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The theory of the interaction of electrons with acoustic phonons in multilayer nitride-based AlN/GaN nanostruc-
tures was developed for the first time at T > 0 using the method of finite-temperature Green’s functions and
Dyson equation. Components of the Hamiltonian describing the system of electrons with acoustic phonons and
the magnitudes of the electron spectrum shifts due to the electron-phonon interaction were obtained. Depen-
dences of the electronic spectrum levels and spectrum of the acoustic phonons were found depending on the
position of the internal potential barrier in the studied nanostructure. The temperature shifts of the electronic
spectrum and decay rates were calculated for various values of temperature T .
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1. Introduction

In modern nanotechnology and in related areas of nanoscience, special attention is paid to the study
of multilayer resonant tunnelling structures (RTS) created on the basis of binary (GaN, AlN) and ternary
(GaAlN) alloys of nitride-based semiconductor materials. The mentioned nanostructures are widely used
as active elements of cascades of quantum cascade lasers (QCL) [1, 2] and detectors (QCD) [3, 4]
operating in the near and middle ranges of infrared waves.

Lately, considerable attention of researchers of multilayer nitride nanostructures has been paid to
the study of internal electric fields arising in RTS layers due to significant values of spontaneous and
piezoelectric polarizations [5, 6], and due to the development of methods for calculating potential profiles
of these nanosystems [7, 8]. Besides, some theoretical and experimental papers deal with the study of
excitons and interband transitions in the mentioned nanosystems [9, 10]. Despite the fact that optical
phonons and the interaction of electrons with them in nitride-based nanostructures of both multilayer
plane nanosystems [11], quantum dots [12] and quantum wires [13] are studied well enough, but for the
acoustic phonons such studies, in fact, are not available. An exception is a group of papers on the spectral
characteristics of acoustic phonons performed by Pokatilov et al. [14, 15] for single-well nanosystems
in a simplified model in which the components of the stress tensor (σi j, i, j = 1, 2, 3) were assumed to
be zero at the boundaries with an external semiconductor medium or sapphire substrate. That is why it
is not possible to apply this theory to multilayer RTS used as effective elements of the QCL and QCD
cascades due to the requirements of consistency of their cascades.

Two similar papers [15, 16] should be specified, where the interaction of electrons with acoustic
phonons was studied based on the one-well nanostructure models mentioned above [14, 15]. Besides,
based on these papers, for single-well nanostructures, recently there been studied the influence of hetero-
geneity and prestress field effects, prestress and surface/interface stress, the piezoelectric effect on their
thermal conductivity and phonon properties [17, 18].
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The theory of acoustic phonons modes arising in multilayer nitride resonant tunnelling structures
and their calculations were performed recently for the first time in papers [19] and [20] for binary
and ternary semiconductor alloys, respectively. The results obtained in these papers demonstrate a
significant difference in the calculated dependences of the spectra of acoustic phonons and corresponding
components of the displacement fieldwhich dealwith the formation of an additional group of the spectrum
of acoustic phonons dependences on the wave vector in the presence of a layer with a ternary AlGaN
semiconductor being in the nanostructure. Besides, for nanostructures created on the basis of binary
semiconductors, the moduli of the maximum values of displacement field components decrease with an
increase of the level number of the spectrum of acoustic phonons, which is not observed when the AlGaN
semiconductor layer is available.

Thus, it should be concluded that the theory of the interaction of electrons with acoustic phonons in
multilayer nitride semiconductor RTS is not available nowadays.

In the presented paper, a theory of the interaction of electrons with acoustic phonons in a multilayer
nitride RTS is developed. In the representation of the second quantization, the partial components of
Hamiltonian which describes the interaction of electrons with various types of acoustic phonons at
T > 0 are obtained. Based on the analysis of the Green’s functions poles, the temperature shifts of the
electronic spectrum levels in the studied nanostructure and their dependence on its geometric parameters
for different values of temperature T are obtained.

2. Electronic spectrum, wave functions and potential profile of the mul-

tilayer nitride-based nanostructure

We study stationary electronic states in a plane multilayer semiconductor AlN/GaN nanostructure
which works as a separately selected QCD cascade. The Cartesian coordinate system is chosen in such
a way that its axis Oz is perpendicular to the heterointerfaces between the media of the given N layers
of the nanosystem (figure 1). To ensure the consistency of the QCD cascades and the random selection
of a separate cascade [20], it is assumed that the media (0) and (N + 1), respectively, to the left and to
the right of the nanosystem, correspond to the AlN semiconductor medium, and the inner layers of the
nanostructure are formed by alternating semiconductors GaN and AlN.

 

Figure 1. Geometrical scheme of the plane multilayer AlN/GaN nanostructure.
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Using the effective mass model and the dielectric continuum model, the effective electron mass m(z)
and the dielectric permittivity ε(z) of the RTS can be written as follows:(

m(z)
ε(z)

)
=

(
m(0)

ε(0)

)
θ(−z) +

(
m(N+1)

ε(N+1)

)
θ(z − zN ) +

N∑
p=1

(
m(p)

ε(p)

) [
θ(z − zp−1) − θ(z − zp)

]
,

m(0) = m(N+1) = m(1), ε(0) = ε(N+1) = ε(1), m(p) =
{

m(0),
m(1),

ε(p) =

{
ε(0), p − even
ε(1), p − odd , (2.1)

where θ(z) is the Heaviside step function, m(0), m(1) are values of effective electron masses in poten-
tial barriers and wells, respectively, ε(0), ε(1) are dielectric permittivities of semiconductor layers of
the nanostructure, correspondingly. Designations with upper indices (m(p), ε(p)) are used to correctly
represent the values of the effective masses and the dielectric permittivities of an arbitrary layer of the
nanostructure. Their definition is visible at the end of the formula (2.1).

Considering the fact that the geometric dimensions of the RTS cross-section by plane xOy exceed the
longitudinal dimensions of the nanostructure (lx, ly � zN ), it is advisable to represent the wave function
of the electron in the form similar to the Bloch function:

ΨE k̄0
(r̄0, z) =

1√
lx ly

ei(k̄r̄0)ΨE (z), (2.2)

where r̄0 and k̄ are the vector in xOy plane and the quasimomentum of the electron, respectively.
Separation of the motion of an electron in the direction along the Oz axis from its motion in the plane

xOy is performed taking into account relation (2.2), as it was fulfilled, for example, in papers [21, 22].
The stationary spectrum of the electron En and its wave functions ΨE (z) are now obtained by finding
solutions of a self-consistent system of Schrödinger-Poisson equations:

−
~2

2
d
dz

[
1

m(z)
dΨ(z)

dz

]
+ V(z)ΨE (z) = EΨE (z),

d
dz

[
ε(z)

dVH (z)
dz

]
= −eρ(elect)(z),

(2.3)

where the nanostructure effective potential for the electron is the sum of such partial components [7, 8]:

V(z) = ∆EC(z) + VE (z) + VH (z) + VHL(z), (2.4)

the analytical form and the meaning of which will be established further. The total electron energy in the
RTS is defined as follows:

Enk̄ = En +
~2k2

2m(eff)
n

, (2.5)

where the second term describes the energy, corresponds to the movement of the electron in the direction
perpendicular to the Oz axis (in the xOy plane), and the correlated in-plane effective mass of the electron
m(eff)

n for Γ-conduction subband n is obtained taking into account (2.1). It provides the approximation of
the contribution of all the nanostructure layers [21, 22]:

m(eff)
n =


+∞∫
−∞

(
|Ψn(z)|2 /m(z)

)
dz


−1

. (2.6)

The density of charges in the RTS is defined as follows:

ρ(elect)(z) = e[N+D − n(z)] +
N∑
p=1

σpδ(z − zp) , (2.7)
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where N+D is concentration of ionized donor impurities,

n(z) =
m(z)kBT
π~2

∑
n

|Ψ(En, z)|2 ln
��1 + exp

[
(EF − En)(kBT)−1] �� (2.8)

is the concentration of electrons determining the static space charge in the RTS, EF is the Fermi level
of nanosystem material, En are the stationary electronic spectrum energy values, σp = Pp+1 − Pp is the
surface density of charges arising due to different polarizations in adjacent layers of the RTS, δ(z) is the
Dirac delta function. Here, P = PSp + PPz is total value of polarization arising in the layers of the RTS,
PSp, PPz are spontaneous and piezoelectric polarization, respectively. In the expression (2.4):

∆EC(z) =


0, wells

0.765[Eg(AlN) − Eg(GaN)], barriers
(2.9)

is the potential profile of a nanosystem for an electron calculated without taking into account the internal
electric fields. The dependence of the band gap Eg on temperature T in relation (2.9) can be calculated
using the linear-quadratic Varshni relation [7, 8, 23] for a semiconductor alloy:

Eg(T) = Eg(0) −
aT2

b + T
, (2.10)

where Eg(0) = EAlN
g (0) is the band gap for a AlN semiconductor at T = 0 K, a = 1.799 meV/K,

b = 1462 K are the Varshni parameters [23].
The effective potential component VE (z) is determined by interaction of the electron with internal

electric fields (Fp, p = 1 . . . N) arising in the RTS due to the existence of spontaneous and piezoelectric
polarizations in its layers [5, 6, 8]:

VE (z) = e
N∑
p=1
(−1)p−1(Fpz − Fp−1zp−1)

[
θ(z − zp−1) − θ(z − zp)

]
,

F0 = 0; Fp =

N∑
k=1, k,p

(
Pk − Pp

)
(zk − zk+1)/ε

(k)

/
ε(p)

N∑
k=1
(zk − zk+1)/ε

(k). (2.11)

The effective potential component:

VHL(z) = −
1

4π

(
9

4π2

)1/3 [
1 +

0, 6213rs
21

ln
(
1 +

21
rs(z)

)]
e2

ε0rs(z)ε(z)a∗B(z)
,

rs(z) =
(
4πa∗3B n(z)/3

)−1/3
, a∗B(z) = ε(z)/m(z)aB

(2.12)

is the Hedin-Lundquist exchange-correlation potential [24], where aB is the Bohr radius.
The solution of the Schrödinger-Poisson system of equations in calculating the potential profiles of

nanosystems was determined mainly numerically [7]. Then, using the approach used in the paper [8], the
potential VH (z) determined by the contribution of the charge carriers within the RTS, can be represented
in an analytical form:

VH (z) =
N∑
p=1

V (p)H (z)
[
θ(z − zp−1) − θ(z − zp)

]
; V (p)H (z) = −

e
ε0ε(p)

z∫
0

ξ2∫
0

{
e
(
N+D −

m(p)kBT
π~2

×
∑
n

|Ψ(En, ξ1)|
2 ln

����1 + exp
(

EF − En

kBT

)����) + σpδ(ξ1 − zp)

}
dξ1dξ2 , (2.13)
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where the integral is determined exactly.
Now, the solution of system (2.3) can be found using the iteration method [8], successively finding

solutions of the Schrödinger equation and each time approximating the value of the found effective
potential (2.4) by Uappr(z) = V(z), where:

Uappr(z) =
N∑
p=1

M∑
l=0

[
(V(zpl+1) − V(zpl ))/(zpl+1 − zpl )

]
z
[
θ(z − zpl ) − θ(z − zpl+1)

]
, (2.14)

Ψ(E, z) = A(0)eχ
(0)(z)zθ(−z) +

N∑
p=1

M∑
l=0

[
A(pl )Ai(ζ (pl )(z)) + B(pl )Bi(ζ (pl )(z))

]
×

[
θ(z − zpl ) − θ(z − zpl+1)

]
+ B(N+1)e−χ

(N+1)(z)zθ(z − z5), ζ
(pl )(z)

=
[
2m(pl )eF(zpl )/~

2
]1/3 [

(∆EC(z) − E)/eF(zpl ) − z
]
,

χ(0)(z) = χ(N+1)(z) = [2m1(∆EC(z) − E)/~2]1/2 (2.15)

are provided by a piecewise continuous function, which is obtained by dividing each RTS layer by points
zpl = l(zp−zp−1)/2M, p = 1...N, z0 = 0, where M is the number of partitions selected p-th nanosystem
layer, Ai z, Bi z are the Airy functions.

The discrete spectrum of an electron En is determined from the dispersion equation, which in turn is
obtained from the boundary conditions for the wave functions and for their probability flows at the RTS
heterointerfaces:

Ψ
(p)( E, zp) = Ψ(p+1)(E, zp);

dΨ(p)n (E, z)
m(z)dz

�����
z=zp−ε

=
dΨ(p+1)

n (E, z)
m(z)dz

�����
z=zp+ε

, ε → 0. (2.16)

Besides, using conditions (2.15) and the normalization condition for the wave function

+∞∫
−∞

Ψn(Enk̄, z)Ψ
∗
n′(En′k̄′, z)dz = δnn′δkk′ (2.17)

all unknown coefficients A(0), B(N+1), A(pl ), B(pl ) are found, which completely determine the wave
function of the electron Ψn(Enk̄, z).

Then, for stationary electronic states within the effective RTS potential V(z), a transition is made
from the coordinate representation of the electron Hamiltonian in equation (2.3) to the representation of
the second quantization with a quantized wave function, which is defined as follows:

Ψ̂(x, y, z) =
∑
n k̄

Ψn k̄(r̄0, z)ân k̄ =
∑̄
k

∑
n

Ψn k̄(r̄0, z)ân k̄ , (2.18)

we obtain the Hamiltonian of noninteracting electrons in the form:

Ĥe =
∑
n ,k̄

En k̄ â+
n k̄

ân k̄ , (2.19)

where En k̄ is determined by relation (2.8), and the fermionic creation (â+
n k̄

) and annihilation (ân k̄)
operators of stationary electronic states satisfy the well-known anticommutative relations.
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3. Theory of acoustic phonons modes in plane nitride-based nanostruc-

ture

The spectrum and modes of acoustic phonons in the investigated multilayer nano-RTS is obtained by
finding solutions of the equation of motion for the nanostructure elastic medium:

ρ(z)
∂2ul(r̄, t)
∂t2 =

∂σlk(r̄)
∂xk

; l, k = (1; 2; 3), (3.1)

where x1 = x; x2 = y; x3 = z, ul = ul(x, y, z, t) is the component of the elastic displacement vector

at the point (x1, x2, x3) = (x, y, z) for a point of time t, σik(r) =
1
2

Ciklm(z)
(
∂ul(r)
∂xm

+
∂um(r)
∂xl

)
, l, m =

(1; 2; 3) is the stress tensor,(
ρ(z)
Ciklm(z)

)
=

N∑
p=0

(
ρ(p)

C(p)
iklm

) [
θ(z − zp−1) − θ(z − zp+1)

]
, z−1 = −∞, zN+1 = +∞ (3.2)

are correspondingly the density ρ(z) and elastic constantsCiklm(z) of the nanosystemmaterial, depending
on the coordinate z.

Since semiconductors AlN and GaN are of the wurtzite type crystal structure, taking into account the
explicit form of the tensor of elastic constants in the Voigt representation (Cαβ), we seek for solutions of
equation (3.1) in the form:

ul(r, t) =
N∑
p=1

[
u(p)1 (z)u

(p)
2 (z)u

(p)
3 (z)

]T [
θ(zp − zp−1) − θ(zp − zp+1)

]
ei(ωt−qx). (3.3)

Using (3.3) in the equation (3.1), taking into account (3.2), it is split into three equations describing all
of the acoustic phonons types that occur within an arbitrary p-th layer of the RTS:

−
d2u(p)1 (z)

dz2 + iqc(p)1
du(p)3 (z)

dz
− k2

1u(p)1 (z) = 0; c(p)1 =
C(p)13 + C(p)44

C(p)44

; k1 =

√√√
ρ(p)ω2 − q2C(p)11

C(p)44

, (3.4)

−
d2u(p)2 (z)

dz2 + χ2
2 u(p)2 (z) = 0; χ2 =

√√√
q2C(p)66 − ρ

(p)ω2

C(p)44

, (3.5)

−
d2u(p)3 (z)

dz2 + iqc(p)3
du(p)1 (z)

dz
− k2

3u(p)3 (z) = 0; c(p)3 =
C(p)13 + C(p)44

C(p)33

; k3 =

√√√
ρ(p)ω2 − q2C(p)44

C(p)33

. (3.6)

The solutions of equation (3.5) describing the shear (SH) acoustic phonons look as follows:

u2(z) = u(0)2 (z)θ(−z) +
N∑
p=1

u(p)2 (z)
[
θ(z − zp−1) − θ(z − zp)

]
+ u(N+1)

2 (z)θ(z − zN )

= B(0)2 eχ
(0)
2 zθ(−z) +

N∑
p=1

[
A(p)2 e−χ

(p)
2 (z−zp−1) + B(p)2 eχ

(p)
2 (z−zp−1)

] [
θ(z − zp−1) − θ(z − zp)

]
+ A(N+1)

2 e−χ
(4)
2 (z−zN )θ(z − zN ). (3.7)

The solutions of equations (3.4) and (3.6), which form a system relatively to components u1(z) and
u3(z), are determined using the following considerations. This system of equations is reduced to a single
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matrix differential equation having a biquadratic equation as its characteristic equation. Proper functions
of such a problem are obtained by applying the Cayley–Hamilton theorem. Finally, the solutions are as
follows:

u1(3)(z) = u(0)
1(3)
(z)θ(−z) + u(N+1)

1(3)
(z)θ(z − zN ) +

N∑
p=1

u(p)
1(3)
(z)

[
θ(z − zp−1) − θ(z − zp)

]
;

u(p)1 (z) = −iqc(p)1

©­­«
λ
(p)
1


U(p)1





(
A(p)1 eλ

(p)
1 z − C(p)1 e−λ

(p)
1 z

)
+

λ
(p)
2


U(p)2





(
B(p)1 eλ

(p)
2 z − D(p)1 e−λ

(p)
2 z

)ª®®¬ ;

u(p)3 (z) = −

(
λ
(p)
1

)2
+ k2

3


U(p)1





(
A(p)1 eλ

(p)
1 z + C(p)1 e−λ

(p)
1 z

)
−

(
λ
(p)
2

)2
+ k2

3


U(p)2





(
B(p)1 eλ

(p)
2 z + D(p)1 e−λ

(p)
2 z

)
; (3.8)

where



U(p)n




 = √
q2

(
λ
(p)
n

)2
c2

1 +

[(
λ
(p)
n

)2
+ k2

3

]2
, n = 1, 2 and the roots λ(p)n are determined from the

relation:

λ
(p)
1,2,3,4 = λ

(p)
1,2,3,4(q, ω) = ±

−
q2

[(
C(p)13

)2
+ 2C(p)13 C(p)44 − C(p)11 C(p)13

]
+ (C(p)33 + C(p)44 )

2ω2

2C(p)33 C(p)44

±



q2

[(
C(p)13

)2
+ 2C(p)13 C(p)44 − C(p)11 C(p)13

]
+ (C(p)33 + C(p)44 )

2ω2

2C(p)33 C(p)44


2

−
(ρ(p)ω2 − q2C(p)11 )(ρ

(p)ω2 − q2C(p)44 )

C(p)33 C(p)44

}1/2
1/2

,

λ
(p)
1 = −λ

(p)
3 ; λ(p)2 = −λ

(p)
4 . (3.9)

In the expressions (3.7), (3.8) it is taken into account that A(0)2 = B(N+1)
2 = 0 and C(0)1 = D(0)1 =

A(N+1)
1 = B(N+1)

1 = 0, which is a consequence of ensuring the fulfillment of the conditions that the values
of the elastic displacement components cannot grow infinitely in the external semiconductor medium in
which the RTS is located, i.e.,

ul=1,2,3(z)
��
z→±∞

→ 0. (3.10)

Consistently using the boundary conditions for the components u2(z) and components

σyz(z) =
1
2

C44
du2(z)

dz
ei(ωt−qx) of the stress tensor for solutions of (3.7) in adjacent layers of the RTS:


u(p)2 (z)

���
z=zp−ε

= u(p+1)
2 (z)

���
z=zp+ε

;

σ
(p)
yz (z)

���
z=zp−ε

= σ
(p+1)
yz (z)

���
z=zp+ε

(3.11)

the dispersion equation is obtained for determining the spectrum Ω(SH)(q) of shear acoustic phonons.
Similarly, using the boundary conditions for the components u1(3)(z) and components of the stress tensor
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σxz(z) = 1
2C44

[
−iqu3(z) +

du1(z)
dz

]
ei(ωt−qx) and σzz(z) =

[
−iqC13u1(z) + C33

du3(z)
dz

]
ei(ωt−qx):


u(p)1(3)(z)

���
z=zp−ε

= u(p+1)
1(3) (z)

���
z=zp+ε

σ
(p)
xz (z)

���
z=zp−ε

= σ
(p+1)
xz (z)

���
z=zp+ε

; σ
(p)
zz (z)

���
z=zp−ε

= σ
(p+1)
zz (z)

���
z=zp+ε

(3.12)

the dispersion equation is obtained, from which the mixed spectrum Ω(FL,DL)(q) of flexural (FL) and
dilatational (DL) phononmodes is found. These acoustic phononmodes are determined using components
u1(3)(z) as: u(FL)(z) = u(FL)

[
u(A)1 (z), u

(S)
3 (z)

]
and u(DL)(z) = u(SL)

[
u(S)1 (z), u

(A)
3 (z)

]
, where the indices

“S” and “A” are used to mark the symmetric and antisymmetric functions of z, correspondingly [14, 19,
20].

4. Theory of electron-acoustic phonon interaction in the plane AlN/GaN

nanostructure

Using the boundary conditions (3.11) and (3.12), the coefficients A(p)2 , B(p)2 and A(p)1 , B(p)1 , C(p)1 , D(p)1
in solutions (3.7) and (3.8), correspondingly, can be expressed through one of them being found from the
normalization condition for shear phonons

+∞∫
−∞

ρ(z)u2(q, ω, z)u∗2(q
′, ω, z)dz =

~

2lx lyω
δqq′ (4.1)

and from normalization condition for dilatational and flexural phonons [20, 25]:
+∞∫
−∞

ρ(z)
[
u1(q, ω, z)u∗1(q

′, ω, z) + u3(q, ω, z)u∗3(q
′, ω, z)

]
dz =

~

2lx lyω
δqq′ (4.2)

where the values lx and ly provide the geometric dimensions of the RTS cross-section area by plane xOy.
While quantizing the field of elastic displacements using the well-known quantum mechanical

method [25, 26], the components for the Hamiltonian of acoustic phonons are obtained in the canonical
form of the second quantization representation, that is, in the form of the sum of two components for
shear and flexural and dilatational phonons:

Ĥac = Ĥ(FL,DL)
ac + Ĥ(SH)

ac =
∑
n1

Ω
(FL,DL)
n1 (q)

[
b̂+n1(q)b̂n1(q) +

1
2

]
+

∑
n2

Ω
(SH)
n2 (q)

[
b̂+n2(q)b̂n2(q) +

1
2

]
, (4.3)

where b̂+n(q) and b̂n(q) are the boson phonon state creation and annihilation operators, correspondingly.
Taking into account the normalization conditions, as well as relation (3.2), the expression for the

elastic displacement operator is obtained using Fourier transform of u(q, ω, z), which can be represented
as follows:

û(q, ω, R) =
N∑
p=0

∑
q,ñ

√
~

2lx lyρ(p)ω(β)
[
b̂ñ(q) + b̂+ñ(−q)

]
w
(p)
ñ,l
(q, ω, z)eiq̄R̄

×
[
θ(z − zp−1) − θ(z − zp+1)

]
;

w
(p)
ñ,l
(q, ω, z) =

√
ρ(p)u(p)

ñ,l
(q, ω, z); ñ = {n1, n2}, q̄‖ R̄, β = {(SH), (FL,DL)}. (4.4)
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In semiconductors with the wurtzite crystal structure, the displacement of the conduction band is not
determined by a single constant of the deformation potential as in [25], and looks like [27]:

∆EC = a1εzz + a2ε⊥ , (4.5)

where ε⊥ = εxx + εyy and εzz are strain tensor components, a1 = a1c − D1, a2 = a2c − D2,
a1c, a2c, D1, D2 are the deformation potential constants [27, 28].

Then, the interaction Hamiltonian due to the deformation potential in the representation of the second
quantization in terms of phonon variables is defined as follows:

Ĥdef = Ĥ(FL,DL)
def , (4.6)

where the Hamiltonian components for flexural and dilatational phonons are:

Ĥ(FL,DL)
def =

√
~

2lx ly

∑
q n1

N∑
p=0

1√
ρ(p)ω

(FL,DL)
n1

[b̂n1(q) + b̂+n1(−q)]
[
iq(a2c − D2)u

(p)
1 (q, ω

(FL,DL)
n1 , z)+

+(a1c − D1)
∂u(p)3 (q, ω

(FL,DL)
n1 , z)

∂z

] [
θ(z − zp−1) − θ(z − zp+1)

]
eiq̄ ·R̄, (4.7)

where frequency ω(FL,DL)
n1 refers to the spectrum of these phonons, n1 is the number of their spectrum

level.
In the Hamiltonian (4.7), there is no contribution from the shear acoustic phonons, since

∂[w̄
(p)
n2,2(q, ω, z)e

iq̄ ·R̄]/∂y = [q̄ · w̄(p)
n2,2(q, ω, z)]e

iq̄ ·R̄ = 0, q̄⊥w̄n2,2(q, ω, z)),

similarly to that determined in the framework of the single-well nanostructure model in the paper [15]
and it has not been properly treated in the paper [16].

Now, the Hamiltonian describing the interaction of electrons with acoustic phonons looks as follows:

Ĥe−def =
∑

n, n′, n1, k̄, q̄

N∑
p=0

Fnn1(q)â
+

n′, k̄+q̄
ân k̄

[
b̂n1(q) + b̂+n1(−q)

] [
θ(z − zp−1) − θ(z − zp+1)

]
, (4.8)

where

Fnn1n′(q) =

√
~

2lx lyρ(p)ω
(FL,DL)
n1

zp∫
zp−1

Ψ
(p)(En, z)

[
iq(a2A − D2)u

(p)
1 (q, ω

(FL,DL)
n1 , z)

+(a1c − D1)
∂u(p)3 (q, ω

(FL,DL)
n1 , z)

∂z

]
eiq̄r̄
Ψ
∗(p)
n′ (En, z)dz. (4.9)

Finally, the Hamiltonian for a system of an electron with acoustic phonons in a multilayer RTS:

Ĥ = Ĥe + Ĥac + Ĥe−def . (4.10)

Taking into account the fact that the electronic spectrum of the investigated RTS contains only a
discrete component, for its renormalization by interaction with acoustic phonons, it is necessary to carry
out the Fourier transform of the Green’s function, which satisfies the Dyson equation [26]:

Gn(Ω) =
[
Ω − Enk̄ − Mn(Ω)

]−1
. (4.11)

The mass operator in the Dyson equation for one-phonon approximation (η → ±0) is defined as
follows:

Mn(Ω, k̄) =
∑
qn1n′

��Fnn1n′(q)
��2 

1 + ν(FL,DL)
n1q̄

Ω − En′,k̄+q̄ −Ω
(FL,DL)
n1q̄

+ iη
+

ν
(FL,DL)
n1q̄

Ω − En′,k̄+q̄ +Ω
(FL,DL)
n1q̄

+ iη

 , (4.12)
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where Ω(FL,DL)
n1q̄

= ~ω
(FL,DL)
n1 (q) and ν(FL,DL)

n1q̄
= (e~ω

(FL,DL)
n1 (q)/kT

− 1)−1 are the average occupation numbers
determined by the flexural and dilatational acoustic phonon modes.

Using the mass operator (4.12), the mechanisms of the interaction of electrons with acoustic phonons
influence are studied, i.e., the shift of the electronic spectrum (∆n) and the decay rate of the electronic
state (Γn).

Having tacking into account that in QCD the movement of electrons occurs in the direction of the
axis Oz, that is, perpendicular to the RTS layers, then in direct calculations k̄ = 0 it should be taken,
then according to (2.8): Ω = En. Then, the renormalized energy Ẽn of the electronic level is determined
by the pole of the Fourier transform of the Green’s function (4.11) taking into account (4.9), which is
similar to finding solutions of the dispersion equation:

En − En,q̄ − Mn(Ω) = 0 (4.13)

here,

∆n = ReMn(Ω = En, k̄ = 0)

=
lx ly
(2π)2

∑
n1

(
ν
(FL,DL)
n1 +

1
2
±

1
2

) ∬
P

(
En − En,q̄ −Ω

(FL,DL)
n1

)−1 ��Fnn1n′(q)
��2 d2q;

Γn = −2ImMn(Ω = En, k̄ = 0)

=
lx ly
2π

∑
n1

(
ν
(FL,DL)
n1 +

1
2
±

1
2

) ∬
δ
(
En − En,q̄ −Ω

(FL,DL)
n1

)−1 ��Fnn1n′(q)
��2 d2q , (4.14)

where in relations (4.14), the symbol P means that the integral is taken via the Cauchy principal value.

Table 1. Physical parameters of GaN and AlN wurtzite semiconductors.

ρ (kg/m3) C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa) C66 (GPa)
GaN 6150 390 145 106 398 105 123
AlN 3255 396 137 108 373 116 130

m/me ε PSp

(
C/m2) a1c (eV) a2c (eV) D1 (eV) D2 (eV)

GaN 0.186 10 −0.034 −6.5 −11.8 −3.0 3.6
AlN 0.322 8.5 −0.081 −9.0 −9.0 −3.1 3.8

Then, the complete shift of the stationary electronic spectrum n-th energy level due to the flexural
and dilatational acoustic phonons ∆n = ∆(FL, DL)

n , which gives the renormalized energy value:

Ẽn = En + ∆n. (4.15)

5. Discussion of the results

Using the above developed theory of the interaction of electrons with acoustic phonons in plane nitride
nanosystems, the spectrum of these quasiparticles has been calculated, as well as the displacements of
the stationary electron spectrum due to this interaction. The mentioned values were calculated using the
geometrical parameters of a plane double-well GaN/AlN nanosystem with such geometrical parameters:
the thickness of layers corresponding to the potential barriers — ∆1 = ∆2 = ∆3 = 2 nm, the width
of potential wells — d1 = 2 nm; d2 = 4 nm. The physical parameters of semiconductor materials
corresponding to the nanosystem layers environment were taken from the papers [23, 27, 28]. They are
presented in the table 1, me is free electron mass.

In figure 2, the potential profile of the studied nanostructure, calculated at T = 300 K is shown. The
figure also shows the square moduli of wave functions for electronic states created in the nanosystem
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by dimensional quantization effect. To present it more clearly, the values of |Ψ(En, z)|2 are aligned
with corresponding En values in the energy scale. The effect of the electric field formed by the total
polarization value (2.11), as well as the localization of the electron within the nanosystem for each of
the stationary states, is clearly visible from the above figure. In figure 3 (a), (b) dependences calculated
at T = 300 K, on the position of the internal potential barrier relatively to the input and to the output
potential barriers in the total potential well are presented, i.e., on the value of d(0 6 d 6 d1 + d2), for
the stationary electronic spectrum En(d) [figure 3 (a)] and flexural and dilatational acoustic phonons
spectrum Ω(FL,DL)

n1 (d) [figure 3 (b)].
As it can be seen from figure 3 (a), in the dependences En(d)with an increase of d, for each stationary

electronic state with number n, respectively, n maxima and n − 1 minimum are formed. In addition,
for the energies of the electronic spectrum, the fulfillment of the next condition is provided by direct
calculations:

En(d)|d→0 − En(d)|d→d1+d2 ≈ [VE (z) + VHL(z) + VH (z)]|z→0
z→d1+d2

. (5.1)

The dependence (5.1) is caused by the action of a strong internal electric field, which strongly deforms the
potential profile of the nanosystem, and thus is a decisive factor of the action on the electronic spectrum.

As it can be seen from figure 3 (b), the spectrum of dilatational and flexural acoustic phononsΩ(FL,DL)
n1

at a fixed value of q is formed within three separate regions limited by energiesΩT
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Figure 2. (Colour online) Dependences of the effective potential Ueff(z) and squared moduli |Ψ(En, z)|2

of the wave functions for the first n = 1, 2, . . . , 6 stationary states of an electron.
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Figure 3. (Colour online) Dependences of the stationary electronic states spectrum (En, n = 1, 2, . . . , 6)
(a), as well as the spectrum of dilatational-flexural acoustic phonons (Ω(FL,DL)

n1 ) (b), calculated at q =
24/(∆1 + ∆2 + ∆3 + d1 + d2), on the position (0 6 d 6 d1 + d2) of the internal potential barrier in the
total potential well.
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determined respectively by the group propagation velocities of transverse (“T”) and longitudinal (“L”)
acoustic waves in bulk materials GaN and AlN [15, 20]. Each of these regions dependences is char-
acterized by a set of features that are manifested only for this energy range. Thus, for the first region
defined as ΩT

GaN 6 Ω 6 Ω
T
AlN, the branches of the spectrum of acoustic phonons are symmetric rela-

tively to the position of the potential barrier in the total potential well, forming with an increase of d,
correspondingly, n1 maxima and n1 − 1 minima. The two lower branches of the second region, defined as
ΩT

AlN 6 Ω 6 Ω
L
GaN, also behave symmetrically relatively to the point d/2, though in both of them there

are formed six maxima and five minima. In the other two branches of this region, symmetry relatively to
the point d/2 is broken and seven maxima and six minima are formed, correspondingly. The branches of
the third region, defined as ΩL

GaN 6 Ω 6 Ω
L
AlN, behave similarly to the branches of the first region. This

is especially true for the first four branches that behave in almost the same way. The last two branches,
despite the symmetry relatively to the point d/2, already form six maxima and five minima each.

In figure 4 (a), (b), (c), the components of the elastic displacement field u1(z) and u3(z) calculated at
a fixed value of q = 24/(∆1 +∆2 +∆3 + d1 + d2) are shown. The values of the acoustic phonons energies,
used in the calculations, were chosen so that they correspond to each of the spectrum regions established
above. Thus, the dependences shown in figure 3 (a) correspond to the first region of dependencies in
figure 3 (b), dependencies in figure 4 (a) correspond to the second region, the dependences in figure 4 (c)
correspond to the third region.

It can be seen from figure 4 (a), (b), (c) that with an increase of the spectrum number of the branch n1,
and accordingly, the energy of acoustic phonons corresponding to these branches, dependences u1(z) and
u3(z) tend to increase the number of maxima and minima that are formed by calculated dependences over
the given range of z. In addition, it should be noted that the effect, which consists of the simultaneous
formation of maxima of function u1(z), accordingly, minima of function u3(z), as it was established
in [19, 20], is mainly observed for the dependences shown in figure 4 (a), (b), (c). However, in this case,
the formation of these extrema occurs at arbitrary points inside separate the nanosystem layers and they
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Figure 4. Dependences of the displacement field components on z, calculated at q = 24/(∆1 +∆2 +∆3 +
d1 + d2) for acoustic phonon energy values: Ω(FL,DL) = (5.561, 13.327, 19.556)meV.
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are a little offset from each other, and are not formed in the middle of these layers, as established in [20],
where acoustic phonons were studied in nanostructures with identical geometric parameters of potential
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Figure 5. Dependences of the electronic states shifts ∆n(d) and decay rates Γn(d) calculated at q =
24/(∆1 + ∆2 + ∆3 + d1 + d2) for temperature T : 0 K (solid black line), 80 K (dashed red line), 300 K
(short dashed blue line).

wells. In the media to the left (z < 0) and to the right (z > z5) of the studied nanosystem, the displacement
components u1(z) and u3(z) monotonously decrease according to the relations.

The shifts of the stationary electronic states and decay rates of these energy levels due to the interaction
of electrons with acoustic phonons, calculated on the dependence of the internal potential barrier position
in the total potential well of the studied nanostructure, are presented in figure 5. The direct calculations
were performed for three different values of temperatureT : 0 K, 80K, 300K. Such a choice of temperature
values is taken for the following reasons: the value of 0 K corresponds to the most conventional case, that
is, in the above-mentioned papers [15, 16] calculations were carried out precisely in this approximation;
the value of 80 K corresponds to the nanodevice operation using the liquid nitrogen cooling [3], the value
of 300 K corresponds to nanodevices, that can operate at room temperature [1, 2].

Before analyzing the dependencies shown in figure 5, it should also be noted that the calculated
acoustic phonon energies for wurtzite semiconductors AlN and GaN should correspond to the first
Brillouin zone, that is, they are limited by maximum values of the order of 25–30 meV [19]. In this case,
the conditions are fulfilled at 0 K:

Enn′ > Ω
(FL,DL)
n1 , δ

(
En − En′ −Ω

(FL,DL)
n1q̄

− ~2q̄2/2m(eff)
n

)
, 0 (5.2)

whence, due to the properties of the Dirac delta function and the dependencies in figure 3 (a), it follows
that the decay rates are nonzero in the entire change range of d for all numbers n of electronic levels
(Γn , 0).

In figure 5 (a), (c), (e), (g), (i), (k), the dependences of the shifts for each of the six energy levels due
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to the interaction with acoustic phonons at different temperatures are presented. As it can be seen, in the
lower boundary of the cryogenic temperature (T = 0 K), the presented dependences of the energy levels
shift behave similarly to the dependences of the energy spectrum shown in figure 3 (a). However, for the
upper boundary of the cryogenic temperature (T = 80 K), the effects forming additional minima in the
dependences ∆n(d) have already started to appear. Such effects are caused by the complex behavior of
the binding functions at a non-zero temperature. In most cases, in the vicinity of the values of d, which
corresponds to the anti-crossings created by the dependences En(d) and En+1(d) of the neighboring
energy levels, the displacements of these levels also tend to converge their values. At T , 0, such an
effect is no longer general, but it is only partial. The dependences ∆n(d) calculated at room temperature
(T = 300 K) show a significant increase of the displacements absolute values, being formed at T = 80 K
and also a significant deformation of these dependences compared to cryogenic temperatures. It should
be noted that all electronic states shifts are negative, which leads to the displacement of each energy level
to a lower energy region. It is also seen from figure 5 (a), (c), (e), (g), (i), (k) that with an increase of
the energy level number n, the absolute values of their shifts decrease, and this property is valid for all
temperature values that were used in the calculations. Thus, the interaction of electrons with acoustic
phonons leads to a decrease of the generated or detected frequency of the electromagnetic field in the
case of QCL and QCD.

Then, in figure 5 (b), (d), (f), (h), (j), (l) the decay rates Γn dependencies of electronic states on
the d values, calculated at the same temperature values as the electron energy shifts ∆n, are shown. As
it can be seen from the above dependencies Γn(d), the decay rates increase rapidly with temperature
(T) increasing. Moreover, as it can be seen from the dependencies Γn calculated at T = 0 K, they form
such number of maxima which is equal to the corresponding number of the electronic level n. With an
increase of temperature, the following transformation of the Γn(d) dependences takes place: the extrema
formed at T = 0 K remain, their absolute values being increased in 2–4 times at T = 300 K, and their
position d changes slightly. In addition, at T , 0 K, additional extrema appear in the dependencies
Γn(d), which is associated with the behavior of the ImMn function. It should also be noted that with a
change in n there is no monotonous change in the absolute values of Γn(d), since this was observed in
the case of ∆n (which decrease with the increase of n), and in this case: max |Γ2(d)| ≈ max |Γ3(d)| ≈
max |Γ4(d)| , max |Γ5(d)| ≈ max |Γ6(d)|.

6. Conclusions

1. An analytical theory of the interaction of electron-acoustic phonons for a multilayer nitride-based
AlN/GaN resonant tunnelling structure was developed using the exact solutions for the components of
the elastic displacement field for a semiconductor medium and solutions the Schrödinger and Poisson
system of equations.

2. The dependences of the electronic spectrum and spectrum of acoustic phonons spectrum on the
geometric parameters of the nanosystem were investigated.

3. Using the temperature Green’s functionsmethod, calculations were performed and the dependences
of the electronic states shifts and their decay rates due to the interaction of electrons with acoustic phonons
at different temperatures were studied.

4. It has been determined that the electron-phonon interaction leads to a shift of the quantum electronic
transitions energies in the nanostructure to a region of lower energies and causes an increase of the decay
rates of electronic states.

References

1. Fujikawa S., Ishiguro T., Wang K., Terashima W., Fujishiro H., Hirayama H., J. Cryst. Growth, 2019, 510,
47–49, doi:10.1016/j.jcrysgro.2018.12.027.

2. Li J., Wan T., Chen C., Semicond. Sci. Technol., 2019, 34, 075018, doi:10.1088/1361-6641/ab1401.
3. Lim C.B., Ajay A., Lahnemann J., Bougerol C., Monroy E., Semicond. Sci. Technol., 2017, 32, No. 12, 125002,

doi:10.1088/1361-6641/aa919c.

33708-15

https://doi.org/10.1016/j.jcrysgro.2018.12.027
https://doi.org/10.1088/1361-6641/ab1401
https://doi.org/10.1088/1361-6641/aa919c


I.V. Boyko, M.R. Petryk

4. Mensz P.M., Dror B., Ajay A., Bougerol C., Monroy E., Orenstein M., Bahir G., J. Appl. Phys., 2019,
125, No. 17, 174505, doi:10.1063/1.5079408.

5. Bernardini F., Fiorentini V., Phys. Rev. B, 1998, 57, No. 16, R9427–R9430,
doi:10.1103/PhysRevB.57.R9427.

6. Bernardini F., Fiorentini V., Phys. Status Solidi B, 1999, 216, No. 1, 391–398,
doi:10.1002/(SICI)1521-3951(199911)216:1<391::AID-PSSB391>3.0.CO;2-K.

7. Saha S., Kumar J., J. Comput. Electron., 2016, 15, No. 4, 1531–1540, doi:10.1007/s10825-016-0911-5.
8. Boyko I.V., Condens. Matter Phys., 2018, 21, No. 4, 43701, doi:10.5488/CMP.21.43701.
9. Bayerl D., Kioupakis E., Appl. Phys. Lett., 2019, 115, No. 13, 131101, doi:10.1063/1.5111546.

10. Staszczak G., Trzeciakowski W., Monroy E., Bercha A., Muziol G., Skierbiszewski C., Perlin P., Suski T.,
Phys. Rev. B, 2020, 101, No. 8, 085306, doi:10.1103/PhysRevB.101.085306.

11. Yan Z.W., Ban S.L., Liang X.X., Eur. Phys. J. B, 2003, 35, No. 1, 41–47, doi:10.1140/epjb/e2003-00254-8.
12. Yamanaka T., Alexson D., Stroscio M.A., Dutta M., Petroff P., Brown J., Speck J.,

J. Appl. Phys., 2008, 104, No. 9, 093512 (10 pages), doi:10.1063/1.3013885.
13. Zhang L., Surf. Rev. Lett., 2006,13, No. 1, 75–80, doi:10.1142/S0218625X0600786X.
14. Pokatilov E.P., Nika D.L., Balandin A.A., Superlattices Microstruct., 2003, 33, No. 3, 155–171,

doi:10.1016/S0749-6036(03)00069-7.
15. Pokatilov E.P., Nika D.L., Balandin A.A. J. Appl. Phys., 2004, 95, No. 10, 5626–5632, doi:10.1063/1.1710705.
16. Yang F.J., Ban S.L., Solid State Commun., 2013, 161, No. 1, 5–8, doi:10.1016/j.ssc.2013.02.015.
17. Zhu L., Luo H., J. Alloys Compd., 2016, 685, No. 1, 619–625, doi:10.1016/j.jallcom.2016.05.314.
18. Wang J., Zhu L., Yin. W., Comput. Mater. Sci., 2018, 145, No. 1, 14–23, doi:10.1016/j.commatsci.2017.12.058.
19. Boyko I.V., Petryk M.R., Fraissard J., Nano Express, 2020, 1, No. 1, 010009 (13 pages), doi:10.1088/2632-

959X/ab7cb2.
20. Boyko I., Petryk M., Fraissard J., Eur. Phys. J. B, 2020, 93, No. 3, 57 (13 pages),

doi:10.1140/epjb/e2020-100597-x.
21. Tkach M.V., Seti Ju.O., Grynyshyn Y.B., Voitsekhivska O.M., Condens. Matter Phys., 2014, 17, No. 2, 23704

(10 pages), doi:10.5488/CMP.17.23704 .
22. Gao X., Botez D., Knezevic I., J. Appl. Phys., 2007, 101, No. 6, 063101 (10 pages), doi:10.1063/1.2711153.
23. Piprek J., Nitride Semiconductor Devices: Principles and Simulation, Wiley-VCH, Weinheim, 2007,

doi:10.1002/9783527610723.
24. Hedin L., Lundqvist B.I., J. Phys. C, 1971, 4, No. 14, 2064–2083.
25. Stroscio M.A., Dutta M., Phonons in Nanostructures, Cambridge University Press, Cambridge, 2001,

doi:10.1017/CBO9780511534898.
26. Tkach M.V., Quasiparticles in Nanoheterosystems, Ruta, Chernivtsi, 2003 (in Ukrainian).
27. Yan Q., Rinke P., Janotti A., Scheffler M. Van deWalle C.G., Phys. Rev. B, 2014, 90, No. 12, 125118 (11 pages),

doi:10.1103/PhysRevB.90.125118.
28. Vurgaftman I., Meyer J.R. J. Appl. Phys., 2001, 94, No. 6, 3675–3696, doi:10.1063/1.3236533.

33708-16

https://doi.org/10.1063/1.5079408
https://doi.org/10.1103/PhysRevB.57.R9427
https://doi.org/10.1002/(SICI)1521-3951(199911)216:1%3C391::AID-PSSB391%3E3.0.CO;2-K
https://doi.org/10.1007/s10825-016-0911-5
https://doi.org/10.5488/CMP.21.43701
https://doi.org/10.1063/1.5111546
https://doi.org/10.1103/PhysRevB.101.085306
https://doi.org/10.1140/epjb/e2003-00254-8
https://doi.org/10.1063/1.3013885
https://doi.org/10.1142/S0218625X0600786X
https://doi.org/10.1016/S0749-6036(03)00069-7
https://doi.org/10.1063/1.1710705
https://doi.org/10.1016/j.ssc.2013.02.015
https://doi.org/10.1016/j.jallcom.2016.05.314
https://doi.org/10.1016/j.commatsci.2017.12.058
https://doi.org/10.1088/2632-959X/ab7cb2
https://doi.org/10.1088/2632-959X/ab7cb2
https://doi.org/10.1140/epjb/e2020-100597-x
https://doi.org/10.5488/CMP.17.23704 
https://doi.org/10.1063/1.2711153
https://doi.org/10.1002/9783527610723
https://doi.org/10.1017/CBO9780511534898
https://doi.org/10.1103/PhysRevB.90.125118
https://doi.org/10.1063/1.3236533


Interaction of electrons with acoustic phonons in AlN/GaN resonant tunnelling nanostructures at different temperatures

Взаємодiя електронiв з акустичними фононами в AlN/GaN

резонансно-тунельних наноструктурах за рiзних температур

I.В. Бойко, М.Р. Петрик
Тернопiльський нацiональний технiчний унiверситет iменi Iвана Пулюя,
вул. Руська, 56, 46001 Тернопiль, Україна
Використовуючи метод температурних функцiй Грiна та рiвняння Дайсона, вперше розвинена теорiя вза-
ємодiї електронiв з акустичними фононами у багатошарових нiтридних AlN/GaN наноструктурах у випад-
ку довiльних температур. Отримано складовi гамiльтонiана, що описують систему електрона з акусти-
чними фононами та величини змiщень спектру електрона, зумовленi електрон-фононною взаємодiєю.
Встановлено залежностi рiвнiв спектру електронiв акустичних фононiв у залежностi вiд положення вну-
трiшнього потенцiального бар’єра у дослiджуванiй наноструктурi. Виконано розрахунки змiщень та зга-
сань рiвнiв електронного спектру для рiзних значень температури T .
Ключовi слова: акустичний фонон, електрон-фононна взаємодiя, функцiя Грiна, рiвняння Дайсона,

нiтридна наноструктура
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