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We consider the link between fragility and elasticity that follows from the analysis of the data for a set of soft
colloid materials consisting of deformable spheres reported by [Mattsson et al., Nature, 2009, 462, 83]. The
present work makes a quantitative analysis through an explicit definition for fragility index m in terms of den-
sity dependence, extending the corresponding formula of m for molecular systems in terms of temperature
dependence. In addition, we fit the data for the high-frequency shear modulus for the respective soft-colloid
to a corresponding theoretical expression for the same modulus. This expression for the elastic constant is in
terms of the corresponding pair correlation function for the liquid treated as of uniform density. The pair corre-
lation function is adjusted through a proper choice of the parameters for the two body interaction potential for
the respective soft-colloid material. The nature of correlation between the fragility and Poisson ratio observed
for the soft colloids is qualitatively different, as compared to the same for molecular glasses. The observed link
between fragility of a metastable liquid and its elastic coefficients is a manifestation of the effects of structure
of the fluid on its dynamics. The present work thus analyses the data on soft colloids and by introducing defini-
tions from statistical mechanics obtains a correlation between kinetic fragility and Poissons’s ratio for the soft
material.
Key words: kinetic fragility, elastic response, relaxation times, glass transition

1. Introduction

An instructive plot of the final relaxation time τα (on a logarithmic scale) of supercooled liquids was
made by Angell [1, 2] with respect to the inverse temperature scaled with Tg, i.e., with x = Tg/T . For
any specific system, the temperature Tg is defined to be the one at which the relaxation time τα grows by
a chosen order of magnitudes B (say) over a characteristic short time value. The quantity B is the same
for all materials and generally it is chosen to be 16 [3, 4] in molecular systems. Therefore, the Angell
plot, by construction, has all the relaxation curves merging at a single point on the y axis at y = B and at
x = 1, i.e., for T = Tg. Slope of the relaxation time τα (on a log scale) vs scaled temperature x at T = Tg is
termed as the fragility index m. For fragile liquids, τα are very sensitive to temperature changes near Tg,
and m is large. SiO2 and o-terphenyl respectively denote two extreme cases of strong and fragile systems
with m values 20 and 81.

Soft matter [5–8] has constituent elements of much larger size than that of the so-called “hard
matter” consisting of atomic size particles. The soft matter is characterized by small values for its elastic
moduli. The nature of the glassy dynamics for molecular systems as depicted above is also observed
in the relaxation behaviour of soft matter [9–12]. The concentration dependence of relaxation time
and elastic properties of deformable colloidal particles have been analyzed at a fixed temperature. The
soft colloid materials studied were aqueous suspensions of deformable microgel particles of varying
elasticity. The microgel particles consisted of interpenetrated and cross-linked polymer networks of
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poly (N-isopropylacrylamide) and polyacrylic acid. A key thermodynamic property controlling both the
elastic and relaxation properties of the soft colloids is the concentration variable ζ . The density of colloid
particles, denoted as ρ, is determined in terms of polymer concentrations of the microgel suspension. For
a system of hard spheres of diameter d, the particle concentration ζ is the same as the packing fraction φ.
However, since the microgel particles considered here are deformable, the packing fraction φ is not
simply proportional to the number density. For such systems, we work with the concentration defined as
ζ = ρv0, with v0 being the volume of an undeformed sphere. In the hard-sphere limit v0 = πd3/6, making
φ ≡ ζ . In the model for deformable soft colloids that we present here, physical quantities like relaxation
times or shear modulus are plotted as functions of relative concentrations (ζ/ζg) or (ζ/ζ∗), respectively
in terms of concentration at the so-called glass transition point (ζg) and at a crossover point (ζ∗). Thus,
the role of v0 drops out. For simplicity, we are considering a mono-dispersed system, hence size ratio of
the particles does not enter, though the present approach can be applied to mixtures as well.

For three different soft colloid materials, logarithms of the relaxation time τα were measured using
different methods and plotted [13] against relative concentration ζ/ζg scaled with respect to its value at
the so-called glass transition point ζg. The latter is defined for soft colloids, in close analogy with Tg for
the molecular systems. It is chosen so that the relaxation time τα compared to a microscopic scale τ0
grows by a factor B:

log10

[
τα(ζg)

τ0

]
= B. (1.1)

The result is an Angell-like plot with end points of all three relaxation curves meeting at a single point on
the Y-axis, at x = 1, and y≡B = 5. Apart from the specific value of B, primarily arising from technical
limitations of measuring relaxation times with light scattering, the relative variations within the group
of different soft-matters closely resemble those of molecular systems. At a qualitative level, soft matters
exhibit similar variations in fragility as that for molecular liquids at fixed volume [1]. The difference
in the value of B for the respective groups also categorizes the glass-forming materials into different
classes. For the relaxation times covered in the present Angell plot for soft-colloids, the system is not in
a jammed state even at ζg, and the Brownian force signifying thermal noise is present.

The fragility m in this case is defined with respect to the concentration variable:

m =
d log10 τα

d(ζ/ζg)

���
ζ=ζg

. (1.2)

While the relaxation time signifies the liquid-like behaviour, elasticity is a characteristic property related
to the rigidity of a system with localized particles. In a disordered fluid state, the elastic behaviour
only persists for short times after a stress is applied. The corresponding elastic constant is denoted as
Gp(ζ) [14]. For a set of soft colloids, the plot of Gp(ζ) vs scaled concentration ζ/ζ∗ is observed to
be similar to that of high-frequency shear modulus G∞(T) vs scaled temperature T∗/T for a molecular
system [13]. Here, the reference ζ∗ is identified as the concentration value over which the stretching
exponent for the decay function (of William-Watts form) remains constant. This would signify time
temperature superposition. The concentration variable ζ replaces the temperature in this case. What
matters in the present context is its value relative to the scaling density ζ/ζ∗. Concentration dependence
of the elastic constant Gp(ζ) for three different soft colloids [13] is analysed here. From a theoretical
perspective [15], high-frequency elastic constants are related to basic interaction of the particles and in
case of pairwise additive interaction potentials, results for high-frequency elastic constants are obtained
in terms of pair correlation functions g(r) within simplest approximations. Our main focus here is on the
structural aspects and we model them in terms of simple two-body interaction potentials.

We focus on two properties of the soft colloids, depicted above, i.e., the fragility and short time elastic
response in the soft matter. Relating fragility of a glass-forming system to the interaction potential [16–
18] has been a topic of much interest. Theoretical studies using landscape paradigm [19, 20] of a many
particle system have also been made to further understand this link. Microscopic models for the glassy
state, based on either thermodynamic [21–23] or dynamic approach [24–26] simply assume the solid-like
properties for the amorphous state. In the thermodynamics based formulation, the metastable states of a
disordered solid are described [27, 28] in terms of localized density profiles which also signify vibrational
modes [28, 29]. For dynamical models, solid-like behavior for the non-ergodic amorphous state [30] is
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manifested through introduction of Goldstone type modes [24, 31, 32]. Correlations between fragility
and elastic properties of glassy systems is also observed in the studies involving the non-ergodicity
parameter [33], the bulk and shear moduli [34–37], and the strength of the boson peak [25, 38]. Both of
the above two theoretical descriptions of the amorphous state, include the static structure factor which
plays a key role in understanding the elastic and dynamic properties.

Reference [13] made an important observation that the data on soft colloids produce a plot similar to
what is known as Angell-plot for molecular systems. The present work makes a quantitative analysis of
these data through an explicit definition for fragility index m in terms of density dependence, extending
the corresponding formula of m for molecular systems in terms of temperature dependence. Thus, we
are able to charactaerize each soft colloid material with a value of m. We also identify the optimum
parameters for interaction for the corresponding solft colloid materials by fitting the experimental data
for shear modulus G with the formula obtained using basic statistical mechanics. The bulk modulli B is
obtained for the same interaction by evaluating the corresponding formulae for the same that follows from
themodel used forG. Thus, Poisson’s ratio ν for eachmaterial is also calculated. This makes it possible for
the present analysis to also study the frequently studied correlation between the fragility m and Poisson’s
ratio ν, and this observed correlation is found to be qualitatively contrary to the corresponding result for
molecular systems. This new aspect of the “Angell Plot” is something we obtain from our analysis here.
In our view, this apparent reversal of the trends in correlations between ν and m does not present any
contradiction and can also be a consequence of this new type of plots and the corresponding definition of
the fragility index as explained above. The paper is organized as follows. In the next section, we discuss
the calculation of fragility index from the relaxation curves for the soft colloids. In section III we discuss
the theoretical models for short time elastic coefficients in terms of the static correlations. We briefly
describe here the input static correlation functions and how the latter is controlled by parameters of the
soft sphere interaction potentials. In section IV we discuss the comparison of elastic coefficient data
for different colloids and link them to the corresponding fragility parameters. We end the paper with a
discussion of results and indicate the limitations of our conclusions.

2. Angel plot: fragility index

In the present paper the two basic properties for soft colloid materials on which we focus our analysis,
are respectively the fragility index related to the long-time relaxation behaviour and the Poisson ratio
related to the high-frequency or equivalently short-time elastic response of the soft matter. In the present
section, we discuss the calculation of the first quantity, i.e., the fragility index, using the Angell plot of
the relaxation data reported. In the next section we consider the model for high frequency or short-time
elastic constants.

2.1. Angel plot for soft colloids

To compute the fragility index for a soft colloid material, we analyze the density dependence of the
relaxation time τα by plotting (on a log scale) the relaxation time with respect to the concentration ζ ,
introduced in the previous section. This so-called Angell plot [1, 2, 39, 40] was shown in figure 1b of [13]
for three different soft colloids, by showing the respective log10 [τα/τ0] vs the relative concentration ζ/ζg.
For discussions of the present work, we refer to the three different soft colloid materials considered here
as SC-I, II, and III, respectively. In the Angell plot, the relaxation curves for three respective materials
meet at a single point ζ/ζg ≡ x = 1. The so-called glass transition point ζg was already defined in the
previous section with the relation (1.1) and in the present case the growth in relaxation time is B = 5.
Assuming that each of the respective relaxation curves for the soft colloids SC-I, II, and III follows a
Vogel-Fulcher-like form, the variation of τ with ζ is written as

τα = τ0 exp
[

Aζ
ζK − ζ

]
. (2.1)

The concentration ζK signifies divergence of the relaxation time and is often identified with the Kauzmann
point for a glass-forming material. The fragility index for the soft colloids is defined by a relation similar
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to equation (1.2) for molecular systems.
With the above definition of the fragility, using the relations (1.1), and (2.1) we obtain the relation:

m =
Bκ

κ − 1
. (2.2)

κ = ζK/ζg is the ratio of respective concentrations ζ at the so-called Kauzmann point, signifying the
divergence of characteristic relaxation time, to the value of ζ at the glass transition point. Equation (2.1)
for the relaxation time can now be presented in the form:

log10

[
τα(x)
τ0

]
= Bx

κ − 1
κ − x

. (2.3)

For a chosen B characterizing the Angell plot, the parameter κ attains a specific value corresponding
to each relaxation curve, to obtain the τα(x) vs x behaviour for the respective soft-colloid materials in
the Angell plot. Using κ in the relation (2.2) we obtain the fragility of the corresponding material. The
fragility also depends on the chosen value for the constant B. For soft colloids this number is generally
smaller than that for a molecular liquid.

2.2. Fragility index for the soft colloids

The relaxation times data for the three samples as obtained from figure 2b of [13] are shown in table 1.
The range of concentrations ζ over which the relaxation time data are provided for the three respective
soft-colloid systems-I, II, and III, are distinct from each other. Relaxation behavior for each of the three
materials is shown in figure 1 with respect to relative concentration. The three curves by construction
meet at the same point on the y axis at x = 1. It should also be noted that the relaxation curves in the
Angell plot do not exactly meet at one point in the low-density side, though it might visually appear
to be so in figure 1. On a linear scale, it appears to be at x = 0, though in reality these represent very
small (nonzero) values of the packing fraction. The set of points representing τα(x) vs x = ζ/ζg for the
respective soft colloids are fitted the Vogel-Fulcher formula in the form (2.3). Each of the relaxation
curves corresponding to the three materials I, II, and III is characterized by a corresponding set of values
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Figure 1. The Angell plot with the relaxation data for three soft colloid materials I, II, and III from [13],
shown with filled circles, squares, and triangles, respectively. Fits with the form (2.1) in text for B = 5
and different choice for κ = ζK/ζg are shown with solid lines. Corresponding κ values are listed in table 2,
column 6.
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Figure 2. Pair correlation function g(r) vs r/σ, for the three soft colloids I, II, and III (main panel
and the two insets) interacting through a) soft sphere (solid) potential defined in equation (3.14) and
b) Hertzian interaction (dashed) potential defined in equation (3.12). Parameters for the respective
interaction potentials are given in table 4 and table 5 for the three soft colloids. The circles in each
figure represent g(r/σ) calculated from molecular dynamics simulation of soft spheres with interaction
parameters {n, ε∗} as {12.1, 0.571}, {5.5, 2.340} and {3.1, 1.440}, respectively, for soft colloids I, II, and
III. In all three cases the relative concentration is ζ/ζ∗ = 0.837.

for {A, κ} with the value for parameter B kept fixed at 5. We find that these two parameters follow
a linear fit A = 4.92κ − 4.88. The corresponding fragility indices m were obtained from the slope of
these curves at the end point, i.e., ζ = ζg. The ratio κ = ζK/ζg for each curve and the corresponding
fragility for the three respective soft colloids obtained this way are listed in table 2. The present scheme
of determining fragility of the soft colloids only works for those materials corresponding to which the
relaxations curves follow the form seen in an Angell plot, with a chosen value of the parameter B (which
defines the so-called glass transition point ζg). Thus, if the relaxation does not follow this form for certain
materials, such definitions for fragility do not work. To compare the relative trends in these results with
respect to standard molecular glasses, in table 3 we show the fragility m and the ratio Tg/T0 for three
standard glass-forming materials, Salol, Glycerol and Silica [3] respectively. Here T0 is the temperature

Table 1. Relaxation time data τ from figure 2b of [13] in log scale vs the scaled concentration ζ̄ = ζ/ζg
(see text) for the three soft colloids SC-I, SC-II, and SC-III.

SC- I SC- II SC- III
ζ̄ τ ζ̄ τ ζ̄ τ

0.016 -2.972 0.016 -2.950 0.016 -2.892
0.188 -2.872 0.154 -2.596 0.101 -2.462
0.449 -2.570 0.404 -1.899 0.207 -1.952
0.633 -2.170 0.509 -1.461 0.304 -1.406
0.798 -1.507 0.816 0.273 0.460 -0.610
0.904 -0.447 0.890 0.904 0.588 -0.029
0.975 1.223 0.960 1.547 0.892 1.442
1.000 2.000 1.000 2.000 1.000 2.000
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Table 2. The ratio κ = ζK/ζg, obtained from the relaxation curves and the corresponding fragility m for
the three respective soft-colloids I, II, and III studied in [13].

Soft-Colloid The ratio κ = ζK/ζg Fragility m
I 1.11 52.0
II 1.70 12.1
III 18.76 5.3

Table 3. The ratio of the characteristic temperatures Tg and TK, fragility m of the three standard molecular
glass forming materials, are taken from [3]. The trend is similar to that between the ratio κ and fragility
m as shown in the last two columns of table 2 for the soft colloids.

Molecular Glass The ratio Tg/TK Fragility m
Salol 1.13 66

Glycerol 1.34 48
Silica 3.26 25

in the Vogel-Fulcher formula τα = τ0 exp[A/(T − T0)] signifying the divergence of relaxation time and
it is determined for the three materials listed above from the relaxation data presented in [36]. The
temperature T0 is considered similar to the Kauzmann point TK for a glass forming material. Comparing
the results listed in table 2 with that of table 3 we note that with respect to fragility m, variation of ζK/ζg
in a colloidal glass is similar to that for Tg/TK in molecular glass formers. Hence, the trends seen in
standard glass forming materials is the same as that for soft colloids.

3. High-frequency elastic constants

In this section, we consider the theoretical models for high-frequency or short time elastic constants
for the soft colloids and the computation of these properties in terms of the pair correlation function.
As a test, the input pair correlation function g(r) is obtained in the present work with the choice of two
different interaction potentials for the soft colloids.

3.1. The model

The Mountain-Zwanzig [15, 41, 42] theory calculates these quantities in terms of the interaction
potential. Instantaneous response to stress in the disordered state is related to the corresponding frequency
dependent viscosities [43]. Thus, the shear and bulkmodulus are obtained from the generalized viscosities
in the high-frequency limit and is denoted as G∞(ζ) and K∞(ζ) in what follows. The high-frequency
limits of the respective elastic constants are obtained as

G∞ = i lim
ω→∞
{ωη(ω)}, (3.1)

K∞ = K0 + i lim
ω→∞
{ωηV (ω)}, (3.2)

where η(ω) and ηV (ω) are respectively the frequency-dependent shear and bulk viscosities for the fluid.
K0 is the zero frequency bulk modulus obtained in terms of the adiabatic derivative

K0 = −V
(
∂P
∂V

)
s

. (3.3)

For pairwise additive form of the interaction potentials, the total potential energyU is expressed as a sum
of two body terms and the averages on the right hand side of equations (3.1) and (3.2) are expressed in
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terms of pair correlation function g(r) [44].

G∞ = ρ0kBT +
2π
15
ρ2

0

∞∫
0

drg(r)
d
dr

[
r4 du

dr

]
, (3.4)

K∞ =
2
3
ρ0kBT + P +

2π
9
ρ2

0

∞∫
0

drg(r)r3 d
dr

[
r

du
dr

]
, (3.5)

where ρ0 is the density and P is the thermodynamic pressure for the simple model considered here and
is identified with osmotic pressure for colloids. The latter is obtained with the standard expression [44]

P = ρ0kBT −
2π
3
ρ2

0

∞∫
0

drg(r)r3 du
dr
. (3.6)

The Poisson’s ratio has often been linked to relaxation behavior of a glass-forming system [36, 45–
47, 50, 51]. The Poisson ratio ν for the soft colloid material is defined in terms of the ratio of the elastic
constants µ = K∞/G∞ as,

ν =
3µ − 2

2(3µ + 1)
. (3.7)

In this paper, we consider the elastic response of the soft colloids over short times or equivalently,
in the high-frequency limit. For this analysis, we use the data for three soft colloids in terms of the
shear modulus Gp(ζ) evaluated at frequency ωp. This frequency signifies the time scale of local particle
motion. We identify the latter with short time or high-frequency response of the soft-colloid material
and compare it with the corresponding high-frequency elastic constants obtained from the theoretical
models based on microscopic statistical mechanics. The observed behaviours of the data of the elastic
constant Gp for the three respective soft-colloids are also reported [13] to be qualitatively similar to
that of the high-frequency shear modulus G∞ for a set of glass forming (molecular) liquids. Hence, we
use the simple model outlined above for the high-frequency elastic constant of a liquid in terms of the
pair correlation function g(r). We calculate both high-frequency shear modulus G∞ and bulk modulus
K∞, respectively, for the soft colloids. The short-time elastic response of the liquid is described above
with equations (3.4)–(3.7) in which the corresponding pair correlation functions are obtained using the
microscopic two-body interaction potential as input. This also makes it possible to obtain the Poisson’s
ratio ν for the respective materials. Using the expressions on the right hand side of equations (3.4)–(3.6)
we obtain the two elastic constants as follows:

G∞ = 1 + I1 + I2, (3.8)
3
5

K∞ = 1 + I1 − I2, (3.9)

where the integrals I1 and I2 are obtained as functionals of the pair correlation function g(s) and the
dimensionless form of the interaction potential βu(r) ≡ ū(s) as follows:

I1[g, ū] =
4
5
ζ

∞∫
0

dsg(s)s3 d
ds

[
s

dū(s)
ds

]
, (3.10)

I2[g, ū] =
12
5
ζ

∞∫
0

dsg(s)s3 dū
ds
. (3.11)

In the above definitions, the radial distribution function g(s) is expressed in terms of radial distance r
being scaled with a characteristic scale of length σ for the chosen interaction potential. The energy u is
scaled with kBT = β−1. Note that the data reported in [13] are only useful for comparison of the shear
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modulus G∞(ζ). As indicated above we consider here two possible bare interaction potentials to model
the soft colloid materials. The characteristic parameters for the corresponding interaction potential are
adjusted to fit the shear modulus data. The two interaction potentials and calculation of the corresponding
pair correlation functions in the respective cases are briefly sketched below.

3.2. The interaction potentials

The two-body interaction potentials respectively used to model the soft colloids are as follows.
1. The Hertzian potential: Interaction between the colloid particles is given by

u(r) = ε0

(
1 −

r
rHz

)5/2
, (3.12)

in terms of two positive parameters {ε0, rHz}. The length rHz represents a characteristic length scale at
which the interaction potential u(r) becomes zero and is used as an adjustable parameter for the potential.
The potential energy u(r) is expressed in units of kBT as ū(s) in terms of the scaled variable s = r/σ,
where σ is the length scale with which we define the concentration variable as ζ = πσ3/6.

ū(s) = ε∗0

(
1 −

s
sHz

)5/2
, (3.13)

where sHz = rHz/σ. The energy scale ε0 in units of kBT , is obtained as ε∗0 = ε0/(kBT).

2. The soft sphere interaction. The potential [52, 53] is given by,

u(r) = ε0

(σ
r

)n
, (3.14)

in terms of two positive parameters {ε0, n}. σ represents a characteristic microscopic length for the
interaction potential. The soft sphere potential defined in equation (3.14) is written in units of kBT using
the scaled variable s = r/σ as,

ū(s) =
ε∗0
sn
, (3.15)

where ε∗0 = ε0/(kBT). In the n→∞ limit, the soft sphere potential reduces to the hard-sphere limit with
the hard-sphere diameter d≡σ, and the concentration variable ζ = πρσ3/6 becomes identical to the
packing fraction φ. For finite n, we have soft spheres which are identified with the deformable colloids.

The well-known Bridge function method is used to compute the pair correlation g(s) for each of
the above two types of interaction potentials. These are briefly described in Appendix A. In the soft
sphere potential case, the pair function is calculated using two equivalent approaches. First, we show
the theoretical results obtained from the bridge-function method of Rodger and Young [54]. Second, the
static correlations are obtained through a direct computer simulation of the corresponding fluid. As an
example, in the main panel of figure 2 we show the respective g(r) vs r/σ for all the three materials
studied at ζ/ζ∗ = 0.837. The main panel shows the results for soft-colloid material I, while the two insets
show the same respectively for soft colloids II and III. In each case of the main panel and the insets of
figure 2, we show the g(r) both for the Hertzian potential and for the soft spheres at the same value of
ζ/ζ∗. The plot of ū(s) vs s for the soft sphere potentials corresponding to the three materials I, II, and
III is displayed in the main panel figure 3. The same results for the Hertzian potential are shown in the
inset of figure 3. In table 5, for each of the respective soft colloid materials I, II, and III, we compare the
lengths sHz for Hertzian potential and the sizes (R0) of the corresponding spheres[13].

4. Fragility vs elasticity

The relaxation and elastic properties for soft colloids are analyzed to determine their correlations as
supported from experimental data. The high-frequency shear moduli G∞ for three soft colloid materials
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Figure 3. The soft sphere potential ū(s) vs s = r/σ with the characteristic parameters for interaction listed
in table 4 for soft colloids I (solid), II (dashed), and III (dot-dashed), respectively. The inset shows the
plot of the corresponding ū(s) vs s for the Hertzian potential having characteristic parameters listed in
table 5.

Table 4. The list of parameters for the soft-sphere potential defined in equation (3.14) needed for fitting
the data of three soft colloids I, II, and III. The parameter ζ∗ (column 3) is obtained through fitting the
elasticity data as shown in figure 4–figure 6 (see text). The parameters for the corresponding soft sphere
potential: energy ε∗0 = ε0/kBT (column 4); softness index n(column 5); κ (column 6) is the ratio of the
packing at the glass transition point (ζg) to ζ∗ (see text); m (column 7) is the fragility index.

Soft Colloid Data Range of Parameter energy softness ζg/ζ
∗ = Fragility

material Concentration ζ ζ∗ ε∗ n κ m
I 0.300-0.540 0.500 0.571 12.1 1.11 52.0
II 0.264-0.400 0.100 2.340 5.5 6.65 12.1
III 0.270-0.430 0.054 1.440 3.1 12.46 5.3

Table 5. The list of parameters for Hertzian potential defined in equations (3.12)–(3.13) needed for fitting
the data of three soft colloids I, II, and III. ζ∗ (column 3) is obtained through fitting the elasticity data as
shown in figure 4–6 (see text). The parameters for corresponding Hertzian potential : energy ε∗0 = ε0/kBT
(column 4); sHz (column 5) is the length at which the potential ū(s) is zero. The length R0 (column 6)
denotes the radius of the deformable spheres for the three respective soft colloids as reported in [13].
The lengths sHz, and R0, are scaled so that for material I, these quantities are unity by choice. Finally, m
(column 7) is the fragility of the soft colloids shown here for comparison.

Soft Colloid Data Range of Parameter energy range Radius Fragility
studied Concentration ζ ζ∗ ε∗0 sHz R0(A) m

I 0.300–0.540 0.50 287 1.00 1.00 52.0
II 0.264–0.400 0.10 198 0.98 0.97 12.1
III 0.270–0.430 0.054 17.6 0.96 0.84 5.3

are fitted with the formulae presented in equations (3.8)–(3.11). The pair correlation function g(s) is the
key input in this and is determined by the interaction potential between the colloidal particles. Note that
for the soft sphere potential in the form, ū(s) ∼ s−n, the two integrals I1 and I2, respectively obtained
in (3.10) and (3.11), are related simply as I1 = −(n/3)I2. In this case, the elastic constants G∞(ζ)
and K∞(ζ) given in equations (3.4)–(3.5) respectively reduce to the forms G∞ = 1 + ∆(n − 3)/5, and
K∞ = 5/3 + ∆(n + 3)/3, in terms of ∆ = P − 1. For n > 3, G∞ decreases with an increase of P, and is
requred for stability.
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Figure 4. Main panel: Theoretical results for shear modulus G∞(ζ) in units of ρ0kBT vs scaled concen-
tration ζ/ζ∗ (see text). We use equation (3.8) with structural inputs of g(r) obtained from (i) the bridge
function method for soft sphere interactions(solid line); (ii) molecular dynamics simulations with soft
sphere interactions (dot-dashed); and (iii) the bridge function method for Hertzian potential (dashed).
Comparison with shear modulus data for Gp(ζ) for soft colloids I taken from figure 3b of [13]; data scaled
with a material-dependent factor for each system: filled circles are connected with the dotted line. Insets:
theoretical results from equation (3.9) for bulk modulus K∞(ζ) in units of ρ0kBT vs scaled concentration
ζ/ζ∗, with the same input g(r) as obtained from fitting the shear modulus data for the material shown in
the corresponding main panel: for soft sphere potential (solid line) and Hertzian potential (dashed line)
bridge function method.
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Figure 5. The same as figure 4 for soft colloid II of [13]

For the Hertzian potentials defined in equation (3.13), the shear modulus data are fitted by adjusting
parameters, {sHz, ε

∗
0 }, while for the soft sphere potential defined in (3.15) the corresponding parameters

are {n, ε∗0 }. The results are listed in tables 4 and 5. For a particular soft colloid material (I, II, or III),
the parameter values corresponding to a chosen interaction potential (respectively being Hertzian or
soft-sphere) are kept fixed while fitting the shear modulus data for that material over the whole range
of density values. We obtain the respective set of parameters for the interaction potential so that the
corresponding pair functions g(s) in the theoretical formulae produce the best fit with the G∞ data
over the whole density range studied for a particular soft colloid material. With a suitable choice of
the parameter ζ∗ for each case, we match the Gp(ζ) data for the three materials. Corresponding to the
specific set of parameter values for the potential ū(s), the pair functions g(s) (at different densities) fit the
shear moduli Gp(ζ) data. In figure 4–figure 6, we show the comparison between experimental data for
G∞ of the three respective soft colloids with the corresponding theoretical results obtained using a) the
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Figure 6. The same as figure 4 for soft colloid III of [13]

Hertzian and b) the soft sphere interaction potentials. Next, the same g(r) in each respective case is used
to obtain the corresponding bulk modulus K∞(ζ). This procedure is followed for each of the three Soft
colloids, using the formulae (3.5), (3.9), and (3.10)–(3.11). The bulk moduli K∞ obtained for the three
samples SC-I, II, and III are shown respectively in the insets of figure 4–figure 6. For all three materials
I, II, and III, the bulk modulus obtained for the Hertzian potential case is lower than the corresponding
results for the soft sphere potential. In figure 7 we show how the ratio µ = K∞(ζ)/G∞(ζ) changes with
concentration ζ for the three soft materials in I, II, and III. Since the ratio µ is material dependent, it is
not very sensitive to an increase of the concentration ζ .

The optimum parameter values for the respective interaction potentials, obtained by matching shear
modulus data with the theoretical formula (3.4), signify a particle size for the respective materials and
correlate corresponding radii R0. The cutoff length sHz of the Hertzian potential, and R0, are shown in
table 5. The results shown are scaled so that for material I, these quantities are unity. The respective
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Figure 7.The ratio µ = K∞(ζ)/G∞(ζ) vs ζ/ζ∗ for the threematerials : I, II, and III. The results correspond
to the calculation done with g(r) for soft sphere potential (solid) and Hertzian potential (dashed) in each
figure.

13602-11



A. Mondal, L. Premkumar, S.P. Das

0 20 40 60
m

0

2

4

6

G
p

Figure 8. The plot of the shear modulus Gp vs fragility m for the three soft colloids I, II, and III (see text).
Data taken from figure 3a of [13] and scaled with a factor of σ̃3/(kBT). Here σ̃ = 0.1R0 (see text).
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Figure 9. The plot of the Poisson’s ratio ν vs the fragility m for the three materials studied in the present
work, for the soft sphere potential (solid) and Hertzian potential (dashed).

variations of sHz and R0 with the fragility m of the three soft colloids I, II, and III show the same
qualitative trend. Similarly, the softer is the potential, the lower is the value of m. With the soft sphere
potential, for increasing values of softness index n, the fragility m increases. This also agrees with the
view that hard-sphere systems (n → ∞) are most fragile. In figure 8 we present how the shear modulus
for the respective three soft colloids I, II, and III correlates with the corresponding fragility values. This
figure presents a plot of G∞ (expressed in units kBT/σ̃3) at ζ = ζg vs the fragility m for the corresponding
material. The experimental shear modulus data displayed here are taken from figure 3a of [13] and these
form the common basis for finding the optimum parameter values for both types of potentials. The trend
of correlation of m with G∞ is shown here is similar to that of the Poisson’s ratio which we discuss next.
We calculate the Poisson’s ratio ν using the formula equation (3.7) at the glass transition point ζ = ζg. In
figure 9 a plot of ν at the glass transition point ζg with respect to the corresponding value of the fragility
index m is shown for both types of interaction potentials.

In all cases, corresponding to both types of interaction potentials, soft sphere repulsive and Hertzian,
the Bulk modulus is larger than the corresponding shear modulus. However, for the soft sphere interaction
case, the ratio is much larger and hence the Poisson ratio remains close to 0.4 ∼ 0.5. For the Hertzian
potential, the difference between bulk and shear moduli is less pronounced and hence the variation in
Poisson’s ratio is wider. The qualitative trends for correlations of either G∞ or ν with the fragility is
observed to be same. For the sake of comparison, figure 10 shows the correlation between the same
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Figure 10. The plot of the Poisson’s ratio ν vs the fragility m for the three molecular glass formers. In the
increasing order of fragility (m) these are Silica, Glycerol, and Salol taken from [55]. The results in each
case are shown as points and the lines are a guide to the eye. The trends of the data are opposite for the
molecular systems and soft colloids.

quantities, ν and m in molecular systems. Here, the results for three standard molecular glass-forming
systems [13] as taken from the literature [36, 37, 55] are displayed. In soft colloids, Poisson’s ratio ν
varies with respect to m in a manner which is opposite to what is observed in molecular glass-forming
systems. These opposing trends are discussed further in the next section.

5. Discussion

The static and dynamic behaviours of colloidal hard-sphere systems [56–58] have similarities with
those seen in molecular liquids. Experimental studies of Mattsson et al. [13] demonstrated that even
deformable colloidal suspensions exhibit the dynamical behaviour qualitatively similar to a fluid of non-
deformable spheres. Relaxation times growwith concentration (ζ) of constituent particles in a soft colloid
material and the concept of fragility is directly extended to suspensions of deformable colloidal particles
in terms of density. We identify each of the relaxation curves displayed in the so-called “Angell-plot”
with a corresponding set of parameters for a (chosen) type of two-body interaction-potential. We do
this by fitting the short time (high-frequency) shear modulus data [13] for the respective materials using
theoretical formulae involving pair correlation function g(r) for the system. The appropriate g(r) for each
soft-colloid is chosen by adjusting the parameters for interaction potential. We have chosen in our study
the Hertzian potential as well as soft sphere potential. For the same pair potential, the bulk moduli K∞(ζ)
are calculated in each case and hence the Poisson’s ratio is calculated.

It will be useful to pinpoint the key approximation involved in the simple model for the soft colloids
as we presented here. The system of deformable soft spheres is modelled here in terms of a system
of microscopic particles interacting through a bare two-body potential. For the latter, we have made
the simplest possible choices, namely soft sphere and Hertzian types. Thus, the deformable property of
the spheres is mapped in terms of the softness of respective interaction potentials, characterized by the
corresponding strength and range for each system. The elastic constants or pressure, respectively given
in equations (3.4)–(3.5), and (3.6) are expressed in terms of the two point pair correlation function g(r)
for the corresponding interaction potential. With the appropriate choice of interaction parameters in the
respective cases, obtained by fitting the shear modulus data, the number density or concentration ζ is the
key variable in the theoreticalmodel. In the present workwe approximate the pair correlation function g(r)
with a simple form for an isotropic system with uniform density. Hence, g(r) depends on the parameters
of interaction potential and the average number density. A system of deformable spheres in reality may
have a nonuniform state and the pair correlation function g(r) will have to account for the concentration
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dependent change and local packing in a self-consistent manner. This will be a way of accounting for the
variations in the size of particles due to the local pressure. A self-consistent formulation of pair function
in terms of local density, going beyond the simple isotropic form g(r) used here for uniform density state,
will be needed to make a model for the long-time dynamics of the soft colloid materials. In the present
context, we use the simplest model for the short-time behaviour of the soft colloid materials.

The correlation observed here linking the fragility m and softness index n or the Poisson’s ratio ν in
the glass forming system, is based on the analysis of experimental data as well as on the use of simple
models. The theoretical model which links the interaction potential to elastic constants in this work, was
originally proposed by Zwanzig and Mountain to explain the short time elastic response of the liquid in
terms of the interaction potential. Deductions of these formulae for the elastic constants do not require
explicit models for the dynamics for the soft colloids since the theory primarily focuses on the short
time or high-frequency elastic response of the liquid. Time correlation functions in the Green-Kubo
expressions for the viscosity are only calculated here in the infinite frequency or zero time limit and
hence one is dealing with only static correlations. For the time-dependent behaviour or finite frequency
response of soft materials valid over different time scales, modelling of the dynamics [59] would be
needed. For the long time elastic response in a frozen state, mode coupling contributions [60] coming
from nonlinear coupling of density fluctuations [61] are important. For the Brownian dynamics of the
soft colloid particles, the relaxation times observed here are long and it indicates that strongly cooperative
motions occur. The glassy dynamics in soft colloids was studied using a microscopic model, such as
the mode coupling theory (MCT) [62, 63]. In analogy with these models, we have chosen soft repulsive
spheres in our theoretical analysis while comparing with experimental data.

For models in which interaction between colloid particles is chosen to be soft sphere potential, the
relaxation data indicate the lowering of the fragility index m with decreasing values of softness index
n. A similar dependence of the softness of interaction potential on the fragility of an atomic system
was obtained using numerical studies of binary Lennard-Jones systems [20]. This trend, however, is not
universal. In some simulations of binary mixtures [64], the fragility was even reported to be independent
of softness of the potential. Temperature dependence of the diffusion coefficients for various n collapses
in this case onto a universal curve. Thus, as concerns the link between fragility and softness index,
our findings do match with some, but not all, numerical results obtained in case of molecular systems.
It is also worth to note here that the fragility for a molecular system is defined with the slope of the
corresponding relaxation curve in the Angell-plot at T = Tg. In the present work, following [13], fragility
is calculated through density dependence, at ζ = ζg. Correlation between the Poisson’s ratio and fragility
was found [32, 37, 45–50, 65] to be non-universal even within only molecular systems. Thus, while there
exist a fundamental link between fragility and elasticity through the basic interaction potential, and the
underlying structure of the liquid influences its long time dynamics, and the observed correlation between
m and ν demonstrated in the present work is still at the level of a hypothesis.

From a theoretical perspective, the observed link between the fragility of a metastable liquid and its
elastic coefficients is a manifestation of structural effects on the dynamics of a many-particle system.
The elastic response of the fluid approaching the glass transition signifies a solid-like behavior. Fragility
index, on the other hand, is related to the relaxation process in the liquid state near the so-called glass
transition point. Developing a common basis for both elasticity and fragility involves understanding the
process of a rigidity-transformation of the metastable liquid into an amorphous solid-like state [66]. The
success of basic theoretical models in comprehending this transition is only partial so far.
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A. The pair-correlation function

In this Appendix we very briefly describe the standard procedure followed for calculation of the pair
correlation functions for the chosen interaction potentials.

A.1. The Bridge functions for pair correlation

We use here the bridge function method of standard liquid state theory to obtain g(r) for a soft sphere
system with the chosen values of the parameters n and ε∗0 . We also compute the static functions through
direct molecular dynamics simulations for the chosen soft sphere potential. We briefly outline here the
bridge function method as well as the simulation approach which we follow to compute the pair function
g(r). The total correlation function for the fluid is defined as, h(r) = g(r) − 1. The direct correlation
function denoted as c(r) [44] is linked to h(r) by Ornstein-Zernike (O-Z) relation

h(r) = c(r) +
∫

h(r − r ′)c(r ′)dr ′. (A.1)

The set of equations for c(r), h(r) are closed by choosing a closure relation through the introduction of a
bridge function B(r). The closure equation is chosen in the form

y(r) = eh(r)−c(r)+B(r), (A.2)

where y(r)=g(r) exp[u(r)/(kBT)] and B(r) is the bridge function introduced in defining the closure. To
construct B(r), various approximations have been devised in the literature. For soft sphere potentials,
a successful approach is the Rodger-Young bridge function [54, 67]. We solve the O-Z equation (A.1)
numerically with the Rodger and Young closure. The corresponding results for g(r) obtained agree well
with the same quantity calculated using computer simulation. Our results show that the elastic properties
are very sensitive to the pair function.

In the computer simulations, we study a system of particles interacting via inverse power law potential
given by equation (3.14). We set a cut off of the potential at rcut = 2.5σ and study the dynamics of one
thousand particles. Using the molecular dynamics simulation, the equilibrated samples are generated for
different state points. The potential parameters are adjusted to obtain the g(r) that provides, through the
formula (3.8), the best fit to the shear modulus data reported in [13]. The equilibrated samples are initially
generated for different state points at n = 12.1, T∗ = 1.75; n = 5.5, T∗ = 0.43; and n = 3.112, T∗ = 0.639
using Nosé-Hoover thermostat at constant NVT. By evolving further, using NVE integrator, for each state
point at least 100 independent samples well separated by the structural relaxation times are obtained.
The time step used throughout the simulation is 0.001 in Lennard-Jones time units. In all the three state
points, we find that the systems do not crystallize as shown by the pair correlation function. The pair
correlation function is calculated by averaging over independent samples.
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Кореляцiя мiж кiнетичною крихкiстю i коефiцiєнтом

Пуассона на основi аналiзу даних для м’яких колоїдiв

A. Мондал1, Л. Премкумар1,2, С.П. Дас1
1 Школа фiзичних наук, Университет Джавахарлала Неру, Нью-Делi 110067, Iндiя
2 Фiзичний факультет, Нацiональний технологiчний iнститут Манiпура, Iмфал 795004, Iндiя
Ми розглядаємо зв’язок мiж крихкiстю та еластичнiстю на основi аналiзу даних для набору м’яких коло-
їдних матерiалiв що складається з деформованих сфер, описаних в [Mattsson et al., Nature, 2009, 462,
83]. У данiй роботi проведено кiлькiсний аналiз з допомогою явного визначення iндексу крихкостi m в
термiнах залежностi густини, розширюючи вiдповiдну формулу m для молекулярної системи з точки зору
температурної залежностi. Окрiм цього, данi для високочастотного модуля зсуву для вiдповiдного м’якого
колоїду застосовано до вiдповiдного теоретичного виразу для того самого модуля. Цей вираз для пружної
константи отримано на основi вiдповiдної парної кореляцiйної функцiї рiдини з однорiдною густиною.
Парну кореляцiйну функцiю встановлюють шляхом вiдповiдного вибору параметрiв для потенцiалу взає-
модiї двох тiл для вiдповiдного матерiалу м’якого колоїду. Природа кореляцiї мiж крихкiстю i коефiцiєнтом
Пуассона, що спостерiгається для м’яких колоїдiв, якiсно вiдрiзняється вiд природи молекулярного шкла.
Зв’язок, що спостерiгається мiж крихкiстю метастабiльної рiдини та її коефiцiєнта пружностi, є проявом
впливу будови рiдини на її динамiку. Таким чином, у данiй роботi проаналiзовано данi стосовно м’яких
колоїдiв. За рахунок введення дефiнiцiй зi статистичної механiки, отримано кореляцiю мiж кiнетичною
крихкiстю та коефiцiєнтом Пуассона для м’яких матерiалiв.
Ключовi слова: кiнетична крихкiсть, пружний вiдгук, часи релаксацiї, склування
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