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In the present work, the current-voltage (I-V) characteristics in a coupled long Josephson junction based on
magnesium diboride are studied by establishing a system of equations of phase differences of various inter-
and intra-band channels starting from the microscopic Hamiltonian of the junction system and simplifying it
through the phenomenological procedures such as action, partition function, Hubbard-Stratonovich transfor-
mation (bosonization), Grassmann integral, saddle-point approximation, Goldstone mode, phase dependent
effective Lagrangian and, finally, Euler-Lagrange equation of motion. The system of equations are solved us-
ing finite difference approximation for which the solution of unperturbed sine-Gordon equation is taken as the
initial condition. Neumann boundary condition is maintained at both the ends so that the fluxon is capable of re-
flecting from the end of the system. The phase dependent current is calculated for different tunnel voltage and
averaged out over space and time. The current-voltage characteristics are almost linear at low voltage and non-
linear at higher voltage which indicates that the more complicated physical phenomena at this situation may
occur. At some region of the characteristics, there exist a negative resistance which means that the junction
system can be used in specific electronic devices such as oscillators, switches, memories etc. The non-linearity
is also sensitive to the layer as well as to the junction thicknesses. Non-linearity occurs for lower voltage and for
higher junction and layer thicknesses.
Key words: two-gap superconductor, coupled long Josephson junction, Hubbard-Stratonovich transformation,
perturbed sine-Gordon equation

1. Introduction
Superconductivity ofmagnesiumdiboride (MgB2) was discovered in 2001with transition temperature

of about 39 K [1]. Since its discovery as a superconductor, it has attracted the attention of the many
researchers in the related fields because of its higher transition temperature than that of other metallic
compounds. The two-gap nature of MgB2 offers different types of physical phenomena which urges the
researchers to work in the context of both theoretical and experimental prospects. The electronic structure
of MgB2 is similar to graphite which consists of honeycomb boron layers separated by magnesium
layers [2]. The energy gaps are about ∆1 = 2 meV which corresponds to two π-bands and about
∆2 = 7 meV which corresponds to σ-band. The state of Cooper pair corresponds to the gaps and are
designated by the order parameters: ψ1 = ∆1eiθ1 for the first gap and ψ2 = ∆2eiθ2 for the second gap. The
internal degree of freedom is the inter-band phase difference θ(®r, t) = θ1 − θ2 [3]. The degree of freedom
can be increased by forming the stack of MgB2 interlocked with the insulator such as SiO2, Al2O3 etc.,
which is referred to as stacked Josephson junction. As a result, the Cooper pairs tunnel through the
junction and the inter-band as well as intra-band phase textures are quite complicated.

In the present work, we derived a system of perturbed sine-Gordon equations for the coupled long
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Josephson junction. Starting from themicroscopic BCSmodelHamiltonian of the system and undertaking
a number of steps of phenomenological path integral formalism, the phase dependent effective action
and, hence, the effective Lagrangian density are derived. The system of equations of phase dynamics
is derived by using Euler-Lagrange equation of motion to minimize the effective Langrangian density.
The system of equations are then solved numerically using the finite difference approximation imposing
the Neumann boundary condition. The solution of unperturbed sine-Gordon equation is supplied as the
initial condition. The computation is performed using OCTAVE 4.4 programming language. The present
work is ended by giving the concluding remarks drawn from the computation.

2. Theoretical development
2.1. Model Hamiltonian

The starting point of the present work is to write microscopic BCS Hamiltonian which is the total
Hamiltonian of the system comprising the free Hamiltonian (Hfree), pairing Hamiltonian (Hpair) and
tunneling Hamiltonian (HT) [4–6], that is

H = Hfree + Hpair + HT, (2.1)

where

Hfree =
∑
l,i,σ

∫
d3rC†

l,i,σ
(®r, τ)

[
1

2m
(i~∇ + e∗ ®Ai

l)
2 + e∗A0i

l

]
Cl,i,σ(®r, τ), (2.2)

Hpair =
∑

l,l′,i,i′

∫
d3rV i,i′

l,l′
C†
l,i,↑
(®r, τ)C†

l,i,↓
(®r, τ) × Cl′,i′,↓(®r, τ)Cl′,i′,↑(®r, τ), (2.3)

HT =
∑

l,i,i′,σ

∫
d3r

[
T i,i′

l,l+1C
†

l,i,σ
(®r, τ)Cl+1,i′,σ(®r, τ) + T∗i

′,i
l+1,lC

†

l+1,i′,σ(®r, τ)Cl,i,σ(®r, τ)
]
. (2.4)

Here, C†
l,i,σ
(®r, τ)(Cl,i,σ(®r, τ)) is the creation(annihilation) operator for fermion with spin σ = (↑ or ↓)

for a given layer index l and band index i. These operators are the function of spatial coordinate ®r and
the imaginary time τ = −it. C†

l,i,σ
(®r, τ) creates a fermion with spin σ at the given site (®r, τ) and Cσ(®r, τ)

destroy the fermion therefrom. C†σ(®r, τ) and Cσ(®r, τ) have the dimension of inverse square root of volume
(i.e. Ω−1/2), with Ω being the total volume of the system. ®Al and A0

l
are the magnetic vector potential

and electric scalar potential, respectively. e∗ = 2e and e is the electronic charge and m is the mass of a
fermion. The operator −i~∇ − e∗ ®Al is called the canonical momentum operator.

Short-range or long-range phonon mediated fermions of oppsite spins form a syster of the pair of
fermions. However, after the paring of such fermions, the fermionic nature is destroyed and a bosonic
particle is formed. Such phononmediated fermions having a bosonic property are called Cooper pair.V i,i′

l,l′

is the coupling constant with the dimension of energy-volume (Jm3). For the two-gap superconductor
having s- and d-bands i or i′ is equal to (s, d). i = i′ refers to intra-band pairing and i , i′ refers to
inter-band pairing. Similarly, l = l ′ refers to intra-layer and l , l ′ refers to inter-layer pairing.

The first term of equation (2.4) infers that a fermion of spin σ is destroyed in (l + 1)th layer and ith

band and is created in l th layer and i′th band, while the second term is the complex conjugate of the first
term. Tl,l+1 is the tunnel matrix element with the dimension of energy.

2.2. Action functional
According to the path-integral formalism of quantum mechanics, the action functional is defined as

S =
∫

dt
∫

d3rL (2.5)

13101-2



Theoretical study of I-V characteristics

with L being the Lagrangian density. In terms of the total Hamiltonian, the action is defined as [5]

S =

~β∫
0

dτ

{[∫
d3r

∑
l,i,σ

C†
l,i,σ
(®r, τ)~

∂

∂τ
Cl,i,σ(®r, τ)

]
+ H − µN

}
. (2.6)

Here, µ is the chemical potential, and N is the total particle number, β =
1

kBT
, where kB is the Boltzmann

constant and T is absolute temperature. µN is given as

µN =
∑
l,i,σ

∫
d3rµil,σC

†

l,i,σ
(®r, τ)Cl,i,σ(®r, τ). (2.7)

Using equation (2.1), (2.2), (2.3), (2.4), (2.6) and (2.7), we get the action functional as

S = Sfree + Spair + ST , (2.8)

Sfree =

~β∫
0

dτ
∫

d3r
∑
l,i,σ

C†
l,i,σ
(®r, τ)

(
~
∂

∂τ
+

1
2m
(i~∇ + e∗ ®Ai

l)
2 + e∗A0i

l − µ
i
l,σ

)
Cl,i,σ(®r, τ),

Spair =

~β∫
0

dτ
∫

d3r
∑

l,l′,i,i′

V i,i′

l,l′
C†
l,i,↑
(®r, τ)C†

l,i,↓
(®r, τ) × Cl′,i′,↓(®r, τ)Cl′,i′,↑(®r, τ),

ST =

~β∫
0

dτ
∫

d3r
∑

l,i,i′,σ

[
T i,i′

l,l+1C
†

l,i,σ
(®r, τ)Cl+1,i′,σ(®r, τ) + T∗i

′,i
l+1,lC

†

l+1,i′,σ(®r, τ)Cl,i,σ(®r, τ)
]
.

Now, the quantum mechanical partition function of the system can be written as

Z =
∫
D[C†,C] exp

(
−

Sfree
~
−

Spair
~
−

ST
~

)
. (2.9)

Here, C is a column vector with elements Cl,i,σ(®r, τ), and C† is a row vector with elements C†
l,i,σ
(®r, τ)

while
∫
D[C†,C] represents the product of all integrals over the elements of C† and C.

2.3. Hubbard-Stratonovich transformation
The action functional associated with the pair Hamiltonian is in quartic form of four fermionic fields.

Since ®Ai
l
and A0i

l
are invariant under gauge transformation, the partition function of (2.9) can be rewritten

as follows:

Z =
∫
D[C†,C] exp

{
−

1
~

~β∫
0

dτ
∫

d3r
[∑
l,i,σ

C†
l,i,σ
(®r, τ) ×

(
~
∂

∂τ
−
~2

2m
∇2 − µil,σ

)
Cl,i,σ(®r, τ)

−
∑

l,l′,i,i′

V i,i′

l,l′
C†
l,i,↑
(®r, τ)C†

l,i,↓
(®r, τ)Cl′,i′,↓(®r, τ)Cl′,i′,↑(®r, τ)

+
∑

l,i,i′,σ

(
T i,i′

l,l+1C
†

l,i,σ
(®r, τ)Cl+1,i′,σ(®r, τ) + T∗i

′,i
l+1,lC

†

l+l,i′,σ
(®r, τ)Cl,i,σ(®r, τ)

)]}
. (2.10)
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Under the application of Hubbard-Stratonovich transformation, the quartic term of the pairing interaction
can be reduced to quadratic, and the partition function becomes

Z =

∫
D[∆̄,∆]

∫
D[C†,C] exp

{
−

1
~

~β∫
0

dτ
∫

d3r (2.11)

×

[∑
l,i,σ

C†
l,i,σ
(®r, τ)

(
~
∂

∂τ
−
~2

2m
∇2 − µil,σ

)
Cl,i,σ(®r, τ)

+
∑

l,l′,i,i′

(
∆̄l,i(V−1)i,i

′

l,l′
∆l′,i′ + ∆̄l,iCl,i,↓(®r, τ)Cl,i,↑(®r, τ) + ∆l,iC†l,i,↑(®r, τ)C

†

l,i,↓
(®r, τ)

)
+

∑
l,i,i′,σ

(
T i,i′

l,l+1C
†

l,i,σ
(®r, τ)Cl+1,i′,σ(®r, τ) + T∗i

′,i
l+1,lC

†

l+1,i′,σ(®r, τ)Cl,i,σ(®r, τ)
)]}

,

where, ∆̄(∆) is the new fields which are bosonic in nature. ∆̄ is a row vector containing the elements
∆̄l,i(®r, τ) and ∆ is a column vector containing the elements ∆l,i(®r, τ). Applying special techniques of path
integral formalism in this partition function and performing some matrix manipulation we could obtain
the Lagrangian density as follows:

L =
∑

l,l′,i,i′

∆
∗
0li(V

−1)ii
′

ll′∆0l′i′e−i(θli−θl′i′ ) +
∑
l,i

(
~2N(0)

4

) (
∂θli
∂τ
+

e∗A0i
l

~

)2

+
∑
l,i

(
~2N(0)µi

l

6m

) (
∇θli −

e∗ ®Ai
l

~

)2

−
∑
l,i,i′

[2T ii′

l,l+1T i′i
l+1,lN(0)

∆2
0l+1,i′ − ∆

2
0li

ln
(
∆0l+1,i′

∆0li

)
× ∆0li∆0l+1,i′ cos(θl+1,i′ − θli) + 2N(0)~ωDζ

i
l δii′ + N(0)~2ω2

Dδii′

]
. (2.12)

At low temperature, the chemical potential µi
l
is equal to the Fermi energy, i.e., µi

l
= εF and ζ i

l
= 0 since

µ↑ = µ↓. We also have,

N(0) =
3n

4εF
=

3
4

k2
F

3π2
2m

~2k2
F
=

mkF

2π2~2 .

The effective Lagrangian is given by

Leff =
∑
l,i

ε0

2λ2
TF

(
~

e∗
∂θli
∂τ
+ A0i

l

)2
+

∑
l,i

ε0c2

2λ2
L

(
~

e∗
∇θli − ®Ai

l

)2

+
∑

l,l′,i,i′

∆
∗
0li(V

−1)ii
′

ll′∆0l′i′e−i(θli−θl′i′ ) −
∑
l,i,i′

[2T ii′

l,l+1T i′i
l+1,lN(0)

∆2
0l+1,i′ − ∆

2
0li

ln
(
∆0l+1,i′

∆0li

)
×∆0li∆0l+1,i′ cos(θl+1,i′ − θli) + N(0)~2ω2

Dδii′

]
+

∑
l,i

[
εrbε0

2
(E i

l )
2 +

εrbε0c2

2
(Bi

l )
2
]
, (2.13)

where, n is the concentration of electronic charge, kF is the Fermi wave vector, λTF =

√
ε0π

2~2

e2mkF
is the

Thomas-Fermi charge screening length and λL =
√
ε0mc2

ne2 is the London penetration depth, ®E i
l
and ®Bi

l

are electric and magnetic fields at layer l and i band.
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2.3.1. Application to the long Josephson junction
Consider the stack of long Josephson junction with the lenght along x-direction and junction sys-

tem along z-direction. External magnetic fields are applied along the y-direction, which introduces a
homogeneous phase difference along the x-direction. The system is assumed to be uniform along the
y-direction and the problem becomes two dimensional. The electric field is along z-direction. Now, the
Lagrangian density in two-dimensional system becomes, as follows:

Leff =
ε0d
2λ2

TF

∑
l,i

(
~

e∗
∂θi

l

∂τ
+ A0i

l

)2

+
ε0c2d
2λ2

L

∑
l,i

(
~

e∗
∂θi

l

∂x
− Axi

l

)2

+
∑
l,i,i′

~

e∗
Jii
′

ll cos(θli − θli′)

−
∑
l,i,i′

[
~

e∗
jii
′

l,l+1 cos(θl+1,i′ − θli) + N(0)d~2ω2
Dδii′

]
+

∑
l,i,i′

[
εrbε0b

2
(Ezii′

l,l+1)
2 +

εrbε0c2b
2

(Byii
′

l,l+1)
2
]
, (2.14)

where d is the thickness of the superconducting layer and b is the thickness of the junction material. εrb
is the dielectric constant of the junction material. The inter-band Josephson coupling constant is

Jii
′

ll =
e∗d
~
∆
∗
0li(V

−1)ii
′

ll ∆0li′ (2.15)

and Josephson tunneling coupling constant

jii
′

l,l+1 =
e∗d
~

2T ii′

l,l+1T i′i
l+1,lN(0)

∆2
0l+1,i′ − ∆

2
0li

ln
(
∆0l+1,i′

∆0li

)
∆0li∆0l+1,i′ +

e∗d
~
∆
∗
0li(V

−1)ii
′

l,l+1∆0,l+1,i′ . (2.16)

The z-component of the electric field in between l th and (l + l)th layer is

Ezii′

l,l+1 = −
∂Azii′

l,l+1

∂t
−

1
b

(
A0i′
l+1 − A0i

l

)
(2.17)

and the y-component of the magnetic field in between l th and (l + l)th layer is

Byii
′

l,l+1 =
1
b

(
Axi′

l+1 − Axi
l

)
−
∂Azii′

l,l+1

∂x
(2.18)

with

Azii′

l,l+1 =
1
b

+b/2∫
−b/2

Az(z)dz. (2.19)

We can introduce the gauge invariant phase difference ϕii′
l,l+1 as

ϕii
′

l,l+1 = θ
i′

l+1 − θ
i
l −

be∗

~
Azii′

l,l+1. (2.20)

Then, we can have cos
(
θi
′

l+1 − θ
i
l

)
= cos ϕii′

l,l+1 and θi′
l
− θi

l
= χii

′

ll
is the intra-layer inter-band phase

difference. Hence, the equation (2.14)

Leff =
ε0d
2λ2

TF

∑
l,i

(
~

e∗
∂θi

l

∂τ
+ A0i

l

)2

+
ε0c2d
2λ2

L

∑
l,i

(
~

e∗
∂θi

l

∂x
− Axi

l

)2

+
∑
l,i,i′

~

e∗
Jii
′

ll cos χii
′

ll −
∑
l,i,i′

[
~

e∗
jii
′

l,l+1 cos ϕii
′

l,l+1 + N(0)d~2ω2
Dδii′

]
+

∑
l,i,i′

[
εrbε0b

2

×

(
∂Azii′

l,l+1

∂t
+

1
b

(
A0i′
l+1 − A0i

l

))2

+
εrbε0c2b

2

(
1
b

(
Axi′

l+1 − Axi
l

)
−
∂Azii′

l,l+1

∂x

)2]
. (2.21)
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Figure 1. (Colour online) A typical coupled LJJ

The Lagrangian density equation (2.21) can be minimized using the Euler-Lagrange equation. Applying
the Euler-Lagrange equation with respect to A0j

k
, A0j′

k+1, Ax j
k
, Ax j′

k+1, Az j j′

k,k+1 and θ j
k
with k as a new layer

index and j, j ′ as a new band index, we get the generalized equation for the phase dynamics applicable
for homogeneous superconducting layers

εrbbd
λ2
F

∂2ϕ
j j′

k,k+1

∂ t̄2 + ε2
rb

∑
i

∂2

∂ t̄2

(
2ϕi j

′

k,k+1 − ϕ
i j
k−1,k − ϕ

j′i
k+1,k+2

)
−
εrbbd
λ2
F

∂2ϕ
j j′

k,k+1

∂ x̄2

−ε2
rb

∑
i

∂2

∂ x̄2

(
2ϕi j

′

k,k+1 − ϕ
i j
k−1,k − ϕ

j′i
k+1,k+2

)
+

b2d2

λ2
Lλ

2
TFJ0

j j j
′

k,k+1 sin ϕ j j′

k,k+1

+
εrbbd

J0

(
1
λ2
TF
+

1
λ2
L

) ∑
i

(
2 ji j

′

k,k+1 sin ϕi j
′

k,k+1 − ji j
k−1,k sin ϕi j

k−1,k − j j
′i

k+1,k+2 sin ϕ j′i
k+1,k+2

)
+

2ε2
rb

J0

∑
i,i′

(
2 ji

′ j′

k,k+1 sin ϕi
′ j′

k,k+1 − ji
′i
k−1,k sin ϕi

′i
k−1,k − j j

′i′

k+1,k+2 sin ϕ j′i′

k+1,k+2

)
+
ε2
rb

J0

∑
i,i′

(
2 ji

′ j
k−1,k sin ϕi

′ j
k−1,k − ji

′i
k−2,k−1 sin ϕi

′i
k−2,k−1 − j ji

′

k,k+1 sin ϕ ji′

k,k+1

)
+
ε2
rb

J0

∑
i,i′

(
2 ji

′i
k+1,k+2 sin ϕi

′i
k+1,k+2 − ji j

′

k,k+1 sin ϕi j
′

k,k+1 − j j
′i

k+2,k+3 sin ϕii
′

k+2,k+3

)
= 0. (2.22)

2.3.2. Coupled long Josephson junction system
In the coupled long Josephson junction, as shown in figure 1, there are eight channels for Cooper pair

tunneling. The equations of phase dynamics can be obtained from the generalized equation (2.22) as

∂2ϕ

∂ t̄2 −
∂2ϕ

∂ x̄2 +M
−1
0dMFd( j̄ sin ϕ) = 0 (2.23)
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with

ϕ =

(
ϕ12
ϕ23

)
, ϕ12 =

©«
ϕss12
ϕsd12
ϕds12
ϕdd12

ª®®®¬ , ϕ23 =
©«
ϕss23
ϕsd23
ϕds23
ϕdd23

ª®®®¬ ,

j̄ =
(
j̄12 0
0 j̄23

)
, j̄12 =

©«
j̄ss12 0 0 0
0 j̄sd12 0 0
0 0 j̄ds12 0
0 0 0 j̄dd12

ª®®®¬ ,

j̄23 =
©«

j̄ss23 0 0 0
0 j̄sd23 0 0
0 0 j̄ds23 0
0 0 0 j̄dd23

ª®®®¬ , j̄ss12 =
jss12
J0
, and so on.

M0d =
(
M0 M1
M1 M0

)
, M0 =

©«
α0 0 2ε2

rb
0

0 α0 0 2ε2
rb

2ε2
rb

0 α0 0
0 2ε2

rb
0 α0

ª®®®¬ ,

M1 =
©«
−ε2

rb
−ε2

rb
0 0

−ε2
rb
−ε2

rb
0 0

0 0 −ε2
rb
−ε2

rb
0 0 −ε2

rb
−ε2

rb

ª®®®¬ ,
MFd =

(
MF1 MF2
−MF2 MF1

)
,

MF1 =
©«
β0 −ε2

rb
β1 0

−ε2
rb

β0 0 β1
β1 0 β0 −ε2

rb
0 β1 −ε2

rb
β0

ª®®®¬ ,

MF2 =
©«
−β2 −β2 2ε2

rb
2ε2

rb
−β2 −β2 2ε2

rb
2ε2

rb
2ε2

rb
2ε2

rb
−β2 −β2

2ε2
rb

2ε2
rb
−β2 −β2

ª®®®¬ ,
α0 =

εrbbd
λ2
F

+ 2ε2
rb ,

β0 =
b2d2

λ2
Lλ

2
F

+ 2εrbbd

(
1
λ2
TF
+

1
λ2
L

)
+ 2ε2

rb ,

β1 = εrbbd

(
1
λ2
TF
+

1
λ2
L

)
+ 3ε2

rb ,

β2 = εrbbd

(
1
λ2
TF
+

1
λ2
L

)
, and J0 =

ε0dc2~

λ2
TFλ

2
Le∗

.

In order to study the plasmon mode, the equation (2.23) can be linealized as

∂2ϕ

∂ t̄2 −
∂2ϕ

∂ x̄2 +M
−1
0dMFd( j̄ϕ) = 0 (2.24)
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Figure 2. Dispersion relation for (a) b = 3 Å, d = 6 Å, V = 0.5 V, (b) b = 3 Å, d = 6 Å, V = 1 V, (c)
b = 6 Å, d = 9 Å, V = 0.5 V and (d) b = 6 Å, d = 9 Å, V = 1 V. The plots show that the plasma wave
is at the excited state as the junction and layer thicknesses are increased. The excitation also depends on
the applied voltages.

for small phase differences ϕ. The equation (2.24) has the solution ϕ = ϕ0 exp[i(ω̄t̄± k̄ x̄)]with dispersion
relation

ω̄ =
√
M−1

0dMFd j̄ + k̄2 , (2.25)

where ω̄ and k̄ are the normalized frequency and wave vector, respectively.

3. Numerical computation and analysis
In order to perform the numerical computation, the equation (2.23) is discretized using the finite

difference approximation. For this purpose, a uniform mesh in space and time is introduced with spacing
δx and δt, respectively. At each point (x̄i, t̄n)

x̄i = −Lx + iδx, with i = 0, . . . , Nx, (3.1)
t̄n = nδt, with n = 0, . . . , Nt , (3.2)
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where Nx and Nt are the total number of the points in space and time, respectively. The sine-Gordon
equation is approximated by the second-order finite differences as

∂2ϕ(x̄i, t̄n)
∂ t̄2 ≈

ϕn+1
i − 2ϕni + ϕ

n−1
i

δt2 , (3.3)

∂2ϕ(x̄i, t̄n)
∂ x̄2 ≈

ϕn
i+1 − 2ϕni + ϕ

n
i−1

δx2 , (3.4)

where ϕni is the numerical approximation of the exact solution at (x̄i, t̄n). Applying this approximation,
the perturbed sine-Gordon equation reads

ϕn+1
i = −ϕn−1

i + 2ϕni +
δt2

δx2
(
ϕni+1 − 2ϕni + ϕ

n
i−1

)
− δt2M−1

0dMFd( j̄ sin ϕni ). (3.5)

Providing the initial conditions to the junction system means supplying the initial information to the
system at the starting time. In the present problem, the initial information is the kink (or anti-kink) solution
of unperturbed sine-Gordon equation which can be generated by the appropriate electronic device which
produces it as the trigger signal [7]. The solution of unperturbed sine-Gordon equation is

ϕ(x̄, t̄) = 4 tan−1
[
exp

(
σ

x̄ − ut̄ − x̄0
√

1 − u2

)]
, (3.6)

where u is the normalized speed of the kink (σ = +1) or anti-kink (σ = −1) and x̄0 is its initial position.
Hence, the initial condition for all channels of the junction system is

ϕ(x̄, 0) = 4 tan−1
[
exp

(
σ

x̄ − x̄0
√

1 − u2

)]
(3.7)

and
∂ϕ

∂ t̄

����
t̄=0
= −2σ

u
√

1 − u2
sech

(
σ

x̄ − x̄0
√

1 − u2

)
. (3.8)

The initial condition is approximated as

ϕ(x̄i, 0) = ϕ0
i = 4 tan−1

[
exp

(
σ

x̄i − x̄0
√

1 − u2

)]
, (3.9)

∂ϕ

∂ t̄

����
t̄=0
≈
ϕ1
i − ϕ

−1
i

2δt
= −

2σu
√

1 − u2
sech

[
σ

x̄i − x̄0
√

1 − u2

]
. (3.10)

There are different boundary conditions that can be imposed on the system in order to control the state
of kink or anti-kink.When ϕ(x̄, t̄) = 0 for x̄ = ±Lx , then this condition will mirror the kink (anti-kink) and
is known to be homogeneous Dirichlet boundary condition. The effect of moving ϕ will be demonstrated
at the boundary x̄ = −Lx to feed the domain with the incoming kink(anti-kink). The boundary condition
then reads

ϕ(−Lx, t̄) = 4 tan−1
[
exp

(
σ
−Lx − ut̄ − x0
√

1 − u2

)]
.

If the kink/anti-kink is to let reflecting from the boundary, then Neumann boundary condition,
∂ϕ

∂ x̄
= 0

for x̄ = ±Lx can be used [8].
In the present context, Neumann boundary condition is imposed which is approximated by central

finite difference and yields

ϕn1 = ϕ
n
−1, at x̄ = −Lx, and ϕnNx+1 = ϕ

n
Nx−1, at x̄ = +Lx . (3.11)
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Figure 3. (Colour online) Spatial-temporal variation of phase differences in various channels in the
coupled LJJ with junction thickness of 3 Å and layer thickness of 6 Å under the application of bias
voltage of 0.5 V.
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Figure 4. (Colour online) Spatial-temporal variation of phase differences in various channels in the
coupled LJJ with junction thickness of 3 Å and layer thickness of 6 Å under the application of bias
voltage of 1 V.
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Figure 5. (Colour online) Spatial-temporal variation of phase differences in various channels in the
coupled LJJ with junction thickness of 6 Å and layer thickness of 9 Å under the application of bias
voltage of 0.5 V.
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Figure 6. (Colour online) Spatial-temporal variation of phase differences in various channels in the
coupled LJJ with junction thickness of 6 Å and layer thickness of 9 Å under the application of bias
voltage of 1 V.
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Putting n = 0 in equation (3.5) and using equation (3.10), we get

ϕ1
i = δt

∂ϕ

∂ t̄

����
t̄=0
+ ϕ0

i +
δt2

2δx2

(
ϕ0
i+1 − 2ϕ0

i + ϕ
0
i−1

)
−

1
2
δt2M−1

0dMFd( j̄ sin ϕni ). (3.12)

The Courant-Friedrichs-Lewy stability criteria,
δt2

δx2 < 1 should be maintained in order to get the stability
of the kink/anti-kink solution. This criteria suggest us to take a very small time step as compared to the
position step as far as possible. It is mandatory to pay the computational cost for the time steps to obtain
the approximately calculated values, and reach a close agreement with those of theoretical values [9].

The most straightforward way to proceed the computational task is to introduce one array to hold ϕ
at all x̄i at the time t̄n, a second array to hold all the ϕ at the time t̄n−1 and a third array to hold a newly
computed result at t̄n+1. Then, it is looped through the code incrementing the time and shuffling the arrays
appropriately [10].

The current can be calculated using [11–13]

I =
~ε0c2

2eλF

∂ϕ

∂ x̄
. (3.13)

The current is averaged out over space and time as well as channel at different tunnel voltage which
includes the element of equation (2.16) in the tunneling matrix. For the particular junction geometry, the
tunneling matrix element is proportional to the bias voltage or tunnel voltage [14]. When the bias voltage
is changed, then the tunnel matrix element also changes resulting in the change of the tunneling coupling
constant of equation (2.16). This variation in the tunneling coupling constant significantly contributes to
the soliton motion represented by the phase differences in various channels.

The simulations were performed for a typical junction system of MgB2 with superconducting layer
thicknesses of 6Å, 9Å, 12Å and 15Å for different junction thicknesses 3Å, 6Å, 9Å and 12Å of SiO2.
The junction and superconducting layer thicknesses are taken in the range of molecular dimension (i.e.,
Angstrom) as suggested byGiaever [15]. The dielectric constant of SiO2 is taken as 3.7 and Fermi velocity
of MgB2 is taken as 4.7×105 m/s [16]. The computations were done using OCTAVE 4.4 programming
language and the figures are generated using PYTHON3 in the Linux operating system on supercomputer
platform.

To study the plasmon excitation, the dispersion relation defined by equation (2.25) is plotted and
presented in figure 2. The figures 2a to 2d show that the band spectrum significantly depends on the
junction and layer thicknesses. They appear in higher frequency states as the junction as well as the
layer thicknesses are increased. The excited states can also be reached by increasing the bias-voltage that
affects the tunneling matrix element. Hence, the tunneling coupling constant of equation (2.16) is also
altered.

In order to study the soliton motion, the phase differences ϕ for all 8-channels are plotted against the
normalized space and time. For this purpose, the LJJ of length 14 units was taken. The length is measured
in the unit of inverse of Fermi wave vector (i.e. k−1

F ). The simulation was done up to the normalized
time of 5 unit. Here, the time is measured in the inverse of Fermi frequency (i.e. ω−1

F ). From figures 3
to 6, it is observed that the initial kink in each channel greatly deforms its shape as the time lapses. As
the kink reaches the boundary, it reflects back due to the application of Neumann boundary condition.
As it reflects, there is a chance of producing the anti-kink or another kink. As a result, kink-kink or
kink-anti-kink superposition may take place forming a complicated phase texture as time lapses. Some
channels also show the collective behavior. The figures also show that the phase texture is highly sensitive
to the junction and layer thicknesses as well as to the tunnel voltages. They become more complicated as
the junction parameters are increased.

The I-V characteristics were studied by applying the voltage across the junction system. Since the
tunneling matrix element is directly proportional to the bias voltage for the given junction and layer
thicknesses [14], the tunneling coupling constant and hence the phase differences for all channels were
computed for different applied voltages. Using the equation (3.13), the current for each channel can be
computed at the given applied voltage as the function of space and time. The current is then averaged
out over space and time as well as the channels for the given applied voltage and junction geometry. In
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Figure 7. (Colour online) Current-Voltage characteristics for junction thickness (a) 3 Å, (b) 6 Å, (c) 9 Å,
and (d) 12 Å for different layer thicknesses.

this way, the current is calculated for each applied voltage ranging from 0 V to 1 V with the step of
0.01 V. The current is plotted against voltage as shown in figures 7a to 7d. The I-V characteristics for
the junction thickness of b = 3 Å are presented in figure 7a. The figure contains four curves for layer
thicknesses of 6, 9, 12, and 15 Å. These curves seem to of be of non-ohmic nature with the existence
of differential resistance. This resistive nature indicates that the applied voltage was consumed in order
to proceed the tunneling of Cooper pairs. As the Cooper pairs reach the junction, they break into the
normal charge carrier and they collide with the lattice in the junction. The junction system behaves as a
conventional resistor. The graph shows that the positive differential resistance increases as the increment
of the layer thickness. As the layer thickness increases, the population of Cooper pair also increases. For
this reason, the collision frequency of the carriers was increased and a greater resistance persisted for the
same applied voltage.

When the junction thickness was changed to 6 Å, an unusual type of I-V characteristics is obtained.
For the given superconducting layer thickness, the I-V curve shows a positive differential resistance up
to a certain applied voltage and then it shows a negative differential resistance. This peculiar behavior
of the junction system indicates that there exists a complicated phenomenon. Due to the existence of a
negative resistance at a certain voltage range, the device can be used as the energy stroage and oscillator.
The origin of the noisy I-V characteristics may be interpreted in the following way. When the voltage
is applied to the junction system, there are a lot of ways of dividing the value of this voltage into the
voltages on those junctions. For this reason, there exist a lot of meta-stable states with different voltage
distributions. Furthermore, it is quite possible that some meta-stable states are energetically very close to
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the stable state [11]. In such a case, the voltage distribution will be greatly changed and will cause a rapid
oscillation of the dc current. For the junction thicknesses of 9 Å and 12 Å, the I-V curve showed even
a complicated non-linear nature with the existence of a series of N-shaped differential resistances. The
N-shaped differential resistance is the charanteristics of Gunn diode. Hence, the present junction system
is also applicable to the low temperature electronic devices demanding the Gunn diode charactersitics.
Another reason for the negative differential resistance is electromagnetic radiation due to the fluxon-
antifluxon (kink-antikin) transition between the plasmon excitation states during the soliton motion. As
shown in the band spectrum (depicted in figure 2), the plasma wave is at the excited state causing the
plasmon radiation. Therefore, the junction system in a particular voltage range can be used as a radiation
chamber.

4. Conclusion
We conclude that the collision of fluxon and anti-fluxon as well as the in-phase or the out-phase of

collective motion is more active for higher tunnel voltage. The current voltage characteristics are almost
linear up to a certain tunnel voltage and then become non-linear. The non-linearity starts at a lower
tunnel voltage for higher junction thicknesses as well as layer thicknesses. The linear region indicates
that the junction system demonstrates a resistive nature while the non-linear condition confirms the
existence of other complicated phenomena. Some nonlinear regions confirm the existence of a negative
differential resistance so that the the junction system can be used in the electric devices that demand a
negative resistance. One of the phenomena is the emission of electromagnetic radiation (e.g., microwave,
THz etc.) due to the formation of meta-stable states as predicted by Koyama [13] and fluxon-antifluxon
transition between them. The device can be used as a switching device, a memory device that operates
in non-linear region. This might be the main region of THz radiation.
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Theoretical study of I-V characteristics

Теоретичне дослiдження I-V характеристик у зв’язаних
довгих джозефсонiвських переходах на основi
надпровiдника дибориду магнiю
С.П. Чiмоурiя1,2, Б.Р. Гiмiре2, Дж.Х. Кiм3

1 Фiзичний факультет, унiверситет Катманду,Непал
2 Фiзичний факультет, Трибхуанський унiверситет, Катманду, Непал
3 Коледж природничих наук та iнженерiї, унiверситет Х’юстона Клiер Лейк, TX, США
У статтi дослiджено вольт-ампернi (I-V) характеристики у зв’язаному довгому джозефсонiвському пе-
реходi на основi дибориду магнiю шляхом встановлення системи рiвнянь рiзницi фаз рiзних iнтер-
та iнтра-зонних каналiв, починаючи з мiкроскопiчного гамiльтонiана системи переходу та спрощення
її за допомогою таких феноменологiчних процедур, як дiя, функцiя розподiлу, перетворення Габарда-
Стратоновича (бозонiзацiя), iнтеграл Грасмана, метод перевалу, голдстоунiвська мода, фазозалежний
ефективний лагранжiан i, нарештi, рiвняння руху Ейлера-Лагранжа. Система рiвнянь розв’язується з ви-
користанням скiнченно-рiзницевого наближення, для якого за початкову умову приймається розв’язок
незбуреного синус-гордонiвського рiвняння. Гранична умова Неймана пiдтримується на обох кiнцях так,
що флаксон здатний вiдбиватися вiд кiнця системи. Фазозалежний струм розраховується для рiзної ту-
нельної напруги i усереднюється за простором i часом. Вольт-ампернi характеристики майже лiнiйнi при
низькiй напрузi та нелiнiйнi при бiльш високiй напрузi, що вказує на те, що в цiй ситуацiї можуть вини-
кнути бiльш складнi фiзичнi явища. У деяких областях характеристик iснує негативний опiр, що означає,
що система переходiв може бути використана в певних електронних пристроях, таких як генератори,
перемикачi, пристрої пам’ятi тощо. Нелiнiйнiсть також чутлива до шару, а також до переходу товщини.
Нелiнiйнiсть виникає при меншiй напрузi, а також при бiльшiй товщинi переходiв iшарiв.
Ключовi слова: двозонний надпровiдник, зв’язаний довгий джозефсонiвський перехiд, перетворення
Габарда-Стратоновича, збурене рiвняння синус-Гордона
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