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We theoretically investigate the threshold for the director reorientation from the homeotropic state to the hy-
brid homeotropic-planar state and vice versa in a cell filled with a flexoelectric nematic liquid crystal (NLC)
subjected to an electric field. The liquid crystal is doped by a CTAB-like substance, a part of molecules of which
dissociates into positive and negative ions. The anchoring on one of the cell surfaces is assumed to be strong and
homeotropic, while the other surface can adsorb positive ions which play the role of an orienting surfactant for
NLC molecules on this surface. At certain voltages, the orientational transitions in the bulk of the NLC are possi-
ble due to the changing conditions for the director on the adsorbing surface. We calculate respective threshold
voltages as functions of anchoring parameters. The existence of the critical values of these parameters, beyond
which the orientational transitions do not take place, is established.
Key words: nematic liquid crystal, orientational instability, threshold of orientational instability, boundary

conditions, flexopolarization

1. Introduction

In recent decades, the rapid development of liquid crystal display technologies has been stimulated
by intensive studies in the physics of liquid crystals (LC). An LC cell is the basic constructional element
of any liquid crystal display. A wide practical use of LCs is based on exploitation of their unique electro-
and magneto-optical properties. These properties are closely related to the orientational order of LC
molecules. One of the most well-known and broadly used LC orientational phenomena is the Fréede-
ricksz transition, i.e., the threshold reorientation of the nematic liquid crystal (NLC) director caused
by external electric or magnetic fields [1]. In spite of the fact that the threshold reorientation of the
director is a bulk phenomenon, its characteristics, such as the threshold fields and director reorientation
extent, substantially depend on the conditions for the director on the cell surfaces. These conditions are
determined by the anchoring energy, the easy axis orientation, etc. Usually, it is not possible to change the
anchoring characteristics dynamically since they are established during the cell fabrication [2]. Therefore,
orientational transitions in LC cells predominantly occur at fixed anchoring parameters. Nevertheless,
as it is shown in [3, 4], a spontaneous Fréedericksz transition induced by changes in conditions for the
director on the cell surfaces is possible. Hence, the possibility to dynamically change the anchoring
parameters is very attractive since it allows one to control the boundary conditions for the director on the
cell surfaces, which could be used to improve the characteristics of the existing electrooptical devices or
to create the new ones.

As recent studies suggest, under some conditions the director easy axis induced on the polymer
substrate of a cell can change its orientation under the action of light or low-frequency electric/magnetic
fields [5–10]; this, in turn, affects the equilibrium director configuration in the bulk of the NLC. One of the
mechanisms that can be used to adjust the type and strength of the anchoring is ion adsorption on the cell
surfaces [11]. Thus, the addition of the dopant CTAB molecules, which dissociate producing ions CTA+
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and Br−, to the NLC host, can induce the homeotropic orientation of the director on the cell surface
capable of adsorbing positive ions CTA+ [12, 13]. At a sufficient surface density, these adsorbed ions can
orient NLC molecules homeotropically in the layer adjacent to the surface, using their long elastic tails,
independently of the way NLC molecules were oriented in the absence of adsorption. This mechanism
was used in a number of experiments [14–18], where, owing to adsorption/desorption phenomena, the
possibility to dynamically control the anchoring parameters using an electric field was demonstrated. In
particular, the authors of [14, 17] studied the dynamics of orientational transitions from the homeotropic
NLC director configuration to the homeotropic-planar configuration and vice versa after the field was
turned on and subsequently turned off. These transitions had thresholds, although the dependence of the
threshold voltages on NLC cell parameters was not considered.

In this paper, we theoretically study the threshold orientational instability of the director in a flexo-
electric NLC cell subjected to an electric field that is created by a constant electric potential difference
between the cell surfaces. The NLC is doped by a CTAB-like substance, a part of the molecules of
which dissociates in the NLC medium into positive and negative ions. The NLC anchoring with one of
the surfaces is assumed to be homeotropic and strong. The other surface can adsorb positive ions and
provides the planar anchoring in the absence of adsorbed ions. We assume that the anchoring parameters,
namely, the strength and the type, i.e., whether the anchoring is homeotropic or planar, depend on the
density of adsorbed positive ions.

We consider orientational transitions between stable director configurations in the bulk of the NLC.
These transitions are caused by the changes in the type and strength of the anchoring induced by
variations in the applied voltage. We calculate the threshold voltages of the orientational transitions from
the homeotropic configuration to the homeotropic-planar configuration of the director and vice versa;
the dependence of these voltages on the parameters of the homeotropic and planar anchoring is studied.
We find the admissible ranges of the anchoring parameters within which the orientational transitions are
possible. The paper is organized as follows. In section 2, the free energy of the NLC cell along with
the equations for the director and the electric field is presented. In section 3, the spatial profile of the
electrostatic potential in the bulk of the NLC is calculated at the values of parameters that correspond to
the vicinity of the orientational transition threshold. In section 4, the threshold voltages are calculated.
The dependence of the threshold voltages on parameters of the homeotropic and planar anchoring is
discussed in section 5. Our conclusions are presented in section 6.

2. Free energy of the NLC and equations for the director and the electric

field

We consider an NLC cell restricted by planes z = 0 and z = L. Anchoring between the NLC
director and the upper surface, z = L is assumed to be strong. The director orientation on this surface is
homeotropic, i.e., the director is perpendicular to the surface at each of its points. The director easy axis
on the lower surface z = 0 is directed along this surface, namely, along the Ox-axis; so, the anchoring
on this surface is planar. The NLC is doped by a CTAB-like substance, a part of the molecules of which
dissociates in the NLC medium into positive and negative ions. We assume that the surface z = L does
not adsorb ions, while the surface z = 0 is capable of adsorbing positive ions. At a relatively small surface
density of adsorbed ions, the anchoring on the lower surface remains planar. However, as this density
increases, the planar anchoring on the lower surface can vanish completely, and homeotropic anchoring
induced by adsorbed ions emerges instead [19]. The constant potential differenceU is maintained between
cell surfaces, which creates the static electric field E in the bulk of the NLC directed along the Oz-axis.
This field considerably affects the spatial distribution of charges in the bulk as well as the density
of charges adsorbed on the lower surface. As mentioned above, a variation in this adsorption density
changes the type and strength of the NLC anchoring with the adsorbing surface. Thus, we try to answer
the question how the voltage U applied to the cell provokes the orientational instability of the director in
the bulk. Note that orientational transitions induced by an electric field in such NLC cells were observed
in [14, 16, 17]. The free energy of the NLC cell can be written as follows:

F = Fel + FE + FS, (2.1)
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Fel =
1
2

∫
V

{
K1(div n)2 + K2(n · rot n)2 + K3[n × rot n]2

}
dV,

FE =

∫
V

(
−

1
8π

Eε̂E − PE + ρϕ
)

dV,

FS = −
1
2

∫
S

[
Wh(nez)2 +Wp(nex)2

]
dS, Wh > 0, Wp > 0.

Here, Fel is the elastic energy of the NLC, FE accounts for the anisotropic and flexoelectric contributions
made by an electric field into the free energy of the NLC as well as the contribution made by ions [20],
FS has the form of the Rapini potential and describes the anchoring between the NLC and the surface of
the lower surface, K1, K2, K3 are elastic constants, n is the director, ε̂ = ε⊥1̂ + εan ⊗ n, εa = ε‖ − ε⊥ > 0
are the static electric permittivity tensor of the NLC and its anisotropy, E, ϕ are the electric field and its
potential, ρ is the bulk density of charges, ex , ez are unit vectors of the Cartesian coordinate system, Wh,
Wp are anchoring energies related to the deviation of the director on the surface z = 0 in homeotropic
and planar directions, respectively, P = e1n div n − e3[n × rot n], e1, e3 are the flexoelectric polarization
and flexoelectric coefficients.

The surface free energy FS is taken in a simple form that generalizes the Rapini model [21, 22] on the
basis of the following considerations. The anchoring between the NLC and the lower surface is planar in
the absence of adsorbed positive ions. This planar anchoring gradually weakens while the homeotropic
anchoring, which is created by adsorbed ions, emerges with an increasing surface density of adsorbed
ions σ. To give a quantitative description of interaction between the NLC and the adsorbing surface, we
assume that energies of the homeotropic Wh and planar Wp anchoring depend on the surface density
of adsorbed ions. Thus, we take the homeotropic anchoring energy in the form that generalizes the one
proposed in [19],

Wh = W0h
σ

σm

(
1 −

σ

σm

)
, (2.2)

where W0h is entirely determined by properties of the substrate material and by the way the substrate
surface has been treated (W0h > 0), σm is the largest possible surface density of adsorbed ions (the
maximum number of vacancies on the surface). As it follows from (2.2), the homeotropic anchoring
is the strongest if adsorbed ions occupy a half of all vacancies, σ = 0.5σm [19]; we assume that the
planar anchoring is absent under this condition. It is obvious that the electric field created by the potential
difference U applied between the cell surfaces stimulates the transfer of positive ions from the adsorbing
surface into the bulk of the NLC. A decrease in the surface density σ of adsorbed ions causes not only
quantitative but also qualitative changes in the anchoring between the NLC and the adsorbing surface.
Thus, in this case, the homeotropic anchoring weakens while the planar anchoring, on the contrary,
becomes stronger. Taking the above-mentioned features into account, we write the planar anchoring
energy in the form

Wp =

{
W0p (1 − 2σ/σm) , if σ 6 0.5σm,
0, if σ > 0.5σm,

(2.3)

whereW0p depends on theway the surface has been treated and on the properties of itsmaterial (W0p > 0).
We assume that in the absence of the external electric field (U = 0), the adsorption density σ

is sufficient to ensure the homeotropic anchoring on the lower cell surface. Thus, the director in the
bulk of the cell is oriented homogeneously along the Oz-axis (see figure 1a). As it follows form these
considerations, at a certain threshold voltage U the orientational transition in the bulk of the NLC
can occur owing to the changes in boundary conditions for the director on the adsorbing surface. It
means that the initial homeotropic orientation of the director becomes unstable and turns into the hybrid
homeotropic-planar orientation (see figure 1b).

We consider planar deformations of the director, so the hybrid director reorientation takes place in
the xOz-plane. Owing to homogeneity of the system along the Oy-axis, the director in the bulk of the
NLC can be written as follows:

n =
(
sin θ(z), 0, cos θ(z)

)
, (2.4)
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Figure 1. (Colour online) Schematic picture of homeotropic (a) and hybrid (b) director configurations in
the cell.

where θ is an angle that the director makes with the Oz-axis.
By minimising the free energy (2.1) with respect to the angle θ and taking into account the expression

for the director (2.4), we arrive at the following stationary equation

(K1 sin2 θ + K3 cos2 θ)θ ′′zz −

(
(K3 − K1)θ

′2
z + eϕ′′zz +

εaϕ
′2
z

4π

)
sin θ cos θ = 0 (2.5)

and respective boundary conditions[
(K1 sin2 θ + K3 cos2 θ)θ ′z − (eϕ

′
z +Wh −Wp)

sin 2θ
2

]
z=0
= 0,

θ |z=L = 0.
(2.6)

Here, e = e1 + e3; Wh and Wp are defined by (2.2) and (2.3). The prime symbol denotes derivatives with
respect to z.

It is obvious that equation (2.5) for the angle θ should be solved together with electrostatics equations
for the electric field E. By minimising the free energy (2.1) with respect to the potential ϕ, we obtain

d
dz

[
−(ε⊥ + εa cos2 θ)ϕ′z − 2πeθ ′z sin 2θ

]
= 4πρ. (2.7)

Boundary conditions for equation (2.7) can be written as

ϕ|z=0 = 0, ϕ|z=L = −U. (2.8)

The bulk density of charges in the right hand side of equation (2.7) equals ρ = q(n+ − n−), where
q is the elementary charge. Assuming that the bulk density of ions can be described by the Boltzmann
distribution, we define the bulk densities of positive n+ and negative n− ions as it is done in [23]

n+(z) =
n0
Z+

exp
(
−

qϕ(z)
kBT

)
, n−(z) =

n0
Z−

exp
(

qϕ(z)
kBT

)
, (2.9)

where n0 is the bulk density of CTAB molecules which have dissociated into ions, kB is the Boltzmann
constant, T is temperature. The surface density of positive ions adsorbed on the lower surface is given by
the expression [23]

σ =
N0
Z+

exp
(

A
kBT

)
, (2.10)

where A is the adsorption energy, N0 = n0L. The values of Z+ and Z− can be found from the condition
that the numbers of positive as well as negative ions in the system per unit area of the surface is equal
to N0

Z+ = e
A

kBT +
1
L

L∫
0

e−
qϕ(z)
kBT dz, Z− =

1
L

L∫
0

e
qϕ(z)
kBT dz. (2.11)
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3. Potential profile in the bulk of the NLC

We are interested in the threshold voltage at which the initial homogeneous director configuration in
the bulk of the cell becomes unstable. In the vicinity of the threshold, the angles describing the director
deviations are small (|θ | � 1). Thus, we can linearize equation (2.5) and boundary conditions (2.6) in θ

K3θ
′′
zz −

(
eϕ′′zz +

εaϕ
′2
z

4π

)
θ = 0, (3.1)

[
−K3θ

′
z + (eϕ

′
z +Wh −Wp)θ

]
z=0 = 0, θ

��
z=L
= 0 (3.2)

as well as the equation for the potential (2.7)

ϕ′′zz = −
4π
ε | |
ρ (3.3)

and boundary conditions (2.8). As can be seen, in the linear approximation in θ, the equation for the
potential (3.3) does not depend on the angle θ. This allows us to find the spatial profile of the potential ϕ(z).
By introducing a dimensionless coordinate ζ =

z
L
, a potential u =

qϕ
kBT

, a voltage v =
qU
kBT

, an

adsorption energy α =
A

kBT
and a square of the dimensionless screening parameter δ =

4πq2N0L
ε | |kBT

, we

can rewrite (3.3) with boundary conditions (2.8), taking into account (2.10) and (2.11), as follows:

u′′ζζ = −δ
(
e−u

Z+
−

eu

Z−

)
, (3.4)

u(0) = 0, u(1) = −v, (3.5)

where

Z+ = eα +
1∫
0

e−u(ζ )dζ, Z− =

1∫
0

eu(ζ )dζ, σ = N0
eα

Z+
. (3.6)

To find the solution u(ζ) of equation (3.4), which satisfies the boundary conditions (3.5), we use methods
of the calculus of variations. To this end, we first note that equation (3.4) can be obtained by minimization
of the functional

S[u] =
1
2δ

1∫
0

u′2ζ dζ + ln
(
eα +

1∫
0

e−u(ζ ) dζ
)
+ ln

( 1∫
0

eu(ζ ) dζ
)
, (3.7)

where the function u(ζ) satisfies (3.5).
The substitution of expression (3.9) for the potential u(ζ) into (3.6) yields the value of σ at the given

voltage v

σ=
N0eα

eα +
1∫
0

e−u(ζ ) dζ
=

N0

1 + eβ−α[1 + λ f (−β) + µ f (v − β)]
. (3.8)

Let the bulk density n0 of CTAB molecules that have dissociated in the NLC be sufficient to ensure
that δ � 1. Hence, at relatively small applied voltages v, a complete screening of the electric field in the
bulk of the liquid crystal takes place. The spatial profile of the electrostatic potential in this case can be
described with a sufficient accuracy by the expression

u(ζ) = βe−ζ/λ − (v − β)e−(1−ζ )/µ − β, (3.9)
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Figure 2. Dimensionless electric potential u versus ζ calculated for several values of the dimensionless
applied voltage v at the values of other parameters presented in table 1. v = 0 (1), 10 (2), 15 (3), 20 (4).

where β, λ and µ are unknown constants (λ � 1, µ � 1) that should be found by minimising the
functional S[u] with respect to them. As can be seen, the expression for the potential (3.9) satisfies
the boundary conditions (3.5) with the accuracy up to the terms of the order of e−1/λ and e−1/µ. By
substituting the potential u(ζ) (3.9) into the functional (3.7) and performing integration (see Appendix
for details) with the accuracy up to the terms of the order of e−1/λ and e−1/µ, we obtain the following
function of three variables β, λ and µ

S(β, λ, µ) =
β2

4δλ
+
(v − β)2

4δµ
+ ln

(
eα−β + 1 + λ f (−β)

+ µ f (v − β)
)
+ ln

(
1 + λ f (β) + µ f (β − v)

)
,

(3.10)

where

f (x) =
∞∑
k=1

xk

k · k!
(3.11)

are rapidly convergent power series. By minimising the function S(β, λ, µ) (3.10) with respect to all
its arguments, we find the values of β, λ and µ. Substituting the latter values into (3.9), we obtain the
spatial profile of the potential u(ζ) in the cell. In figure 2, the potential u(ζ) calculated for the values of
parameters close to typical [11, 14, 16, 17, 24] (see table 1) is presented. As can be seen, at these values
of parameters, the case of the electric field screening inside the NLC cell takes place.

In figure 3, we present the surface density σ of adsorbed ions on the lower surface as a function of
the potential difference v between the cell surfaces, which was calculated using formula (3.8). As the
voltage v increases, the surface density σ drops quite rapidly and approaches zero at voltages of the order
of 0.5 V.

4. Threshold voltages

We next rewrite the linearized equation (3.1) for the director angle θ and respective boundary
conditions (3.2) as follows

θ ′′ζζ − (ν<u′′ζζ + <2u′2ζ )θ = 0, (4.1)
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Figure 3. Surface density of adsorbed ions on the lower cell surface versus the dimensionless applied
voltage v at the values of parameters presented in table 1.

−
θ ′ζ

θ

�����
ζ=0

− ν
<β
λ
+ εh

σ

σm

(
1 −

σ

σm

)
− εp

(
1 − 2

σ

σm

)
= 0,

θ
��
ζ=1 = 0.

(4.2)

Here, we use dimensionless temperature < = kBT
q

√
εa

4πK3
, flexoelectric parameter ν = (e1 + e3)

√
4π
εaK3

and parameters of the homeotropic εh =
W0hL

K3
and planar εp =

W0pL
K3

anchoring.
The solution of equation (4.1) on the interval 0 6 ζ 6 1 can be found taking into account an

explicit form (3.9) of the potential u(ζ). We make use of the fact that some terms in our problem are
exponentially small. Hence, in the interval 0 6 ζ 6 1/2 with the accuracy up to exponentially small
terms, we have u′ζ ≈ −

β

λ
e−ζ/λ, u′′ζζ ≈

β

λ2 e−ζ/λ. Introducing a new variable t = <βe−ζ/λ, we rewrite
equation (4.1) in the form

t2θ ′′tt + tθ ′t − (νt + t2)θ = 0. (4.3)

In the interval 1/2 6 ζ 6 1, taking into account approximate relations

u′ζ ≈
β − v

µ
e−(1−ζ )/µ and u′′ζζ ≈

β − v

µ2 e−(1−ζ )/µ

and introducing a new variable t = <(β−v)e−(1−ζ )/µ, we can rewrite equation (4.1) in the same form (4.3).
It is worth noting that in the absence of the flexoelectric polarization (ν = 0), equation (4.3) is a

modified Bessel equation [25]. However, if the NLC possesses flexoelectric properties (ν , 0), then the
solutions of equation (4.3) cannot be easily expressed in terms of special functions. Therefore, we seek
one of the solutions in the form of power series X(t) =

∑∞
n=0 antn, where an are unknown coefficients.

Substituting X(t) into (4.3) and equating the coefficients of respective powers of t, we obtain the following
recurrence relation for an

an =
νan−1 + an−2

n2 , n > 2, (4.4)

a1 = ν and a0 = 1.
As is known from the theory of ordinary differential equations [26], the other linear independent

solution of equation (4.3) can be found in the form X(t)ln|t | + Y (t), where Y (t) =
∑∞

n=0 bntn and bn are
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Table 1. Values of parameters used in calculations.

Parameter Denotation Value

Temperature T 300K
Cell thickness L 10 µm
Adsorption energy A 5 kBT
Number of ions per unit
surface

N0 1017 m−2

The largest possible
density of adsorbed ions

σm 0.562 · 1017 m−2

NLC elastic constant K3 10 pN
Eigenvalues of static
electric permittivity
tensor

ε | |

ε⊥

19.7
6.7

Sum of flexoelectric
coefficients

e1 + e3 0 or 20 pC/m

unknown coefficients. The substitution of this solution into equation (4.3) yields a recurrence relation for
coefficients bn

bn =
νbn−1 + bn−2 − 2nan

n2 , n > 2, (4.5)

b1 = −ν and b0 = 1.
Therefore, the solutions of equation (4.3) in upper and lower halves of the cell read

θ1(ζ)=
(
A+B ln

��<βe−
ζ
λ

��)X
(<βe−

ζ
λ
)
+B Y

(<βe−
ζ
λ
)
,

if 0 6 ζ 6 1/2,

θ2(ζ)=
(
C+D ln

��<(β − v)e− (1−ζ )µ
��)X

(<(β−v)e− (1−ζ )µ
)

+ D Y
(<(β−v)e− (1−ζ )µ

)
, if 1/2 6 ζ 6 1,

(4.6)

where A, B,C and D are unknown coefficients. Using the fact that the function θ(ζ) and its derivative θ ′(ζ)
are continuous at ζ = 1/2, we have

θ1

(
<βe−

1
2λ

)
= θ2

[
<(β − v)e− 1

2µ
]
, (4.7)

−
<βe− 1

2λ

λ
θ ′1ζ

(
<βe−

1
2λ

)
=

<(β − v)e− 1
2µ

µ
θ ′2ζ

[
<(β − v)e− 1

2µ
]
. (4.8)

From equations (4.7) and (4.8), taking into account the boundary condition θ(ζ = 1) = 0 (4.2) which
takes on the form θ2

[<(β − v)] = 0 and neglecting the exponentially small terms, after some algebraic

transformations, we obtain an expression for
θ ′ζ

θ

�����
ζ=0

, the substitution of which into (4.2) yields

<β
λ

X ′(<β)
X(<β)

1+λ
[

X(<β)
<βX′(<β)+

Y′(<β)
X′(<β)−1

]
+µ

[
Y(< |β−v |)
X(< |β−v |)−1

]
1+λ

[
Y(<β)
X(<β)−1

]
+µ

[
Y(< |β−v |)
X(< |β−v |)−1

]
−ν

<β
λ
+ εh

σ

σm

(
1 −

σ

σm

)
− εp

(
1 − 2

σ

σm

)
=0.

(4.9)
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This is the threshold equation from which the threshold voltage vth can be found. In the general case,
equation (4.9) admits only a numerical solution. Note that, in (4.9), for the given voltage v, values of β, λ
and µ should be found by minimization of the function S(β, λ, µ) (3.10). The substitution of the threshold
voltage vth into (3.8) yields the respective surface density of adsorbed ions σ.

5. Dependence of threshold voltages on the anchoring parameters

The dependences of threshold voltage vth on the planar anchoring parameter εp, which were obtained
by solving equation (4.9), are presented in figure 4 for the case of the presence of the flexoelectric
polarization as well as for the case of its absence. Calculations were carried out at several fixed values of
the homeotropic anchoring parameter εh. We use the values of NLC and CTAB parameters presented in
table 1, which are close to typical [11, 14, 16, 17, 24].

As calculations show, for each given value of εh there exists the critical value of the planar anchoring
parameter εthp . Hence, at εp < εthp , the homogeneous homeotropic orientation of the director is preserved
in the bulk of the NLC independently of the potential difference v. Concurrently, at εp > εthp , there are
two threshold voltages vth1 and vth2 (vth1 < vth2). Hence, in voltage ranges 0 6 v 6 vth1 and v > vth2,
the homogeneous homeotropic director orientation takes place in the cell. On the other hand, in the
range vth1 < v < vth2, there is a hybrid homeotropic-planar director orientation in the bulk of the
NLC. The voltage range within which the hybrid director orientation exists broadens, i.e., the threshold
voltage vth1 decreases and vth2 increases, with increasing εp (εp > εthp ). As calculations suggest, the
increase in the homeotropic parameter εh causes the growth of the critical value εthp .

In figure 5 the calculated threshold voltage vth as a function of the homeotropic anchoring parameter εh
is presented in the cases of the presence and the absence of flexoelectric polarization. Calculations were
carried out at several fixed values of the planar anchoring parameter εp. As can be seen, for each value
of εp there exists some respective critical value of εthh . At εh > εthh , the orientational transition in the bulk
of the cell does not take place at any applied voltage v. The director in the bulk of the NLC preserves
the initial homogeneous homeotropic orientation. However, for each value of εh at εh < εthh , there exist
respective critical applied voltages vth1 and vth2 (vth1 < vth2). The hybrid homeotropic-planar director
orientation takes place only in the voltage range vth1 < v < vth2. In the voltage ranges 0 6 v 6 vth1
and v > vth2, the director remains homogeneous and homeotropically oriented. The voltage range within
which the hybrid homeotropic-planar director orientation exists broadens with decreasing εh, provided
that εh < εthh .
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Figure 4. Dimensionless threshold voltage vth as a function of the planar anchoring parameter εp in the
absence of the flexoelectric polarization (a) and in the presence of the flexoelectric polarization (e1+e3 =
20 pC/m) (b). εh = 0 (1), 100 (2), 200 (3), 300 (4), 400 (5).
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Figure 5. Dimensionless threshold voltage vth versus the homeotropic anchoring parameter εh in the
absence of the flexoelectric polarization (a) and in the presence of the flexoelectric polarization (e1+e3 =
20 pC/m) (b). (a) εp = 185 (1), 190 (2), 200 (3), 210 (4), 220 (5), 230 (6); (b) εp = 100 (1), 110 (2), 120
(3), 130 (4), 140 (5).
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Figure 6. Critical values εthh versus εp in the absence of the flexoelectric polarization (a) and in the
presence of the flexoelectric polarization (e1 + e3 = 20 pC/m) (b).

In figure 6, the critical values of εh as a function of εp are presented for the cases of the absence and
the presence of the flexoelectric polarization. Hence, at the threshold voltage the orientational transition
from the homeotropic director configuration to the hybrid director configuration takes place within the
range 0 < εh < εthh to which the area to the right of the curve in figure 6 corresponds. If εh > εthh , then the
director in the bulk of the NLC preserves the initial homogeneous homeotropic orientation independently
of the applied voltage. As can be seen, the range of εh within which the threshold orientational instability
of the director exists broadens with increasing εp independently of the presence of the flexoelectric
polarization.

It is easy to observe that the presence of the flexoelectric polarization does not qualitatively affect
the dependence of the threshold voltage vth on homeotropic εh and planar εp anchoring parameters
characterising the anchoring between the NLC and the adsorbing surface. However, the presence of
the flexoelectric polarization expands the voltage range within which the hybrid homeotropic-planar
orientation of the director exists. Namely, it causes a decrease in the threshold voltage vth1 and an increase
in vth2. Moreover, the presence of the flexoelectric polarization decreases the critical value εthp of the
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planar anchoring and increases the critical value εthh of the homeotropic anchoring.

6. Conclusions

We have studied the electroinduced director threshold reorientation in a planar flexoelectric NLC cell
from the homeotropic configuration to the hybrid homeotropic-planar configuration and vice versa. The
electric field is created by a constant potential difference between the cell surfaces. The presence of a
CTAB-like doping substance in the bulk of the NLC is assumed. A part of the molecules of this substance
dissociates in the NLC medium into positive and negative ions. The orientational instability in the bulk
of the NLC is caused by variations of conditions for the NLC director on one of the cell surfaces due to
desorption of positive ions on its surface. The case of a complete screening of the electric field in the
bulk is considered, which takes place at relatively small voltages applied to the cell surfaces and large
bulk densities of ions [14, 16, 17]. In the frame of the used adsorption model, an approximation to the
electric potential profile throughout the cell is obtained.

It is shown that the presence of ions in the bulk of the NLC and the capability of one of the
surfaces to adsorb positive ions considerably affects the threshold voltages. It also affects the range of
homeotropic εh and planar εp anchoring parameters and the range of the flexoelectric coefficient ν within
which orientational transitions are possible.

It is established that for each value of the homeotropic anchoring parameter εh, there exists the critical
value of the planar anchoring parameter εthp so that at εp < εthp the orientational transition in the bulk
of the NLC is impossible independently of the applied voltage v. Concurrently, at εp > εthp there exist
two threshold voltages vth1 and vth2 ( vth1 < vth2), so that for the voltages vth1 < v < vth2 the director
configuration is hybrid. At 0 6 v 6 vth1 and v > vth2, the director preserves its initial homogeneous
homeotropic orientation. The range of voltages for which the hybrid orientation exists broadens with an
increasing εp.

It is shown that for each value of εp, there exists the respective critical value εthh so that only at εh < εthh
the electroinduced orientational transition in the bulk of the NLC is possible. If this is the case, the hybrid
director configuration emerges at vth1 < v < vth2, while in the voltage ranges 0 6 v 6 vth1 and v > vth2,
the director field preserves the initial homeotropic configuration. The range of the applied voltage v
within which the hybrid orientation of the NLC director can exist broadens with a decreasing εh.

It is important to note that the presence of the flexoelectric polarization expands the ranges of voltage
and homeotropic εh and planar εp anchoring parameters within which the hybrid homeotropic-planar
NLC director configuration exists.
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A. Calculation of integrals in the functional S[u] (3.7)

1. For the integral
1∫
0

u′2ζ dζ in the expression for S[u], taking into account the explicit form of u(ζ) (3.9)

and neglecting the exponentially small terms, we obtain

1∫
0

u′2ζ dζ =
β2

λ2

1∫
0

e−
2ζ
λ dζ +

2β(v − β)
λµ

e−
1
µ

1∫
0

e
(

1
µ −

1
λ

)
ζ dζ

+
(v − β)2

µ2

1∫
0

e−
2(1−ζ )
µ dζ =

β2

2λ
(
1 − e−

2
λ
)

+ 2β(v − β)
e− 1

λ − e−
1
µ

λ − µ
+
(v − β)2

2µ
(
1 − e−

2
µ
)
≈
β2

2λ
+
(v − β)2

2µ
.

(A.1)

2. The second integral
1∫
0

e−u(ζ ) dζ in the expression for S[u] can be calculated as follows

1∫
0

e−u(ζ ) dζ =
1∫
0

e−βe−
ζ
λ e−(v−β)e

−
1−ζ
µ eβ dζ

= eβ
1∫
0

([
e−βe−

ζ
λ
− 1

]
+1

) ( [
e−(v−β)e

−
1−ζ
µ
− 1

]
+1

)
dζ .

(A.2)

Here, the expressions in square brackets are substantially different from 0 only in the vicinities of the
points ζ = 0 and ζ = 1, respectively. Therefore, with the accuracy up to exponentially small terms, one
can write

1∫
0

e−u(ζ ) dζ = eβ©«
1∫
0

e−βe−
ζ
λ dζ+

1∫
0

e−(v−β)e
−

1−ζ
µ dζ−1ª®¬.

Using the substitution ξ = 1 − ζ in the second integral, we have

1∫
0

e−u(ζ ) dζ = eβ©«
1∫
0

e−βe−
ζ
λ dζ +

1∫
0

e−(v−β)e
−
ξ
µ dξ−1ª®¬

≡ eβ (I(−β, λ) + I(v − β, µ) − 1) ,

(A.3)

where the integral I(β, λ) =

1∫
0

eβe−ζ/λ dζ is calculated below (see paragraph 3).

Similarly, the third integral in expression (3.7) equals

1∫
0

eu(ζ ) dζ = e−β
[
I(β, λ) + I(β − v, µ) − 1

]
. (A.4)
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3. Using the substitution t = βe−
ζ
λ , the integral I(β, λ) =

1∫
0

eβe−ζ/λ dζ can be transformed into

I(β, λ) = λ

β∫
βe−

1
λ

et

t
dt = λ

β∫
βe−

1
λ

dt
t
+ λ

β∫
βe−

1
λ

et − 1
t

dt

= λln|t |
���
βe−

1
λ
+λ

β∫
βe−

1
λ

∞∑
n=1

tn

n!

t
dt=1+λ

[
∞∑
n=1

tn

n · n!

] t=β
t=βe−

1
λ

= 1 + λ f (β) − λ f (βe−
1
λ ) ≈ 1 + λ f (β),

(A.5)

where f (β) =
∞∑
n=1

βn

n · n!
.

We next substitute I(β, λ) (A.5) into (A.3) and (A.4). Taking into account (A.1), (A.3) and (A.4), we
arrive at the final form of the functional S(β, λ, µ) (3.10).
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Орiєнтацiйна нестiйкiсть директора в нематичнiй комiрцi

спричинена електроiндукованою змiною зчеплення

О.С. Тарнавський,М.Ф. Ледней
Фiзичний факультет, Київський нацiональний унiверситет iменi Тараса Шевченка, проспект Академiка
Глушкова 4, 03022, Київ, Україна
Теоретично дослiджено порогову переорiєнтацiю директора iз гомеотропного стану в гiбридний
гомеотроп-планарний i навпаки у плоскопаралельнiй комiрцi флексоелектричного нематичного рiдко-
го кристалу (НРК) в електричному полi. Рiдкий кристал доповано речовиною типу СТАВ, частина молекул
якої дисоцiює на позитивно i негативно зарядженi iони. Зчеплення НРК з однiєю iз пiдкладок комiрки є го-
меотропним. На поверхнi iншої пiдкладки можлива адсорбцiя позитивно заряджених iонiв, якi вiдiграють
роль орiєнтанта молекул НРК на цiй поверхнi.При певних величинах прикладеної напруги можливий орi-
єнтацiйний перехiд директора в об’ємi НРК з гомеотропного стану в гiбридний i/або навпаки. Розрахованi
величини порогових напруг орiєнтацiйних переходiв у залежностi вiд значень параметрiв зчеплення НРК
з поверхнею адсорбуючої пiдкладки. Встановлено iснування критичних значень параметрiв зчеплення,
що визначають областi змiни цих параметрiв в межах яких мають мiсце орiєнтацiйнi переходи.
Ключовi слова: нематичний рiдкий кристал, орiєнтацiйна нестiйкiсть, порiг орiєнтацiйної нестiйкостi,

межовi умови, флексополяризацiя
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