

where

ν = νintra(0) + νinter(k2) =
J intra11 (0) − J intra13 (0)

4
+

J inter11 (k2) − J inter13 (k2)

4
. (14)

We also took into account the fact that NyNqA = N .
For the sake of simplicity, we shall hereafter neglect the weak non-equivalence of the perpendicular

chains of hydrogen bonds and use a single order parameter

η ≡ η1 = η2 = −η3 = −η4 (15)

instead of equation (11).
The four-particle cluster approximation will be used for the short-range interactions, described by the

Hamiltonian (4). With the long-range interactions taken into account in the mean field approximation,
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the thermodynamic potential of the system should be written as follows:

G = −vN
3∑
i=1

σiεi + NUseed −
1
β

∑
qy

2 lnSp exp(−βH(4)qy) −

4∑
f=1

lnSp exp(−βH(1)
qy f
)


+

∑
yq f

(
F intra
yq f + F inter

yq f

) 〈σyq f 〉

2
. (16)

Here σ1 = σ2 = σ3 = −p, β = (kBT)−1, and

F intra
yq1 + F inter

yq1 = F intra
yq2 + F inter

yq2 = −F intra
yq3 − F inter

yq3 = −F intra
yq4 − F inter

yq4 = exp[ik2Ry]νη. (17)

The four-particle cluster Hamiltonian is

H(4)qy = HA
qy −

4∑
f=1

zyq f
β

σyq f

2
, (18)

where
zyq f = β(∆yq f + 2F intra

yq f + 2F inter
yq f ).

The fields ∆yq f are the effective cluster fields that describe short-range interactions of the spin σyq f with
the particles from outside the cluster q. They are determined from the self-consistency condition stating
that pseudospin mean values calculated with the four-particle (18) and with the one-particle

H(1)
yq f
= −

[
2∆yq f + 2F intra

yq f + 2F inter
yq f

] σyq f

2
Hamiltonians should coincide. We get

zyq1 = zyq2 = −zyq3 = −zyq4 = exp[ik2Ry]z , z =
1
2

ln
1 + η
1 − η

+ βνη. (19)

Taking into account equations (13), (15), (18), (19), the thermodynamic potential per one unit cell is
obtained in the following form

g = Useed −
2
β

[
ln D + ln(1 − η2)

]
+ 2νη2 − v

3∑
i=1

σiεi , (20)

where
D = a + cosh 2z + 4b cosh z + 1, a = exp(−βε), b = exp(−βw).

In the earlier theories [18, 27], the short-range Slater-Takagi energies in the KH2PO4 family crystals
were considered as quadratic functions of the distance δ. For the squaric acid, we shall employ the same
scheme. Using the term of the relative deviation of δ from its value δ0 at ambient pressure (we shall call
it a displacement µ′)

µ′ =
δ − δ0
δ0

, (21)

we assume that
ε = ε0(1 + µ′)2 , w = w0(1 + µ′)2 . (22)

Here, the quadratic in µ′ terms, omitted in [18], are included into consideration.
For the parameter of long-range (dipole-dipole) interactions ν, we take into account both the depen-

dence of the dipole moments on δ and the changes in the interaction parameter due to the overall crystal
deformation [18] and associated with changes in the equilibrium distances between protons (dipoles)

ν = ν0(1 + µ′)2 +
3∑
i=1

ψiεi . (23)
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It should be underlined that none of the earlier theories [18, 27] described the thermal expansion of
the crystals; therefore, the deformational effects there were only those caused by external pressures.
On the contrary, in the present model the strains εi are induced both by temperature changes and
by external pressures. In the mean field approximation, the expansion (23) gives rise to the terms of
electrostriction type in the Hamiltonian, linear in the strains and quadratic in the sublattice polarization
(order parameter η).

In [18, 27], the distance δ was treated as a pressure dependent and temperature independent model
parameter, with the linear pressure dependence chosen either from the available experimental data or
by fitting the theory to experiment for the transition temperatures. In the present work, we shall use a
similar approach and assume δ to vary according to its experimentally observed above the transition
linear temperature [1] and external hydrostatic pressure p [17] dependences

δ = δ0[1 + δpp + δT (T − TN0)], (24)

where TN0 is the transition temperature at ambient pressure. It means that the anomalous temperature
behavior of δ below the transition point and its jump at TN are neglected.

Minimization of the thermodynamic potential (20) with respect to the order parameter η and strains εi

∂g

∂η
= 0,

∂g

∂εi
= 0

yields the following equations

η =
sinh 2z + 2b sinh z

D
,

σi =

3∑
j=1

c(0)i j εj −

3∑
j=1

c(0)i j α
(0)
j (T − T0

j ) +
2ψiη
v

(
η − 2

sinh 2z + 2b sinh z
D

)
.

From the above it follows that in equilibrium

εk = α
(0)
k
(T − T0

k ) +

3∑
i=1

σis
(0)
ki
−

2η2

v

3∑
i=1

ψis
(0)
ki
, (25)

where s(0)
ki

is the matrix of “seed” elastic compliances, inverse to c(0)i j . One can see that in the paraelectric
phase (η = 0), the microscopic contributions to the strains vanish, whereas in the ordered phase they are
proportional to η2, indicating the electrostriction type contributions governed by the parameters ψi .

Finally, the molar entropy of the proton subsystem is as follows:

∆S = ln[(1 − η2)D] −
1

DT
[aε + 4bw cosh z] − 2

νη2

T
. (26)

3. Calculations
In the calculations, the thermodynamic potential is minimized numerically with respect to the order

parameter η. At the same time, the strains εi are determined from equation (25).
The quantities that should be described include:

the temperature curves at ambient pressure of

• the sublattice polarization (order) parameter,

• macroscopic lattice strains εi ,

• thermal expansion coefficients and specific heat;

the pressure curves of
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• the transition temperature TN,

• lattice strains εi .

Since we do not want to overcomplicate the fitting procedure by adopting different values of the
model parameters for paraelectric and antiferroelectric phase, the chosen matrix quantities c(0)i j , α

(0)
i , T0

i

should obey the tetragonal symmetry of paraelectric phase, namely c(0)11 = c(0)33 , c(0)12 = c(0)23 , α
(0)
1 = α

(0)
3 ,

T0
1 = T0

3 .
There are four different “seed” elastic constants c(0)11 , c(0)22 , c(0)12 , and c(0)13 . We take c(0)11 to be equal

to the experimental value of c11 [28] above the transition point. Experimental elastic constant c22 was
found to slightly decrease with an increasing temperature [28, 29]. The “seed” c(0)22 is chosen accordingly,
coinciding with the data of [28]. Finally, c(0)12 and c(0)13 , for which no convincing experimental data are
available, were chosen to provide a correct fit to the experimental [30] pressure dependence of the lattice
constants a and b at 292 K.

The parameters of the short-range correlations ε0 and w0 govern the temperature behavior of the
order parameter η (in particular, the magnitude of its jump at the transition ∆ηc and steepness of its rise
to saturation with lowering temperature) and the value of the transition temperature at ambient pressure
TN0. The latter is also extremely sensitive to the value of the long-range interactions parameter ν0. Hence,
the set of ε0, w0, and ν0 is chosen to yield TN0 = 373.5 K, ∆ηc ≈ 0.57, as well as a correct temperature
curve of η between the transition and saturation. Contributions of the double-ionized configurations are
neglected by putting w1 →∞.

The “seed” thermal expansion coefficients α(0)i as well as the parameters ψi are determined by
fitting the theoretical temperature dependences of the lattice strains to experimental data [5, 31]. In fact,
α
(0)
i should be simply equal to the corresponding paraelectric experimental values, as is seen directly

in equation (25). The parameters ψi , on the other hand, are unambiguously determined by fitting the
calculated anomalous parts of the strains to the experiment below the transition temperature, using the
same equation (25). As ψi are relevant for the ordered phase only, they do not have to adhere to the
symmetry of the paraelectric phase; hence, we can take ψ1 , ψ3, as is indeed required by the just
described fitting.

As we have already mentioned, the temperatures T0
i determine the reference point of the thermal

expansion of the crystal, which can be set arbitrarily. Thus,T0
i are not fitting parameters of the model and,

therefore, can also be chosen arbitrarily. In our calculationswe chose them to yield zero values of the lattice
strains εi just above the transition temperature at ambient pressure. In fact, T0

1 = T0
2 = TN0 = 373.5 K, as

seen from equation (25).
As already described, we take δ to vary according to its experimentally observed linear temperature

and external hydrostatic pressure (24). The coefficients δT and δp are deduced from the data of [1]
and [17].

The unit cell volume is v = 2 · 10−28 m3 just above the transition point at ambient pressure, as
determined from the data of [5]. The final values of the model parameters, used in our calculations, are
given in table 2.

In figure 3 we show the calculated temperature dependence of the order parameter η and the spon-
taneous strain ε1 − ε3 at ambient pressure. Experimental points for η were obtained from the 13C NMR
measurements. A clear first order phase transition is observed, with the jump of the order parameter
∆ηc ' 0.57. The spontaneous strain ε1 − ε3 is negative below the transition and, as it follows from
equation (25), it is proportional to the square of the order parameter η2.

Table 2. The adopted values of the model parameters.

ε0/kB w0/kB ν0/kB ψ1/kB ψ2/kB ψ3/kB α0
1 α0

2 δT δp c0
11 c0

12 c0
13 c0

22
K 10−5 K−1 10−4 K−1 kbar−1 1010 N/m2

395 1100 79.8 −518 445 1096 1.2 13.0 2 −0.014 6.5 2.3 −3.1 2.38−0.02T
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Figure 3. Temperature dependence of the order parameter and spontaneous strain ε1 − ε3 of squaric acid.
Lines: the theory; symbols are experimental points taken from [6] (�), [32] (©), and [5] (4).

The temperature dependences of the diagonal lattice strains εi and the corresponding thermal expan-
sion coefficients are shown in figure 4. The coefficients were calculated by numerical differentiation of
the strains with respect to temperature.
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Figure 4. Temperature dependences of the macroscopic lattice strains and of the corresponding thermal
expansion coefficients of squaric acid at ambient pressure. Lines: the theory; symbols are experimental
points taken from [5] (4) and [31] (•).

A clear anisotropy of the thermoelastic properties of squaric acid within the ac plane and in the
perpendicular direction is seen. At temperature lowering, the strain ε2 has a downward jump at the
transition and a negative anomalous part in the ordered phase. The strains ε1 and ε3, on the other hand,
have upward jumps and positive anomalous parts. As is shown above [see equation (25)], the anomalous
contributions to the macroscopic strains are strictly proportional to the square of the order parameter η2.
The thermal expansion coefficients α1 = α3 in the paraelectric phase are by one order of magnitude
smaller than α2; their anomalies at the transition point are of different signs.

The specific heat of the proton subsystem is calculated by numerical differentiation of the entropy
(26) with respect to temperature

∆Cp = −
T
M

(
∂∆S
∂T

)
p

,

where M = 114.06 g/mol is the molar mass of squaric acid. The corresponding temperature curve is given
in figure 5. The experimental points for the anomalous part of the specific heat are obtained by subtracting
the regular part, best described as a slightly non-linear curve Creg = −0.48803+ 0.00738T − 7.3 · 10−6T2
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Figure 5. Temperature dependence of the specific heat of squaric acid. Line: the theory; symbols are
experimental points derived from the data of [33] as described in text.

(J/g K), from the total specific heat as it was measured in [33]. One can see that a satisfactory agreement
with experiment is obtained, even though the specific heat was not directly involved in the above described
fitting procedure.

The calculated hydrostatic pressure dependences of the paraelectric lattice constants are shown in
figure 6. The lattice constants were determined as a = a0[1+ε(1)], b = b0[1+ε(2)], where a0 = 6.137 Å,
b0 = 5.327 Å are the values of the lattice constants just above the transition point at ambient pressure
[5]. A good agreement with experiment is obtained.

In figure 7 we plot the hydrostatic pressure dependence of the phase transition temperature in
squaric acid. As expected, the calculated transition temperature decreases with pressure (the dashed line).
Quantitatively, however, completely non-satisfactory results are obtained.With the pressure variation of µ′
as observed experimentally [17] and the parameters ψi determined by fitting to the lattice strains below
transition at ambient pressure, the rate, with which the calculated transition temperature decreases with
hydrostatic pressure, ∂Tc/∂p = −19.5 K/kbar, is nearly twice as large as the experimental one. The
observed disagreement means, foremost, that equation (23) yields a too fast decrease of the long-range
interaction parameter ν, to which the theoretical values of the transition temperature are most sensitive.
The pressure variation of the Slater-Takagi energies is less important here.

Below we discuss a possible origin of the model inconsistency and ways to solve this problem. To
this end, let us look closely at the obtained pressure dependence of ν.

It is expected that the term
∑

i ψiεi in presence of high hydrostatic pressure would be positive, thereby
leading to an increase of the long-range interaction parameter ν due to the reduction of the average
interparticle distances in the compressed crystal. However, when the values of the parameters ψi are
chosen to fit to the experimental data [5] for the anomalous spontaneous temperature behavior of the
strains εi below the transition at ambient pressure, the sum

∑
i ψiεi in presence of high pressure becomes

negative, not slowing, as expected, but enhancing the decrease of ν caused by the decrease of the H-site

0 10 20 30

4.8

5.0

5.2

6.0

6.1

6.2

p(kbar)

Figure 6. Lattice constants at 292 K as functions of hydrostatic pressure. Lines: the theory; symbols are
experimental points taken from [30].
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Figure 7. Transition temperature of squaric acid as a function of hydrostatic pressure. Symbols are
experimental points taken from [8] (�), [7] (◦), [4] (5) and [17] (?). The dashed and solid lines: the
theory, calculated with equations (22), (23) and with equations (27), (28), respectively.

distance δ. Of course, one cannot exclude a possibility that further measurements may yield the values of
the strains ε1(T), ε3(T) different from those obtained in [5] and unconfirmed yet by other measurements.
The reasoning below, however, is based on the assumption that the data of [5] are correct.

An obvious workaround but rather clumsy way to obtain the necessary pressure dependence of ν is
to assume that there are some other high-pressure factors, not included into (22) and (23), and to include
them empirically via the terms kpp, namely

ε = ε0
[
(1 + µ′)2 + kp1p

]
, w = w0

[
(1 + µ′)2 + kp1p

]
, (27)

and

ν = ν0
[
(1 + µ′)2 + kp2p

]
+

3∑
i=1

ψiεi . (28)

We can speculate, for instance, that external pressure causes a redistribution of electron density, thereby
changing the effective charges of the ions and, as a result, chanding the interactions between them.
Introduction of two extra fitting parameters kp1 and kp2 indeed allows us to describe the pressure
variation of the transition temperature (see figure 6, the solid line). At kp1 = kp2 = 0.0151 kbar−1 we
obtain ∂Tc/∂p = −10.7 K/kbar, in total agreement with experiment. Other combinations of kp1 and kp2
values can be found, also yielding the desired fit for the Tc vs p dependence. Accepting this, the already
obtained good agreement with experiment for the system behavior at ambient pressure is not affected.

4. Conclusions
We present a modification to the proton ordering model, aimed at describing the effects associated

with diagonal lattice strains in H-bonded antiferroelectric crystals of squaric acid. These effects include
thermal expansion of the crystals, the appearance of spontaneous strain ε1−ε3 below the phase transition,
and the shift of the transition temperature with hydrostatic pressure. Here, both the macroscopic lattice
strains and the changes in the local geometry of hydrogen bonds are found to be essential. As usually,
the quadratic dependence of the parameters of short-range and long-range interactions between protons
on the H-site distance δ is assumed.

The deformational phenomena at ambient pressure are well described by the developed theory. On
the other hand, the experimental dependence of the transition temperature on hydrostatic pressure can
be described only if we assume that there are additional mechanisms to the pressure dependence of
the interaction constants of the model, other than via the electrostriction interactions with the diagonal
macroscopic strains and via the shortening of δ, or if we suggest a further modification of the model, in
which δ would be considered as an independent thermodynamic variable.
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Ефекти, пов’язанi з дiагональними деформацiями та
геометрiєю водневих зв’язкiв, в антисегнетоелектричних
кристалах квадратної кислоти
А.П.Моїна
Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, 79011 Львiв, Україна
Запропоновано модифiкацiю моделi протонного впорядкування, яка має на свої метi опис фазового пе-
реходу та фiзичних властивостей антисегнетоелектричних кристалiв квадратної кислоти, що враховує
вплив дiагональних компонент тензора деформацiй та локальної геометрiї водневих зв’язкiв, а саме
вiддалi δ мiж положеннями рiвноваги протона на зв’язку. Теплове розширення, спонтанна деформа-
цiя ε1 − ε3 та теплоємнiсть кристалу добре описуються запропонованою моделлю. Однак одночасний
опис впливу гiдростатичного тиску на температуру фазового переходу можливий лише при подальшому
ускладненнi моделi.
Ключовi слова: антисегнетоелектрик, водневий зв’язок, фазовий перехiд, теплове розширення,
гiдростатичний тиск
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