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In this paper, we performed a detailed theoretical study of structural, elastic and electronic properties of two
germanides LuAuGe and ScAuGe by means of first-principles calculations using the pseudopotential plane-
wave method within the generalized gradient approximation. The crystal lattice parameters and the internal
coordinates are in good agreement with the existing experimental and theoretical reports, which proves the
reliability of the applied theoretical method. The hydrostatic pressure effect on the structural parameters is
shown. The monocrystalline elastic constants were calculated using the stress-strain technique. The calculated
elastic constants of the MAuGe (M = Lu, Sc) compounds meet the mechanical stability criteria for hexagonal
crystals and these constants were used to analyze the elastic anisotropy of the MAuGe compounds through
three different indices. Polycrystalline isotropic elastic moduli, namely bulk modulus, shear modulus, Young’s
modulus, Poisson’s ratio, and the related properties are also estimated using Voigt-Reuss-Hill approximations.
Finally, we studied the electronic properties of the considered compounds by calculating their band structures,
their densities of states and their electron density distributions.
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1. Introduction

In the recent years, ternary intermetallic compounds MAuGe (M denoting a rare earth element)
have received an increased scientific attention due to their fascinating structural variety, exceptional
physical properties, and wide range of applications. As a result, many scientific reports were published
on their crystal structures and physical properties [1–4]. Ternary germanides, for example, provide a
wider range of interest in magnetic susceptibility, electrical resistivity and specific heat [4]. Note that
the physical properties of the MAuGe ternary germanides strongly depend on the nature of the rare
earth element M. According to the authors of the reference [1], the compounds ScAuGe and LuAuGe
are diamagnetic materials and exhibit remarkable physical properties which make them interesting for
possible technological applications.

Pöttgen R. et al. [1] recently reported the experimental preparation of the new germanides MAuGe
(M = Lu, Sc) by melting alloys prepared from their atomic constituents in an arc furnace with the
subsequent annealing at 1070 K. The crystal structures of MAuGe (M = Lu, Sc) compounds were
determined by X-ray diffraction. They show crystal structures derived from the CaIn2 structure-type by
an ordered arrangement of Au and Ge atoms in the In positions. Note that the MAuGe (M = Lu, Sc) have
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crystal structures similar to that of the LiGaGe compound [5, 6]. In addition, the MAuGe compounds
crystallize in the P63mc space group (No. 186) where the Au and Ge atoms form a three-dimensional
(3D)-[AuGe] polyanions of elongated tetrahedra in MAuGe [1]. The frowning degree of the [AuGe]
hexagonal greately depends on the size of the atom M = (Lu, Sc), so that the lattice constant c of the
hexagonal lattice increases systematically with the size of the atom M (M = Lu, Sc). Schnelle et al. [4]
classify theMAuGe (M = Lu, Sc) as weak diamagnetics, and measurements of their electrical resistivities
indicate a metallic behavior for both compounds.

To the best of the authors’ knowledge, no theoretical or experimental study of the elastic properties
of these compounds has been carried out up till now. Certainly, it is very important to get to know the
elastic properties of a material because they provide information on the stability and stiffness of the
material against the externally applied stresses. Due to the close relationships of elastic properties with
other fundamental physical properties, in the present work we performed detailed ab initio calculations
of structural, elastic and electronic properties of MAuGe with M = (Lu, Sc) under the pressure effect.
Note that the measurements of elastic and structural parameters under pressure are generally difficult
to determine experimentally. Therefore, to know the elastic constants and the evolution of the lattice
parameters under the pressure effect is very important in many modern technologies [7]. We hope
that the reported results in this article will be useful for further studies or for possible technological
applications of the MAuGe germanides.

2. Computational details

All quantum mechanics calculations were performed using the pseudopotential plane wave (PP-
PW) method in the framework of the density functional theory (DFT) as implemented in the CASTEP
code (CambridgeSerial Total Energy Package) [8]. In order to calculate the structural parameters and
elastic moduli properties, the exchange correlation energy is treated within the generalized gradient
approximation GGA-PBEsol as parameterized by Perdew et al. [9]. For all electronic total energy
calculations, the valence electrons of the Lu, Sc, Au andGe pseudo-atoms are described by theVanderbilt-
ultra-soft pseudopotential [10]. The Lu 4 f 14 5p6 5d1 6s2, Au 5d10 6s1, Ge 4s2 4p2 and Sc 3s2 3p6 3d1

4s2 orbitals are explicitly treated as valence states. The plane-wave basis set was defined by a plane-wave
cut-off energy of 400 eV, and the Brillouin zone (BZ) integration was performed over the 5 × 5 × 4 grid
size using Monkhorst-Pack scheme [11] for hexagonal structure. The plane-wave basis set and the grid
size were chosen after a convergence test in order to ensure a sufficiently accurate converged total energy,
thus optimizinng the geometry, computing the elastic constants and the electronic structures of MAuGe.
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimization technique [12] was used to determine
the structural parameters of the equilibrium geometries because the (BFGS) method provides a way to
find the lowest energy of the considred cristalline structure. This set of parameters was carried out with
the following convergence criteria: a maximum of an ionic Hellmann–Feynman force within 5 × 10−2

eV/Å, a maximum stress of 10−1 GPa, a maximum displacement of 2 × 10−3Å and a self-consistent
convergence of the total energy of 2 × 10−5 eV/atom. The well-known stress-strain approach [13, 14]
was used to determine the elastic constants by applying a set of a difined homogeneous deformation
with a finite value and by calculating the resulting stresses in the optimized and relaxed structures. The
convergences criteria during the relaxation stage of the internal coordinates were chosen as follows: a
total energy less than 4 × 10−6 eV/atom, a converged forces within 10−2 eV/Å and a maximum ionic
displacement of 4 × 10−4 Å.

3. Results and discussion

3.0.1. Structural properties

The ternary compounds LuAuGe and ScAuGe crystallize in a hexagonal structure type with the space
group P63/mc (No. 186) [1]. The conventional cell of the MAuGe (M = Lu, Sc) germanides contains
two chemical formulae (Z = 2). Therefore, it contains 6 atoms per unit cell as show in figure 1. The M,
Au and Ge atoms occupy the following Wyckoff positions: M=(Lu, Sc): 2a (0, 0, zM), Au: 2b (1/3, 2/3,
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Figure 1. (Colour online) The unit-cell crystalline structure of the MAuGe compounds (M= Lu, Sc).

Table 1. Calculated equilibrium crystal lattice constants (a and c, in Å) and volume (V, in Å3) for the
MAuGe(M=Lu, Ge) compounds compared with the available experimental and theoretical data.

Structural LuAuGe ScAuGe
Parameter Present work Expt.[1] Other Present work Expt.[1] Other

a 4.418 4.377 4.337[4] 4.332 4.382 4.377[15], 4.308[4]
c 7.032 7.113 7.113[4] 6.796 6.845 7.083[15], 6.845[4]
c
a 1.591 1.625 1.625[4] 1.568 1.620 1.618 [15], 1.588 [4]
V 118.8 118.1 118.1[4] 110.4 110.0 -

zAu) and Ge: 2b (1/3, 2/3, zGe), where zM, zAu and zGe are the internal z-coordinates of M=(Lu, Sc), Au
and Ge atoms, respectively. Thus, the MAuGe unit cell is characterized by five structural parameters not
fixed by symmetry: two lattice constants (a and c) and three internal coordinates (zM, zAu and zGe).

As the first step of our calculations, we used the experimental structural parameters in order to
calculate the optimized lattice constants (a and c) and the internal atomic z-coordinates at zero pressure.
The calculated structural parameters of MAuGe, including the equilibrium lattice constants, a0 and c0,
and the internal coordinates, zM0 , zAu0 and zGe0 , using the PP-PWmethod within the GGA approximation
are shown in table 1 and table 2 in comparison with experimental [1] and theoretical data [4, 15].

As can be seen from table 1 and table 2, our calculated equilibrium structural parameters (a0, c0,
zM, zAu and zGe ) are in very good agreement with the existing experimental and theoretical data. The
calculated values of the five optimized structural parameters of LuAuGe (ScAuGe) deviate from the
measured ones by less than 0.93%, 1.13%, 0.01%, 0.01% and 0.01% (0.93%, 1.13%, 0.01%, 0.01% and
0.01%), respectively.Moreover, the calculated andmeasured internal atomic coordinates ofM, Au andGe
atoms of the cell unit are in very good agreement with the experimental and theoretical values [1, 4, 15].
This excellent matching is an indication of the capability of this chosen first-principles method to provide
confidence for the calculations of the elastic and electronic properties of the titled compounds.
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Table 2. Calculated internal atomic coordinates for the hexagonal compounds MAuGe (M = Lu, Ge) in
comparison with experiment.

LuAuGe ScAuGe
x y z x y z

Lu Present 0 0 0.9940 - - -
(2e) Expt[1] 0 0 0.9941 - - -
Sc Present - - - 0 0 0.00124
(2a) Expt[1] - - - 0 0 0.0012
Au Present 0.333 0.666 0.6999 0.333 0.666 0.6999
(2b) Expt[1] 0.333 0.666 0.7000 0.333 0.666 0.7000
Ge Present 0.333 0.666 0.2887 0.333 0.666 0.298
(2b) Expt[1] 0.333 0.666 0.2886 0.333 0.666 0.298

To evaluate the hydrostatic pressure effect on the structural properties (a, c and V) of MAuGe (M =
Lu, Sc), in figure 2 we illustrated in their relative changes X/X0 under pressure, where X represents a, c
orV , and X0 refers to the structural parameter value at zero pressure. The evolution of the relative changes
of each parameter in the considered pressure range was well fitted to a second order polynomial [13]:

X (P)
X0
= 1 + βXP + KP2, (3.1)

where X = a, c or V , βX = − 1
X

dx
dp and K is a constant.
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Figure 2. (Colour online) Pressure dependence of the relative variations of the lattice constants (a and c)
and volume V for the LuAuGe and ScAuGe compounds. The index 0 indicates the structural parameter
value at zero pressure.
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The expressions describing the relative changes of structural parameters a, c and V are as follows:

LuAuGe


a
a0
= 1 − 2.02 × 10−3P + 1.87 × 10−5 P2

c
c0
= 1 − 3.80 × 10−3P + 2.80 × 10−5P2

V
V0
= 1 − 7.60 × 10−3P + 6.83 × 10−5P2

(3.2)

ScAuGe


a
a0
= 1 − 1.90 × 10−3P + 1.80 × 10−5P2

c
c0
= 1 − 3.75 × 10−3P + 2.31 × 10−5P2

V
V0
= 1 − 7.34 × 10−3P + 6.25 × 10−5P2

(3.3)

It can easily be seen from figure 2 that the relative variation of structural parameters decrease when
the pressure goes from 0 GPa to 40 GPa. The estimated values of the linear compressibilities of the
lattice parameters a and c are βa = −2.02 × 10−3GPa−1 and βc = −3.8 × 10−3GPa−1 for LuAuGe and
βa = −1.9×10−3GPa−1 and βc = −3.75×10−3GPa−1 for ScAuGe. We also see that for the two materials,
βc is less than βa which implies that the c/c0 ratio decreases faster than the a/a0 ratio. Therefore, the
MAuGe compounds are relatively more compressible along the c-axis than along the a-axis. It hould
also be noted that the clearly different values of βa and βc reveal a notable compression anisotropy.

The linear (βa and βc) and volumic βV compressibilities obtained from the lattice parameters (a and
c) and volume V , respectively, were used to estimate the bulk modulus B as follows [14]:

B =
1

2βa + βc
, (3.4)

B =
1
βV

. (3.5)

The calculted values of the bulk modulus B using the equations (3.4) and (3.5) are listed in table 3.
The bulk modulus can also be extracted from the fit of the data Energy-Volume (E −V) (Pressure-Volume
(P − V)) by the equations of states EOS of solid materials which describe the variation of the energy
(pressure) as a function of volume. The calculated data (E −V) and (P −V) are very well adjusted to the
following (EOS): Birch EOS [16], Birch-Murnaghan EOS [17, 18], Vinet EOS [19, 20] and Murnaghan
EOS [21] to determine the bulk modulus B and its derivative with respect to the pressure B′. The obtained
results are visualized in figure 3 and figure 4 and tabulated in table 3. We can obseve that there is a good
agreement between different procedures used to evaluated the bulk modulus B. Therefore, these results
constitute a good proof of the reliability for our calculations.

a Calculated from Vinet EOS [20]
b Calculated from Murnaghan EOS [17]
c Calculated from Birch-Murnaghan EOS [18]
d Calculated from Birch EOS [16]
e Calculated from linear compressibilities βa and βc: B = 1/(2βa + βc)
f Calculated from the volumic compressibility βV : B = 1/βV .
In order to fully characterize the pressure dependence of the structural parameters, we studied the

pressure effect on the bond lengths between the following first atomic neighbours: Ge1, Ge2, Au1, Au2,
Lu1, Lu2, Sc1 and Sc2. The pressure effect on the normalized bond lengths L/L0 is plotted in figure 5. L
stands for the bond-length at pressure P, and L0 is its corresponding value at zero pressure.

Table 3. Calculated bulk modulus (B, in GPa) and its pressure derivative B′.

LuAuGe ScAuGe
B 105.38a 100.28b 103.81c 109.36a 105.37b 108.03c

105.45d 113.12e 114.5 f 110.45d 117.23e 118.62 f
B′ 4.96a 4.94b 4.93c 4.75a 4.66b 4.37c

5.02d - - 4.91d - -
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Figure 3. (Colour online) Calculated pressure vs. volume P(V) for the hexagonal compounds LuAuGe
and ScAuGe. The solid lines are the fits of the obtained data to the Vinet (V-EOS), Birch Murnaghan
(BM-EOS) and Murnaghan equations of states (M-EOS).

90 100 110 120 130 140 150 160

-13582.5

-13582.0

-13581.5

-13581.0

-13580.5

-13580.0  Energy    
 B - EOS Fit

ScAuGe

Volume (Å3)Volume (Å3)

 Energy    
 B - EOS Fit

En
er

gy
 (e

V)

LuAuGe

80 90 100 110 120 130 140
-4595.5

-4595.0

-4594.5

-4594.0

-4593.5

-4593.0

-4592.5
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Figure 5. (Colour online) Pressure-dependent variations of the relative bond-lengths in LuAuGe and
ScAuGe materials.

Table 4. The calculated first order interatomic distances (in Å) in MAuGe (M=Lu, Sc).

LuAuGe ScAuGe
Present work Expt[1] Present work Expt[1]

Ge1-Au2 2.626 2.605 Ge1-Au2 2.588 2.576
Ge1-Au1 2.892 2.927 Ge1-Au1 2.731 2.752
Lu1-Ge2 2.931 2.920 Sc1-Au2 2.842 2.835
Lu1-Au2 2.933 2.921 Sc1-Ge2 2.857 2.850
Lu1-Au1 3.283 3.281 Sc1-Ge1 3.213 3.212
Lu1-Ge1 3.286 3.283 Sc1-Au1 3.232 3.231
Lu1-Lu2 3.516 3.557 Sc1-Sc2 3.398 3.423

From figure 5, we observe that a different bond-length as a fuction of pressure in MAuGe compounds
perfectly follows the second order polynomial as shown in equations (3.6) and (3.7). The calculated bond
lengths at zero pressure are listed in table 4 with the available experimental data [1]. From the reported
results in table 4, it can be seen that the Lu1-Lu2 and Sc1-Sc2 bonds are more compressible than the other
bonds, while the Ge1-Au2 bond in the two compounds is the least compressible. Note that our results are
in good agreement with the reported experimental findings [1].
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LuAuGe



(
L
L0

)
Ge1−Au2

= 1 − 2.37 × 10−3P + 1.98 × 10−5P2(
L
L0

)
Ge1−Au1

= 1 − 2.83 × 10−3P + 2.92 × 10−5P2(
L
L0

)
Lu1−Ge2

= 1 − 2.41 × 10−3P + 2.45 × 10−5P2(
L
L0

)
Lu1−Au2

= 1 − 2.01 × 10−3P + 1.80 × 10−5P2(
L
L0

)
Lu1−Au1

= 1 − 3.19 × 10−3P + 2.55 × 10−5P2(
L
L0

)
Lu1−Ge1

= 1 − 2.76 × 10−3P + 1.86 × 10−5P2(
L
L0

)
Lu1−Lu2

= 1 − 3.87 × 10−3P + 3.03 × 10−5P2

(3.6)

ScAuGe



(
L
L0

)
Ge1−Au2

= 1 − 2.42 × 10−3P + 2.06 × 10−5P2(
L
L0

)
Ge1−Au1

= 1 − 2.25 × 10−3P + 2.11 × 10−5P2(
L
L0

)
Sc1−Ge2

= 1 − 2.00 × 10−3P + 1.76 × 10−5P2(
L
L0

)
Sc1−Au2

= 1 − 1.95 × 10−3P + 1.93 × 10−5P2(
L
L0

)
Sc1−Au1

= 1 − 3.06 × 10−3P + 2.04 × 10−5P2(
L
L0

)
Sc1−Ge1

= 1 − 3.01 × 10−3P + 2.24 × 10−5P2(
L
L0

)
Sc1−Sc2

= 1 − 3.75 × 10−3P + 2.32 × 10−5P2.

(3.7)

3.1. Elastic properties

3.1.1. Single-crystal elastic constants

The elastic constants Ci j s are important physical parameters for solid crystalline materials. In partic-
ular, they provide an information on the response of the material when an external mechanical stress is
applied and regarding the nature of the forces acting in solid materials [22]. A crystalline solid material of
a hexagonal symmetry is described by five independent elastic constants, namely C11, C33, C44, C12 and
C13. The calculated numerical values of the five elastic constants at zero pressure are listed in table 5 for
the LuAuGe and ScAuGe compounds. Note that there are no experimental or theoretical results available
in the literature for the elastic constants Ci j s of the MAuGe compounds (M = Lu, Sc) to be compared
with our results. The present work is the first attempt to calculate the elastic constants Ci j s of the titled
compounds.

From the obtained results, we can draw the following conclusions: (i) we observe that C11 is greater
than C44, C12 and C13, which shows that the considered systems are more resistant to unidirectional
compressions than to shear strains; (ii) knowing that C11 and C33 reflect the uniaxial stiffness along the
a and c axes, respectively, the obtained C11 value is greater than that of C33 for the two compounds,
indicating that MAuGe (M = Lu, Sc) are relatively stiffer materials along the a axis than along c axis.
This result agrees very well with the results already obtained by adjusting the relative changes of the
lattice constants a and c as a function of pressure illustrated in figure 2; (iii) figure 6 shows the pressure
dependence of the five independent elastic constants of theMAuGe compounds (M=Lu, Sc) for pressures

Table 5. Calculated elastic constant Ci js (in GPa) for the MAuGe (M = Lu, Sc) compounds.

Compounds C11 C33 C44 C12 C13
LuAuGe 203.92 160.56 57.62 94.46 65.34
ScAuGe 233.70 180.59 58.68 87.53 61.26
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up to 40 GPa. It can be clearly seen in figure 6 that the elastic constants Ci j increases monotonously with
the increasing pressure, and the fit results are given in equations (3.9) and (3.10). (iv) The mechanical
stability of MAuGe compounds (M = Lu, Sc) is verified because the Ci js calculated at zero pressure
satisfy the following mechanical stability restrictions [23]:

C11 > 0, C11 − C12 > 0, C44 > 0, (C11 + C12)C33 − 2C2
13 > 0. (3.8)

Thus, we can assert that the hexagonal MAuGe (M = Lu, Sc) is in a mechanically stable state for
pressure range 0–40 GPa.
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Figure 6. (Colour online) Calculated pressure dependence of the independent elastic constants Ci j s for
MAuGe (M=Lu, Sc). The symbols indicate the calculated values. The lines represent the linear fitting
curves.

The fit results are given by the following expressions for both compounds LuAuGe and ScAuGe,
respectively:

LuAuGe


C11 = 203.92 + 8.27P − 2.5 × 10−2P2

C33 = 160.56 + 5.31P − 8.09 × 10−3P2

C44 = 57.63 + 2.24P − 1.39 × 10−2P2

C12 = 94.46 + 3.72P − 5.59 × 10−3P2

C13 = 65.34 + 3.12P − 2.91 × 10−3P2

(3.9)

ScAuGe


C11 = 233.70 + 8.42P − 3.07 × 10−2P2

C33 = 180.59 + 5.27P − 6.77 × 10−3P2

C44 = 58.68 + 1.77P − 1.04 × 10−2P2

C12 = 87.53 + 3.95P − 1.12 × 10−2P2

C13 = 61.26 + 2.90P − 4.11 × 10−3P2.

(3.10)
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Table 6. Acoustic wave velocities (in m/s) along different propagation directions for MAuGe (M = Lu,
Sc).

System v
[100]
L = v

[120]
L v

[100]
T1

= v
[120]
T1

v
[100]
T2

= v
[120]
T2

v
[001]
L v

[001]
T1

v
[001]
T2

LuAuGe 4104.53 2170.29 2146.13 3594.26 2146.13 2146.13
ScAuGe 4951.50 2772.46 2489.87 4342.29 2489.87 2489.87

Acoustic wave velocities in a material can be obtained from the Christoffel equation [24]. The sound
wave velocities propagating in the [100], [001] and [120] directions in a hexagonal structure can be
calculated using the following relations:

v
[100]
L = v

[120]
L =

√
C11
ρ , v

[100]
T1

= v
[120]
T1

=

√
(C11−C12)

2ρ

v
[100]
T2

= v
[120]
T2

=

√
C44
ρ

v
[001]
L =

√
C33
ρ , v

[001]
T1

= v
[001]
T2

=

√
C44
ρ ,

(3.11)

where ρ is the mass density, T and L stand for transverse and longitudinal polarizations, respectively. The
calculated sound velocities at zero pressure extracted along [100], [120] and [001] directions for MAuGe
(M = Lu, Sc) are listed in table 6

From table 6, we can see for both compounds that: (i) There is a nuance between the values of the
longitudinal velocities along the a-axis ([100]-direction) (v[100]

L =

√
C11
ρ ) and c-axis ([001]-direction)

(v[001]
L =

√
C33
ρ ). The longitudinal wave along the a-axis travels faster than the longitudinal wave along the

c-axis. (ii) We can observe a difference between the values of the longitudinal velocities along the a-axis
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Figure 7. (Colour online) Pressure dependence of acoustic wave velocities for different directions of
propagation in the MAuGe (M = Lu, Sc) compounds. The symbols indicate the calculated results. The
lines represent the theoretical fits by a second-order polynomial.
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(v[100]
L =

√
C11
ρ ) and the transverse velocities along the c-axis (v[001]

T1
= v
[001]
T2

=

√
C44
ρ ), the longitudinal

wave along the a-axis travels faster than the shear transverse wave because the square root of C11 is larger
than C44.

The sound wave velocities propagating in the [100], [001] and [120] directions under the effect
of pressure are shown in figure 7. This figure shows that all these acoustic wave velocities for different
propagations increase with an increase of the pressure and are well adjusted by a second order polynomial
equation for LuAuGe and ScAuGe, respectively:

LuAuGe


V [001]
L = 3588.11 + 56.33P − 0.03P2

V [001]
T1

= 2150.96 + 38.87P − 0.34P2

V [001]
T2

= 2098.16 + 39.75P − 0.29P2

V [100]
L = V [102]

L = 4048.63 + 75.92P − 0.51P2

(3.12)

ScAuGe


V [001]
L = 4363.16 + 62.24P − 0.22P2

V [001]
T1

= 2778.62 + 40.19P − 0.29P2

V [001]
T2

= 2490.99 + 35.36P − 0.29P2

V [100]
L = V [102]

L = 4970.27 + 84.17P − 0.59P2.

(3.13)

3.1.2. Elastic constants for polycrystalline aggregates

The isotropic elastic parameters can fully describe the mechanical behaviour of a polycrystalline
material using one of the three pairs of isotropic elastic parameters: either the bulk modulus B with the
shear modulus G, the two Lamé’s constants λ and µ or the Young’s modulus E with the Poisson’s ratio ν.
Theoretically, the two isotropic elastic parameters B and G of the polycrystalline phase of a material can
be obtained by a special averaging of the individual elastic constants Ci j s of the monocrystalline phase.
The Reuss–Voigt–Hill approximations [25, 26] are the most used. Voigt (BV, GV) and Reuss (BR, GR)
approximations represent the extreme values of B and G for polycrystalline samples. The two isotropic
elastic parameters B and G are expressed for hexagonal systems as follows [23]:

BR =
[(C11+C12)C33−2C2

13]
(C11+C12+2C13−4C13)

BV =
2
9

(
C11 + C12 + C33 +

C33
2 + 2C13

)
GV =

1
30 (7C11 − 5C12 + 12C44 + 2C33 − 4C13)

GR =
5
2

{
[(C11+C12)C33−2C2

13]C44C66

3BVC44C66+[(C11+C12)C33−2C2
13](C44+C66)

}
.

(3.14)

Hill recommends that the arithmetic mean of the Voigt and Reuss limits should be used in practice
as an efficient model for determining the isotropic elastic parameters of polycrystalline samples:{

BH =
BV+BR

2
GH =

GV+GR
2 ,

(3.15)

where BH and GH are the bulk and shear moduli, respectively, of the polycrystalline material according
to Hill’s approximation. The Young’s modulus E and the Poisson’s ratio ν for anisotropic material can
be calculated from BH and GH using the following expressions:{

E = 9BHGH
3BH+GH

ν = 3BH−2GH
6BH+2GH

.
(3.16)

The calculated bulk modulus BH, shear modulus GH, Young’s modulus E and Poisson’s ratio ν are
listed in table 7.

The reported results in table 7 allow us to make the following conclusions: (i) From table 7, it can be
seen that the values of the bulk modulus deduced from the single-crystal elastic constants Ci j s are in the
same order of magnitude as their corresponding values calculated from the fit of the Pressure-Volume
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Table 7. Calculated bulk modulus (BH, in GPa); shear modulus (GH, in GPa); Young’s modulus (E , in
GPa) and Poisson’s ratio (ν) for the hexagonal compounds MAuLu (M = Lu, Sc) obtained using the
single-crystal elastic constants Ci j s. The subscript R, V or H indicates that the modulus was obtained
using the Reuss-Voigt-Hill approximations, respectively.

System BV BR BH GV GR GH BH/GH E ν

LuAuGe 151.02 111.60 131.31 58.61 54.81 56.71 2.35 145.30 0.28
ScAuGe 157.28 114.22 135.75 67.29 62.26 64.78 2.11 168.20 0.26

Table 8. Calculated longitudinal, transverse and average sound velocities (Vl , Vt and Vm, in m/s), mass
density ρ (g/cm3) and Debye temperature (θD, in K) for the hexagonal compounds MAuLu (M = Lu, Sc).

System ρ Vl Vt Vm θD

LuAuGe 12.51 3876.95 2133.22 2377.63 262.15
ScAuGe 9.49 4665.49 2655.50 2951.68 333.09

(P-V) data by different EOS (see table 3). (ii) Young’s modulus E is used to provide a measure of the
stiffness of solids. Its values are 145.30 GPa (168.20 GPa) for LuAuGe (ScAuGe), which indicates the
relatively noticeable resistance of MAuGe (M = Lu, Sc) to uniaxial deformation of compression/traction.
(iii) The empirical Pugh criterion [27] defined by the B/G ratio is used to predict the ductile (B/G > 1.75)
or brittle (B/G < 1.75) nature of materials. The value of the Pugh’s ratios (BH/GH) using the Hill’s
approximation shown in table 7 for both LuAuGe and ScAuGe is greater than 1.75, which suggests that
both MAuGe are ductile. Thus, they will be resistant to thermal shocks. (iv) The Poisson’s ratio ν is
generally related to the volume change in a solid during uniaxial strain [28–30]. From the values of ν in
table 7, the smallest calculated values are 0.28 for LuAuGe and 0.26 for ScAuGe, which shows that a
considerable change in volume can be associated with elastic deformation in the considered materials.

For a complete description of the mechanical properties of MAuGe ( M = Lu, Sc), we also computed
the isotropic longitudinal Vl , transverse Vt and average Vm sound wave velocities using the following
relations [31, 32]: 

Vm =
[

1
3

(
2V−3

t + V−3
l

)]−1/3

Vl =
(

3B+4G
3ρ

)1/2

Vt =
(
G
ρ

)1/2
,

(3.17)

where, B is the bulk modulus, G is the shear modulus and ρ is the mass density. We also estimated the
Debye temperature θD, which is an important physical parameter. The Debye temperature θD is defined
in terms of the average sound velocity Vm as follows [29, 31]:

θD =
h
kB

Vm

[
3n
4π

NAρ

M

]1/3
, (3.18)

where, h and kB are the Planck constant and Boltzmann constant, respectively, NA is the Avogadro
number, ρ is the mass density, M is the molecular weight and n is the number of atoms per unit cell.

The calculated sound velocities (Vl , Vt and Vm) and Debye temperature θD values are reported in
table 8.

From table 8, it is clear that the Debye temperature and the speed of sound of LuAuGe are lower than
those of ScAuGe. The behavior of BH/GH, E , θD, ν, Vl , Vt and Vm under pressure is illustrated in figure 8
and figure 9. From these two figures we can see a quadratic increase for all mentioned parameters with
increasing the pressure.

The resulting polynomial equations of BH/GH, E, θD, ν, Vl , Vt and Vm for the MAuGe (M = Lu, Sc)
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compounds are listed as follows:

LuAuGe



BH
GH
= 2.35 + 5.24 × 10−3P − 8.19 × 10−5P2

E = 145.30 + 5.55P − 0.026P2

θD = 262.15 + 4.58P − 0.036P2

ν = 0.282 + 5.65 × 10−4P − 2.46 × 10−6P2

Vl = 3876.95 + 71P − 0.46P2

Vt = 2133.22 + 37.13P − 0.30P2

Vm = 2377.63 + 41.56P − 0.33P2

(3.19)

ScAuGe



BH
GH
= 2.11 + 1.47 × 10−2P − 4.92 × 10−5P2

E = 168.20 + 5.19P − 0.023P2

θD = 333.09 + 4.96P − 0.034P2

ν = 0.26 + 1.6 × 10−3P − 1.36 × 10−5P2

Vl = 4665.49 + 76.28P − 0.47P2

Vt = 2655.50 + 36.86P − 0.27P2

Vm = 2951.68 + 41.59P − 0.30P2.

(3.20)

3.1.3. Elastic anisotropy

Elastic anisotropiy has an important implication in the engineering science. Recent research shows
that the elastic anisotropy for solid crystals has an influence on microcracks in materials [29, 33] and on
the nanoscale precursor textures in alloys [34, 35]. Different criteria have been developed to describe the
elastic anisotropy of materials. (i) For a hexagonal structure, the anisotropic shear factors A1, A2, and A3
provide a measure of the degree of anisotropy for the bonding between atoms in different planes. For an
isotropic crystal, A1, A2 and A3 should have values equal to unity, while any value other than unity is an
indication of elastic anisotropy. The elastic anisotropy factors A1, A2 and A3 can be expressed as follows:

A1 = A2 = 4C44/(C11 + C33 − 2C13) For the (100) and (010) planes,
A3 = 4C66/(C11 + C22 − 2C12) For the (001) plane.
C66 = (C11 − C12)/2

(3.21)

(ii) Another way to evaluate the elastic anisotropy consists in introducing the Voigt and Reuss
bounds [33]. The elastic anisotropy in compression (shear) defined by the factor AB (AG) is expressed
as follows: {

AB(%) = BV−BR
BV+BR

× 100
AG(%) = GV−GR

GV+GR
× 100,

(3.22)

where B and G are the bulk and shear moduli, and the subscripts V and R represent the Voigt and Reuss
bounds. The AB and AG ratios can range from zero to 100%. A value of zero represents elastic isotropy
and a value of 100% represents the largest possible elastic anisotropy.

(iii) The third way consists in precise quantifying the extent of the elastic anisotropy using the
universal index AU [36]. The index AU takes into account both compression and shear contributions,
which is defined as follows:

AU = 5
GV
GR
+

BV
BR
− 6. (3.23)

The universal index is equal to zero (AU = 0) for isotropic crystals, and the deviation of AU from
zero shows the presence of elastic anisotropy.

The elastic anisotropy values deduced from the factors A1, A2, A3, AB, AG and AU are given in
table 9. From this table, we see that A3 values indicate an isotropy in the shear plane (001) while the
values from A1 and A2 indicate the presence of a very low anisotropy in the shear plane (100) and (010)
for the MAuGe (M = Lu, Sc) compounds. The AB and AG values show that the elastic compression
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Figure 10. (Colour online) The first Brillouin zone of MAuGe (M = Lu, Sc). The dashed red lines are the
selected path for band structure calculation. g1, g2 and g3 are the reciprocal lattice axes.

Table 9. Calculated elastic anisotropy factors : A1, A2, A3, AB , AG , and AU for MAuGe (M = Lu, Sc).

System A1 A2 A3 AB (%) AG (%) AU

LuAuGe 0.96 0.96 1 15 3.3 0.69
ScAuGe 0.80 0.80 1 15.85 3.38 0.78

anisotropy is relatively more pronounced than the shear anisotropy for both compounds. The AU values
also indicate the presence of elastic anisotropy for the two studied materials.

3.2. Electronic properties

The Brillouin zone (BZ)which highlights the selected path Γ-A-H-K-Γ-M-L-H to calculate the energy
band structures for the MAuGe (M=Lu, Sc) compounds, is illustrated in figure 10. The MAuGe band
structures along the chosen path are illustrated in figure 11. It is seen that the LuAuGe and ScAuGe
compounds at their equilibrium lattice parameters have similar energy band dispersions in the considered
energy range (from −12 eV to 4 eV) with some small differences depending on the electron valence states
of the Lu/Sc,Au and Ge atoms. It should be noted that the valence and conduction bands overlap at the
Fermi level (EF), which reveals the absence of the bandgap at the Fermi level. Consequently, the MAuGe
(M = Lu, Sc) compounds exhibit a metallic nature.

In order to determine the contribution of the electron valence states of each atom in the MAuGe
electronic band structures, we calculated the total (TDOS) and partial (PDOS) densities of states for both
compounds. The TDOS and PDOS diagrams are shown in figure 12. It is clear that the total density of
states for MAuGe is characterized by two distinct regions in the −12 eV to 0 eV energy range. The first
region is located between −12 and −9 eV and is mostly derived from the Ge-s states for both studied
compounds. The second region starts from about −7.5 eV up to the Fermi level (EF ) and is mainly
composed of the Lu-f and Au-d and Ge-p states. The lowest conduction bands (from 0 to 4 eV) are mostly
made up of the Lu/Sc-d unoccupied states.

To better understand the chemical bonding character between the Lu/Sc, Au andGe atoms, the electron
density distribution maps in the crystallographic plane (110) for MAuGe (M = Lu, Sc) compounds are
shown in figure 13 together with the calculated bond lengths that are listed in table 4. One can see that
the Ge1-Au2 and Ge1-Au1 bonds are characterized by an obvious deformation of the electron charge
density distribution (see the yellow area in the electron density maps between Ge and Au atoms), which
indicates that the Ge1-Au2 and Ge1-Au1 bonds have a covalent bonding nature for both compounds
studied. The hybridization of the Ge-p and Au-p states, which is clearly visible in the PDOS spectra
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Figure 11. (Colour online) Electronic band dispersion curves along the high symmetry directions in the
Brillouin zone for the MAuGe (M = Lu, Sc) compounds.

Table 10.Hirshfeld’s atomic charges of Lu/Sc, Au and Ge atoms in the MAuGe (M = Lu, Sc) compounds.

Atom Lu1 Lu2 Ge1 Ge2 Au1 Au2
LuAuGe Charge 0.07 0.07 −0.14 −0.14 0.08 0.08

Atom Sc1 Sc2 Ge1 Ge2 Au1 Au2
ScAuGe Charge 0.01 0.01 −0.12 −0.12 0.11 0.11

shown in figure 12, is responsible for the Ge-Au covalent bonds. It is worth to note that the covalent
bonding between Ge1 and Au1 is more pronounced in the ScAuGe compound. The electron charge
density is typically low and uniform (see the electron density area whose values are between 0.14 and
0.28 e/Å3) along the (Lu1/Sc1)-Au2, (Lu1/Sc1)-Au1, (Lu1/Sc1)-Ge2, (Lu1/Sc1)-Ge1 and Lu1-Lu2 (Sc1-
Sc2), which indicates the presence of the metallic character between these bonds. The metallic bonding
is attributed to the presence of the delocalized Lu/Sc-d states.

To further explore the MAuGe (M = Lu, Sc) electronic structures, we calculated the atomic charges
of M, Au and Ge atoms using Hirshfeld’s population analysis [37]. The obtained results are tabulated
in table 10. One can observe that M = Lu/Sc, Au and Ge atoms have small effective charges (positive
charges for M and Au, and negative charge for Ge). A very lower atomic charge difference implies much
lower ionicity and higher covalency in the corresponding chemical bonds. Thus, the chemical bonding
between Ge and Au is covalent.
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Figure 12. (Colour online) Total (TDOS) and partial (PDOS) densities of states diagrams for MAuGe (M
= Lu, Sc).

Figure 13. (Colour online) Electron density maps in the (110) crystallographic plane for the MAuGe (M
= Lu, Sc) compounds. The electron density is high in the blue regions (+1.12 e/Å3) and it is low in the
red regions (+0.00 e/Å3). The color density scale is in electrons/Å3.
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4. Conclusions

In summary,we have performed ab initio calculations of the structural, electronic and elastic properties
for the MAuGe (M = Lu, Sc) compounds by means of the pseudopotential plane-wave method in the
framework of the density functional theory within the generalized gradient approximation. Our results
can be summarized as follows:

. The optimized structural parameters are in very good agreement with the existing experimental
and theoretical data.

. The elastic constants of the monocrystalline phase calculated at zero pressure show that theMAuGe
(M = Lu, Sc) materials are mechanically stable. Note that the mechanical stability remains verified
for hydrostatic pressures up to 40 GPa.

. The numerical estimates of the elastic moduli of the polycrystalline phase, i.e., Young’s modulus,
shear modulus, Poisson’s ratio, anisotropy factors, sound velocities and Debye temperature were
evaluated and discussed under pressure for the first time. The Pugh’s ratio for LuAuGe and ScAuGe
indicates that these materials are ductile.

. The electronic structures analysis shows that the MAuGe (M = Lu, Sc) compounds are of a metallic
character. This behavior is attributed to the delocalized d states of the Lu and Sc atoms. According
to the densities of states and the electron charge maps in the (110) plane, it has been deduced that
there are covalent interactions between the Au and Ge atoms.
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Ab initio вивчення структурних, пружних та електронних

властивостей гексагональнихMAuGe (M= Lu, Sc) сполук

М. Раджаї1, Н. Гуечi2,3, Д.Моуче 4
1 Лабораторiя фiзики експериментальної технiки i їх застосування (LPTEAM), унiверситет Медеа, Алжир
2 Лабораторiя дослiджень поверхонь твердих матерiалiв та iнтерфейсiв, унiверситет Ферхат Аббас Сетiф 1,
Алжир

3 Медичний факультет, унiверситет Ферхат Аббас Сетiф 1, Алжир
4 Лабораторiя нових матерiалiв та їх характеристик, унiверситет Ферхат Аббас Сетiф 1, Алжир
У статтi проведено детальне теоретичне дослiдження структурних, пружних та електронних властиво-
стей двох германiдiв LuAuGe та ScAuGe за допомогою першопринципних розрахункiв iз використанням
методу псевдопотенцiальної плоскої хвилi в рамках узагальненого градiєнтного наближення. Параме-
три кристалiчної гратки та внутрiшнi координати добре узгоджуються з iснуючими експериментальними
та теоретичними даними, що пiдтверджує надiйнiсть застосовуваного теоретичного методу. Показано
вплив гiдростатичного тиску на структурнi параметри.Монокристалiчнi пружнi константи розраховували
за допомогою деформацiї напругової технiки. Розрахованi пружнi константи сполук MAuGe (M = Lu, Sc)
вiдповiдають критерiям механiчної стiйкостi для гексагональних кристалiв, i цi константи використову-
вались для аналiзу пружної анiзотропiї сполук MAuGe за трьома рiзними показниками. Полiкристалiчнi
iзотропнi модулi пружностi, а саме об’ємний модуль, модуль зсуву, модуль Юнга, коефiцiєнт Пуассона та
вiдповiднi властивостi також оцiнюються за допомогою наближень Фойгта-Ройсса-Хiлла. Також ми до-
слiдили електроннi властивостi розглянутих сполук шляхом обчислення їх зонних структур, їх щiльностi
станiв та розподiлу електронної густини.
Ключовi слова: LuAuGe, ScAuGe, метод PP-PW, електроннi властивостi, модулi пружностi, ab initio

розрахунки
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