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The dependence of the current density on the phase difference is investigated considering the layered super-
conducting structures of a SIS’IS type. To simplify the calculations, the quasiclassical equations for the Green’s
functions in a t -representation are derived. An order parameter is considered as a piecewise constant function.
To consider the general case, no restrictions on the dielectric layer transparency and the thickness of the inter-
mediate layer are imposed. It was found that a new analytical expression for the current-phase relation can be
used with the aim to obtain a number of previously known results arising in particular cases.
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1. Introduction

In themicroscopic theory of superconductivity, a layered superconducting structure of a SIS’IS type (S
and S’ are the superconductors, I is an insulator) is also called a double-barrier superconducting junction.
For certain values of the intermediate layer thickness, the so-called resonant tunneling modes [1, 2] can
arise in the layered superconducting structures of a SIS’IS type. In paper [3], an interesting feature of
the supercurrent flow is investigated considering the layered superconducting structures of a SIS’IS type.
Using a microscopic approach, the features of the charge transport in a three-dimensional SIS’IS junction
are theoretically investigated in the absence of nonmagnetic impurities. Depending on the thickness of the
intermediate layer, there are two electron transport modes in the layered superconducting structures of a
SIS’IS type. The first mode is also called a coherentmode. In the case of a coherentmode, the supercurrent
of the junction is directly proportional to the dielectric layer transparency D. When the thickness of the
intermediate layer is increased, there is a mode with a broken coherence. This is the second mode. In the
case of the second mode, the supercurrent of the junction becomes directly proportional to D2.

Considering a double-barrier Josephson junction as a coupled three-level quantum system, a Feynman-
like method [4, 5] can be generalized for the layered superconducting structures of a SISIS type. It is
significant to note that the three superconductors have the same Cooper pair density [6]. In the paper [7],
a modified Ohta’s model [8] is applied with the aim to explore the stationary properties of the SISIS
junctions.

The effects of the phase coherence in the layered superconducting structures are also important in
terms of practical application [9–13]. This is experimentally demonstrated by the possibility to construct
the Josephson junctions with desirable engineering properties using the known layering methods [14, 15].

A double-barrier Josephson junction of a SIS’IS type is fabricated from Nb/Al-AlOx-Nb/Al-AlOx-
Nb/Al structures deposited in the same vacuum with the aim to provide the identical material parameters
of the films and the tunnel barriers. In the paper [16], the fabrication procedure is describedmore in detail.
In the paper [2], an absolute value of a Josephson current in a double-barrier Josephson junction with
very thin middle electrodes is studied experimentally. The two junctions are separated by the distance of
an order of a superconducting coherence length. It is also concluded that the maximum value Jc of the
current density in a Josephson junction of a SIS’IS type is higher than the corresponding maximum value
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Jc in a single S’IS junction from the stack. This effect is explained by a model that takes an Andreev
reflection [17] in a SIS’IS double-barrier stack into consideration.

The main purpose of our paper is to explore the stationary properties in the layered superconducting
structures of a SIS’IS type. An order parameter of the superconductor S’ is different from an order
parameter of the superconductor S. Unlike the above-mentioned papers, a general case will be considered
in our investigation. This means that no restrictions on the dielectric layer transparency and the thickness
of an intermediate layer are imposed. The main task of the investigation is to obtain the dependence of
the supercurrent on the phase difference. The dependence of the supercurrent on the thickness of the
intermediate layer S’ must also be analyzed.

A research is conducted using a Green’s function method [18]. To obtain an analytical expression
for the Green’s function, a spatial smoothing procedure on the length scales of an order of an atomic
size is performed. This enables us to derive the quasiclassical equations describing the spatial behavior
of the Green’s functions on the length scales of an order of the superconducting coherence length. It is
shown that the most compact form of quasiclassical equations can be found using a t-representation [18].
In this representation, an expression for the current density can also be obtained. Considering an order
parameter as a piecewise constant function, the solutions of the quasiclassical equations for the Green’s
functions are found in the three superconductors. The absolute value of an order parameter is equal to ∆1
for a superconductor of the intermediate layer. The absolute value of an order parameter is equal to ∆ for
other superconductors.

The proposed calculation scheme enables us to obtain a new analytical expression for the dependence
of the current density on the phase difference. A current-phase relation is true for arbitrary values of
the dielectric layer transparency and an intermediate layer thickness. A new analytical expression for the
current-phase relation also enables us to obtain a number of previously known results for the following
junctions: SNS, SINIS, SISIS and SIS. Thus, a thorough verification of the correctness result is performed.

2. Model and basic equations

Let a plane XOY be a middle of an intermediate layer S’. The thickness of an intermediate layer
is equal to d. The insulator films are placed on the planes z = ± (d/2). The left-hand superconductor
and the right-hand superconductor have a location |z | > d/2. On the plane XOY, there is a translational
invariance. The spatial homogeneity is broken in the direction of the OZ axis. It is significant to note that
the insulator films can be modelled by a potential field

U(z) =
U0
2

[
δ

(
z −

d
2

)
+ δ

(
z +

d
2

)]
, U0 > 0.

In the microscopic theory of superconductivity, the Matsubara Green’s functions are considered to
be a powerful mathematical tool. The thermodynamic quantities of a superconductor can be represented
via the Matsubara Green’s functions. It is significant to note that these Green’s functions [18] are the
elements of a matrix

Ĝωn (®r, ®r
′) =

(
Gωn (®r, ®r

′) −F̃ωn (®r, ®r
′)

−Fωn (®r, ®r
′) G̃ωn (®r, ®r

′)

)
. (2.1)

Let us consider the absence of an external magnetic field ®A(®r) and the presence of a potential field U(z).
In this particular case, a matrix Green’s function (2.1) is a general solution of the second order differential
equation [

iωn − σz

(
ξ̂ +U(z)

)
− ∆̂(z)

]
Ĝωn (®r, ®r

′) = δ(®r − ®r ′). (2.2)

In the differential equation (2.2), there are the oddMatsubara frequenciesωn = πT(2n+1) dependent
on the numbers n ∈ Z . We also have a Pauli matrix σz =

( 1 0
0 −1

)
, a differential operator ξ̂ = ®̂p2

2m − µ and
a matrix ∆̂(z) =

(
0 ∆(z)
∆∗(z) 0

)
containing an order parameter ∆(z).
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In the superconductor, the motion of the Cooper pairs can be considered to be a quasiclassical
motion, because the Fermi momentum p0 is much greater than the momentum mvs related to the
motion of a Cooper pair. Such a conclusion can be made considering an estimator of a physical quantity
vcs ∼ ∆/p0 ∼ Tc/p0. As a result, there is a fraction mvs/p0 � Tc/EF ∼ a/ξ0 containing an atomic length
a. In the theory of low temperature superconductivity, the above-mentioned fraction is an infinitesimal
parameter. As a result, a spatial smoothing procedure on the length scales of an order of an atomic size can
be performed for an order parameter and some other functions. This enables us to neglect the small-scale
changes. Only the large-scale changes on the length scales of an order of a superconducting coherence
length must be taken into account. The second order differential equations for the Green’s functions can
be transformed into the first order differential equations by a spatial smoothing procedure. We are now
talking about the so-called quasiclassical equations. In the book [18], a way to derive the quasiclassical
equations is demonstrated for the superconducting junctions of an SIS type. In our case, the way to derive
the quasiclassical equations for the layered superconducting structures of an SIS’IS type is analogous to
the way demonstrated in a book [18]. Considering the layered superconducting structures of an SIS’IS
type, it was found that the first order differential equations for the Green’s functions in a t-representation
are analogous to the first order differential equations for the superconducting junctions of an SIS type.

3. Quasiclassical equations

Let us consider the second order differential equation[
ξ̂ +U(z)

]
ψ
(k)

®p
(®r) = ξ ®pψ

(k)

®p
(®r) (3.1)

containing a dispersion relation ξ ®p =
p2

2m − µ. A superscript k can acquire values of 1 and 2. A general
solution of the second order differential equation (3.1) is a three-dimensional wave function

ψ
(k)

®p
(®r) =

1
2π

exp(i ®p⊥®r)χ(k)pz (z). (3.2)

In the formula (3.2), a notation for the so-called transversemomentum ®p⊥ = px ®ex+py ®ey is introduced.
Substituting the three-dimensional wave function (3.2) into a second order differential equation (3.1), we
can derive a one-dimensional second order differential equation with the following solutions:

χ
(1)
pz (z) =

1
√

2π

[
C1
2

e−ipz z + i(C2 − 1)e−ipz d
2 sign

(
z +

d
2

)
sin pz

(
z +

d
2

)
+ iC3e−ipz d

2 sign
(
z −

d
2

)
sin pz

(
z −

d
2

)
+

1 + C4
2

eipz z
]
, χ

(2)
pz (z) = χ

(1)
pz (−z). (3.3)

In the formula (3.3), there is a momentum pz > 0. We also have constant coefficients defined by the
formula C1 = (C2 − 1)e−ipzd + C3, C2 =

(
1 + iK

2pz

)
C4, C3 = −

iK
2pz C4eipzd and

C4 =
e−ipzd(

1 + iK
2pz

)2
e−ipzd +

(
K

2pz

)2
eipzd

.

Here, we have a notation K = mU0. The coefficient C4 can be used with the aim to calculate the
dielectric layer transparency

D = |C4 |
2 =

[
1 +

(
K
pz

)2 (
cos pzd +

K
2pz

sin pzd
)2

]−1
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and the reflection coefficient R = |C1 |
2 = 1 − D. A three-dimensional wave function (3.2) can be used

with the aim to obtain an expansion of the matrix Green’s function (2.1). Thus,

Ĝωn (®r, ®r
′) =

∑
i,k

∫
d ®p

∫
d ®p′Ĝi,k

ωn
( ®p, ®p′)ψ(i)

®p
(®r)ψ∗(k)

®p′
(®r ′). (3.4)

The expansion (3.4) must be substituted into the second order differential equation (2.2). This enables
us to derive the equations for the Green’s functions in the momentum representation

(iωn−σzξ) Ĝi,k
ωn
( ®p, ®p′) −

∑
i′

∫
d ®p′′

[∫
d®rψ∗(i)

®p
(®r) ∆̂ (z)ψ(i

′)

®p′′
(®r)

]
Ĝi′,k
ωn
( ®p′′, ®p′) = δi,kδ ( ®p− ®p′) . (3.5)

In fact, the spatial homogeneity is broken only in the direction of the axis OZ. Thus, the order
parameter ∆ depends only on the coordinate z. As a result, the matrix elements ∆̂ contain the function
δ( ®p⊥ − ®p′′⊥). The Green’s function in the momentum representation has the same property Ĝi,k

ωn
( ®p, ®p′) =

Ĝi,k
ωn
( ®p⊥, pz, p′z)δ( ®p⊥ − ®p

′
⊥). According to the above-mentioned, the equation for the Green’s function in

the momentum representation can be presented as follows:

(iωn − σzξ) Ĝi,k
ωn

(
®p⊥, pz, p′z

)
−

∑
i′

+∞∫
0

dp′′z


+∞∫
−∞

dzχ∗(i)pz (z) ∆̂ (z) χ
(i′)
p′′z
(z)

 Ĝi′,k
ωn

(
®p⊥, p′′z , p′z

)
= δi,kδ

(
pz − p′z

)
. (3.6)

It is well known that the characteristic values of the momentum are close to the Fermi momentum p0.
Hence, the identity ξ = p2/2m − p2

0/2m � v0 (p − p0) can be used with the aim to derive the following
identities: p = p0 + ξ/v0, p′ = p0 + ξ

′/v0. Using the conservation law for the transverse momentum
®p′⊥ = ®p⊥ or p sin θ = p′ sin θ ′, we obtain the following relationships between the angles:

sin θ ′ �
(
1 +

ξ − ξ ′

p0v0

)
sin θ, cos θ ′ � cos θ −

ξ − ξ ′

p0v0
sin θ tan θ.

The derived identities are linear functions dependent on the difference ξ − ξ ′. The approximation for the
difference pz − p′z can be derived from the relation

ξ − ξ ′ =
1

2m
(
pz − p′z

) (
pz + p′z

)
� v0 cos θ

(
pz − p′z

)
.

Thus, there are the approximations p′z−pz �
ξ ′ − ξ

v0x
and dp′z �

dξ ′

v0x
.Here, we have the following notation:

cos θ ≡ x, 0 < x < 1. The derived approximations are used with the aim to derive the equations for the
Green’s functions dependent on the variables ξ and ξ ′. Then, the equation (3.6) can be transformed into
the equation

(iωn − σzξ) Ĝi,k
ωn
(ξ, ξ ′)

−
1
v0x

+∞∫
−∞

dξ ′′
∑
i′


+∞∫
−∞

dzχ∗(i)pz (z) ∆̂ (z) χ
(i′)
p′′z
(z)

 Ĝi′,k
ωn
(ξ ′′, ξ ′) = v0xδi,kδ (ξ − ξ ′) . (3.7)

Then, we perform an inverse Fourier transformation into the space of variables conjugate to ξ and
ξ ′. To do this, we introduce a full set of functions: eiξ t

(2πv0x)1/2
, e−iξ t

(2πv0x)1/2
. The equation (3.7) should be

multiplied by 1
2πv0x exp (iξt − iξ ′t ′) . The obtained equation should be integrated over the variables ξ and

ξ ′. As a result, we can derive the equations for the Green’s functions in the t-representation(
iωn + iσz

∂

∂t

)
Ĝi,k
ωn
(t, t ′) −

+∞∫
−∞

dt ′′
∑
i′

〈t, i | ∆̂ (z) |i′, t ′′〉 Ĝi′,k
ωn
(t ′′, t ′) = δi,kδ (t − t ′) . (3.8)
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Here, we have the notation

Ĝi,k
ωn
(t, t ′) =

1
2πv0x

+∞∫
−∞

dξ
+∞∫
−∞

dξ ′Ĝi,k
ωn
(ξ, ξ ′) eiξt−iξ′t′,

〈t, i | ∆̂ (z) |i′, t ′〉 =
1

2πv0x

+∞∫
−∞

dξ
+∞∫
−∞

dξ ′ ©«
+∞∫
−∞

dz∆̂ (z) χ∗(i)pz (z) χ
(i′)
p′z
(z)ª®¬ eiξt−iξ′t′ .

Calculating the matrix elements 〈t, i | ∆̂ (z) |i′, t ′′〉, we obtain the following property: 〈t, i | ∆̂ (z) |i′, t ′′〉 =
δ (t ′′ − t) ∆̂i,i

′

(t, x) . This enables us to evaluate the integral over the variable t ′′ in the equation (3.8). As
a result, we can derive the quasiclassical equations for the Green’s functions in the t-representation(

iωn + iσz
∂

∂t

)
Ĝi,k
ωn
(t, t ′) −

∑
i′

∆̂
i,i′(t, x)Ĝi′,k

ωn
(t, t ′) = δi,kδ(t − t ′). (3.9)

To calculate the matrix functions ∆̂i,i′ (t, x), the spatial smoothing procedure on the length scales
of an order of an atomic size must be performed. Considering the exponents exp

[
i
(
pz + p′z

)
z
]

and exp
[
i
(
pz − p′z

)
z
]
, we may note that the exponents of the first type are approximately equal to

exp (2ip0 cos θz) and oscillate on the length scales of an order of an atomic size. In the exponents of
the second type, the large values of the Fermi momentum are annihilated. As a result, these exponents
are approximately equal to exp {i [(ξ − ξ ′) /v0x] z} and oscillate on the length scales of an order of the
superconducting coherence length ξ0 � a. The goal of our investigation is to take only the large-scale
changes into consideration. Thus, the exponents of the first type should be neglected.

As a result, we obtain the following formulae:

∆̂
1,1(t, x) = θ

(
−

a
2
− t

)
∆̂(v0xt) +

[
θ
(
t +

a
2

)
− θ

(
t −

a
2

)] [
|C2 |

2
∆̂(v0xt) + |C3 |

2
∆̂(−v0xt)

]
+ θ

(
t −

a
2

) [
R∆̂(−v0xt) + D∆̂(v0xt)

]
,

∆̂
1,2(t, x) =

[
θ
(
t +

a
2

)
− θ

(
t −

a
2

)] [
C∗2C3∆̂(v0xt) + C∗3C2∆̂(−v0xt)

]
+ C∗1C4θ

(
t −

a
2

) [
∆̂(−v0xt) − ∆̂(v0xt)

]
,

∆̂
2,1(t, x) =

[
θ
(
t +

a
2

)
− θ

(
t −

a
2

)] [
C∗3C2∆̂(v0xt) + C∗2C3∆̂(−v0xt)

]
+ C∗1C4θ

(
t −

a
2

) [
∆̂(v0xt) − ∆̂(−v0xt)

]
,

∆̂
2,2(t, x) = θ

(
−

a
2
− t

)
∆̂(−v0xt) +

[
θ
(
t +

a
2

)
− θ

(
t −

a
2

)] [
|C2 |

2
∆̂(−v0xt) + |C3 |

2
∆̂(v0xt)

]
+ θ

(
t −

a
2

) [
D∆̂(−v0xt) + R∆̂(v0xt)

]
.

Here, we have a notation a = d/v0x . A physical quantity v0 = p0/m is called a Fermi velocity. The
constant coefficients C1, C2, C3, C4, R and D are calculated using the approximations pz � p0x and
p′z � p0x. In this paper, a spatial behavior of an order parameter is considered within the so-called model
with a piecewise constant order parameter [18]. This model is a widely applicable method to explore the
superconducting junctions. In fact, this is the way to neglect the order parameter changes caused by the
influence of the current density or the dielectric layer transparency. Considering the order parameter as
a piecewise constant function, we may write down a formula

∆(z) = ∆
[
θ

(
−

d
2
− z

)
e−i ϕ2 + θ

(
z −

d
2

)
ei ϕ2

]
+ ∆1

[
θ

(
z +

d
2

)
− θ

(
z −

d
2

)]
. (3.10)

However, for the temperature close to the critical, such a reduced model cannot be used. In this region
of temperature, the spatial nonhomogeneity of the order parameter near IS interface must be taken into
account [19, 20].
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The approximation (3.10) of the order parameter ∆(z) enables us to calculate the matrix

∆̂(z) = ∆σx cos
ϕ

2
+ ∆σy sin

ϕ

2
+ θ

(
z −

d
2

) (
∆σx cos

ϕ

2
− ∆σy sin

ϕ

2
− ∆1σx

)
+ θ

(
z +

d
2

) (
∆1σx − ∆σx cos

ϕ

2
− ∆σy sin

ϕ

2

)
. (3.11)

Here, we have the Pauli matrices σx =
( 0 1

1 0
)
and σy =

( 0 −i
i 0

)
. The matrix (3.11) must be used with the

aim to calculate the matrices ∆̂(v0xt), ∆̂(−v0xt) and ∆̂i,i′(t, x). The equation (2.2) is the second order
differential equation, whereas the equation (3.9) is the first order differential equation. This is the main
advantage of the so-called quasiclassical equations for the matrix Green’s functions in a t-representation.
It is significant to note that the first order differential equation (3.9) can be transformed into the first order
differential equation(

i
∂

∂t
+ iωnσz

)
Ĝi,k(t, t ′) −

∑
i′

σz∆̂
i,i′(t, x)Ĝi′,k(t, t ′) = δi,kδ(t − t ′) (3.12)

for the matrix Green’s function Ĝi,k(t, t ′) = Ĝi,k
ωn
(t, t ′)σz . In the configuration representation, there is a

matrix

Ĝωn (®r, ®r
′) =

(
Gωn (®r, ®r

′) F̃ωn (®r, ®r
′)

−Fωn (®r, ®r
′) −G̃ωn (®r, ®r

′)

)
. (3.13)

Considering the matrix (3.13), we can see that the element in the first column of the first row is the
Green’s function Gωn (®r, ®r

′). It is significant to note that the current density ®j(®r) can be represented via
the Green’s function Gωn (®r, ®r

′).

4. Current density

We have to find the current density expressed via the Green’s functions in a t-representation. The
representation of the current density ®j(®r) via a Green’s function Gωn (®r, ®r

′) is a well-known formula

®j(®r) =
ie
m

T
∑
ωn

lim
®r′→®r
(∇®r′ − ∇®r )Gωn (®r, ®r

′). (4.1)

The expansion (3.4) of the Green’s function Gωn (®r, ®r
′) must be substituted into the expression for the

current density (4.1) with the aim to derive a formula ®j(®r) = j(z)®ez containing the notation

j(z) =
1
2

e
m

N(0)T
∑
ωn

1∫
0

dx

+∞∫
−∞

dt

+∞∫
−∞

dt ′
∑
i,k

Gi,k
ωn
(t, t ′)Ik,i(x, t, t ′). (4.2)

Here, we have the electron density of states at the Fermi surface N(0) = m2v0/2π2 and the integrals

Ik,i(x, t, t ′) =

+∞∫
−∞

dξ
+∞∫
−∞

dξ ′e−iξt+iξ′t′ Jk,i
p′z,pz
(z)

containing the four quantities

Jk,i
p′z,pz
(z) = χ

∗(k)
p′z
(z)p̂z χ

(i)
pz (z) − χ

(i)
pz (z)p̂z χ

∗(k)
p′z
(z),
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because the superscripts i and k can acquire values of 1 and 2. To calculate the quantities Jk,i
p′z,pz
(z),

a spatial smoothing procedure on the length scales of an order of an atomic size must be performed.
Only the large-scale changes should be taken into account. As a result, we consider only the exponents
dependent on the difference pz − p′z � (ξ − ξ

′) /v0x. It is significant to note that we have to neglect
the exponents dependent on the sum pz + p′z . The constant coefficients should be calculated using the
approximations pz � p0x and p′z � p0x. The calculated quantities Jk,i

p′z,pz
(z) should be usedwith the aim to

calculate the integrals Ik,i(x, t, t ′). After that, the calculated integrals Ik,i(x, t, t ′) should be substituted into
the expression for the one-dimensional current density (4.2). Considering the one-dimensional current
density j(z) on the plane z = d/2, we can derive a formula

j
(

d
2

)
= πev0N(0)T

∑
ωn

1∫
0

xdx
[
|C2 |

2G1,1
ωn

(a
2
,

a
2

)
− |C3 |

2G1,1
ωn

(
−

a
2
,−

a
2

)
+ DG1,1

ωn

(a
2
,

a
2

)
+ C∗2C3G2,1

ωn

(a
2
,

a
2

)
− C∗3C2G2,1

ωn

(
−

a
2
,−

a
2

)
− C∗1C4G2,1

ωn

(a
2
,

a
2

)
+ C∗3C2G1,2

ωn

(a
2
,

a
2

)
− C∗2C3G1,2

ωn

(
−

a
2
,−

a
2

)
+ C∗1C4G1,2

ωn

(a
2
,

a
2

)
− G2,2

ωn

(
−

a
2
,−

a
2

)
+ |C3 |

2G2,2
ωn

(a
2
,

a
2

)
− |C2 |

2G2,2
ωn

(
−

a
2
,−

a
2

)
+ RG2,2

ωn

(a
2
,

a
2

) ]
. (4.3)

Thus, an expression for the current density at the junction is obtained.

5. Boundary conditions

The four equations (3.12) can be separated into two independent systems of differential equations: the
first system of two differential equations for the Green’s functions Ĝ1,1(t, t ′) and Ĝ2,1(t, t ′); the second
system of two differential equations for the Green’s functions Ĝ2,2(t, t ′) and Ĝ1,2(t, t ′). It is significant
to note that the first system can be transformed into the second system by the substitutions ϕ → −ϕ,
Ĝ1,1(t, t ′) → Ĝ2,2(t, t ′) and Ĝ2,1(t, t ′) → Ĝ1,2(t, t ′).

Let us consider a systemof two differential equations for theGreen’s functions Ĝ1,1(t, t ′) and Ĝ2,1(t, t ′).
In the case t < −a/2, we may write that


(
∂
∂t + Â(−ϕ)

)
iĜ1,1(t, t ′) = δ(t − t ′),(

∂
∂t + Â(ϕ)

)
iĜ2,1(t, t ′) = 0.

(5.1)

In the formula (5.1), a notation for amatrix Â(ϕ) = ωnσz−∆σy cos (ϕ/2)−∆σx sin(ϕ/2) is introduced.
We can also derive a useful identity (Â(ϕ))2 = ω̃2

n containing a notation for a frequency ω̃n =
√
ω2
n + ∆

2.
The system of two differential equations (5.1) has a general solution presented by the formula

Ĝ2,1(t, t ′) = eω̃n(t+ a
2 )

(
α1(t ′) 1

b β1(t ′)
bα1(t ′) β1(t ′)

)
,

Ĝ1,1(t, t ′) = eω̃n(t+ a
2 )

(
γ1(t ′) − 1

b∗ δ1(t ′)
−b∗γ1(t ′) δ1(t ′)

)
+ 1

2iω̃n

[
ω̃nsign(t − t ′) + Â(−ϕ)

]
e−ω̃n |t−t

′ | .
(5.2)

In the formula (5.2), a notation for a complex number b = i ω̃n+ωn

∆
exp [−i (ϕ/2)] is introduced.

Considering the case t > a/2, we can derive a system of two differential equations
(
i ∂∂t + iωnσz − ∆̂ϕ + 2i∆Rσx sin ϕ

2

)
Ĝ1,1(t, t ′) − 2i∆C∗4C1σx sin ϕ

2 Ĝ
2,1(t, t ′) = δ(t − t ′),(

i ∂∂t + iωnσz − ∆̂−ϕ − 2i∆Rσx sin ϕ
2

)
Ĝ2,1(t, t ′) + 2i∆C∗4C1σx sin ϕ

2 Ĝ
1,1(t, t ′) = 0.

(5.3)
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In the formula (5.3), a notation for a matrix ∆̂ϕ = i∆
[
σx sin (ϕ/2) + σy cos (ϕ/2)

]
is introduced. The

system of two differential equations (5.3) has a general solution presented by the following formulae:

Ĝ1,1(t, t ′) = e−ω̃n(t− a
2 )

(
Dα2(t ′) + Rγ2(t ′) Rbδ2(t ′) − Db∗β2(t ′)
R
b γ2(t ′) − D

b∗α2(t ′) Dβ2(t ′) + Rδ2(t ′)

)
+

1
2iω̃n

[
ω̃nsign(t − t ′) + DÂ(ϕ) + RÂ(−ϕ)

]
e−ω̃n |t−t

′ |, (5.4)

Ĝ2,1(t, t ′) = C∗1C4e−ω̃n(t− a
2 )

(
α2(t ′) − γ2(t ′) −b∗β2(t ′) − bδ2(t ′)

− 1
b∗α2(t ′) − 1

b γ2(t ′) β2(t ′) − δ2(t ′)

)
+

C∗1C4

2iω̃n

[
Â(ϕ) − Â(−ϕ)

]
e−ω̃n |t−t

′ | . (5.5)

In the case |t | < a/2, we have a system of two differential equations
(
i ∂∂t + iωnσz −

(
|C2 |

2 + |C3 |
2) iσy∆1

)
Ĝ1,1(t, t ′) − (C2C∗3 + C∗2C3)iσy∆1Ĝ

2,1(t, t ′) = δ(t − t ′),(
i ∂∂t + iωnσz −

(
|C2 |

2 + |C3 |
2) iσy∆1

)
Ĝ2,1(t, t ′) − (C2C∗3 + C∗2C3)iσy∆1Ĝ

1,1(t, t ′) = 0.
(5.6)

The system of two differential equations (5.6) has a general solution presented by the formula

Ĝ1,1(t, t ′) + (−1)k Ĝ2,1(t, t ′) = e−Âk (ωn)(t+ a
2 )

[
Ĝ1,1

(
−

a
2
, t ′

)
+ (−1)k Ĝ2,1

(
−

a
2
, t ′

)]
+

1
2i

[
sign

(a
2
+ t ′

)
+ sign(t − t ′)

]
e−Âk (ωn)(t−t

′). (5.7)

In the formula (5.7), the index k can acquire values of 1 and 2. There is a matrix Âk(ωn) = ωnσz −

|Ak |
2σy∆1 containing the notations A1 = C2 − C3 and A2 = C2 + C3. We can also derive a useful

identity (Âk(ωn))
2 = (Ωk(ωn))

2 containing a notation for the frequencyΩk(ωn) =

√
ω2
n + ∆

2
1 |Ak |

4. In the
matrix equality (5.7), the Green’s functions Ĝ1,1 (−a/2, t ′) and Ĝ2,1 (−a/2, t ′)must be calculated using a
formula (5.2). We can do this, because the Green’s functions are considered to be continuous functions.
Considering the elements in the first row and the first column of the matrix equality (5.7), we can derive
the formula

G1,1
ωn
(t, t ′) + (−1)kG2,1

ωn
(t, t ′) =

{
coshΩk

(
t +

a
2

)
−
ωn

Ωk
sinhΩk

(
t +

a
2

)}
×

{
γ1(t ′) + (−1)kα1(t ′) +

1
2iω̃n

(
ωn − ω̃nsign

(
t ′ +

a
2

))
e−ω̃n |t′+ a

2 |
}

−
i∆1 |Ak |

2 sinhΩk

(
t + a

2
)

Ωk

{
−b∗γ1(t ′) + (−1)kbα1(t ′) − b∗

ωn − ω̃n

2iω̃n
e−ω̃n |t′+ a

2 |
}

+
1
2i

(
sign

(a
2
+ t ′

)
+ sign(t − t ′)

) {
coshΩk(t − t ′) −

ωn

Ωk
sinhΩk(t − t ′)

}
. (5.8)

The unknown constants α1(t ′) and γ1(t ′) should be found with the aim to find the Green’s functions (5.8).
To do this, a general solution (5.7) in the case |t | < a/2 should also be considered on the bound t = a/2.
As a result, we obtain a boundary condition

Ĝ1,1
(a
2
, t ′

)
+ (−1)k Ĝ2,1

(a
2
, t ′

)
= e−Âk (ωn)a

[
Ĝ1,1

(
−

a
2
, t ′

)
+ (−1)k Ĝ2,1

(
−

a
2
, t ′

)]
+

1
2i

[
sign

(a
2
+ t ′

)
+ sign

(a
2
− t ′

)]
e−Âk (ωn)( a2 −t

′). (5.9)
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The Green’s functions Ĝ1,1 (a/2, t ′) and Ĝ2,1 (a/2, t ′) should be calculated using the formulae (5.4)
and (5.5). The formula (5.2) should be used with the aim to calculate the Green’s functions Ĝ1,1 (−a/2, t ′)
and Ĝ2,1 (−a/2, t ′). Thus, the boundary condition (5.9) enables us to derive the equalities(

C∗1 + C∗4(−1)k
) [

C4(−1)kα2(t ′) + C1γ2(t ′)
]
+

1
2iω̃n

[
ωn + ω̃nsign

(a
2
− t ′

)]
e−ω̃n |t′− a

2 |

=

{
coshΩka −

ωn

Ωk
sinhΩka

} {
γ1(t ′) + (−1)kα1(t ′) +

1
2iω̃n

[
ωn − ω̃nsign

(a
2
+ t ′

)]
e−ω̃n |t′+ a

2 |
}

−
i∆1 |Ak |

2 sinhΩka
Ωk

{
−b∗γ1(t ′) + (−1)kbα1(t ′) − b∗

ωn − ω̃n

2iω̃n
e−ω̃n |t′+ a

2 |
}

+
1
2i

[
sign

(a
2
+ t ′

)
+ sign

(a
2
− t ′

)] {
coshΩk

(a
2
− t ′

)
−
ωn

Ωk
sinhΩk

(a
2
− t ′

)}
(5.10)

and

(
C1 + C4(−1)k+1

) {
C∗4(−1)k

b∗

(
α2(t ′) +

ωn + ω̃n

2iω̃n
e−ω̃n |t′− a

2 |
)
+

C∗1
b

(
γ2(t ′) +

ωn + ω̃n

2iω̃n
e−ω̃n |t′− a

2 |
)}

=
i∆1 |Ak |

2 sinhΩka
Ωk

{
γ1(t ′) + (−1)kα1(t ′) +

1
2iω̃n

[
ωn − ω̃nsign

(a
2
+ t ′

)]
e−ω̃n |t′+ a

2 |
}

+

{
coshΩka +

ωn

Ωk
sinhΩka

} {
−b∗γ1(t ′) + (−1)kbα1(t ′) − b∗

ωn − ω̃n

2iω̃n
e−ω̃n |t′+ a

2 |
}

+
1
2i

[
sign

(a
2
+ t ′

)
+ sign

(a
2
− t ′

)] i∆1 |Ak |
2 sinhΩk

(
a
2 − t ′

)
Ωk

. (5.11)

The equalities (5.10) and (5.11) form a closed system of four linear equations for the following unknowns:
α1(t ′), α2(t ′), γ1(t ′) and γ2(t ′). To find the Green’s functions G1,1

ωn
(t, t ′) and G2,1

ωn
(t, t ′), the calculated

constants α1(t ′) and γ1(t ′) should be substituted into a formula (5.8). The other Green’s functions can be
found by the substitutions ϕ→ −ϕ, G1,1

ωn
(t, t ′) → G2,2

ωn
(t, t ′) and G2,1

ωn
(t, t ′) → G1,2

ωn
(t, t ′).

6. Current-phase relation

The four Green’s functions should be calculated in the cases t = t ′ = −a/2 and t = t ′ = a/2. The
obtained results should be substituted into the formula (4.3). As a result, we obtain a dependence of the
current density on the phase difference in the layered superconducting structures of a SIS’IS type

j
(

d
2

)
= πev0N(0)T

∑
ωn

1∫
0

[
D sin ϕ + 1+D

8 Eωn (x, a, ϕ)
]
∆2xdx

ω2
n + ∆

2
[
1 − D sin2 ϕ

2
]
+ Fωn (x, a, ϕ)

. (6.1)

In the formula (6.1), there are notations

Eωn (x, a, ϕ) = 2(coshΩ1a coshΩ2a − 1) sin ϕ

+
4∆1
∆
|A1 |

2ω̃n
sinhΩ1a coshΩ2a

Ω1
sin

ϕ

2
+

4∆1
∆
|A2 |

2ω̃n
coshΩ1a sinhΩ2a

Ω2
sin

ϕ

2

+

[
4∆1
∆

(
|A1 |

2 + |A2 |
2
)
ω2
n sin

ϕ

2
− 2

(
ω2
n − ∆

2
1 |A1 |

2 |A2 |
2
)

sin ϕ
]

sinhΩ1a sinhΩ2a
Ω1Ω2

, (6.2)
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Figure 1. The current-phase relation for the temperature T = 0.5T ′c and the dielectric layer transparency
D = 0.1 with various values of an intermediate layer thickness d. T ′c is the critical temperature of an
intermediate layer S’.

Fωn (x, a, ϕ) =
{
ω2
n +
∆2

2

[
1 + cos2 ϕ

2

]}
(coshΩ1a coshΩ2a − 1)

+
ω̃n

Ω1

(
ω2
n + ∆1∆|A1 |

2 cos
ϕ

2

)
sinhΩ1a coshΩ2a +

ω̃n

Ω2

(
ω2
n + ∆1∆|A2 |

2 cos
ϕ

2

)
coshΩ1a sinhΩ2a

+
1
Ω1Ω2

{ (
ω2
n + ∆1∆|A1 |

2 cos
ϕ

2

) (
ω2
n + ∆1∆|A2 |

2 cos
ϕ

2

)
+
∆2

2

(
ω2
n + ∆

2
1 |A1 |

2 |A2 |
2
)

sin2 ϕ

2

}
sinhΩ1a sinhΩ2a. (6.3)

It is significant to note that the current-phase relation (6.1) is the main result of our investigation. It
was found that the formula (6.1) can be used with the aim to consider the particular cases.

In figure 1, the dependence of the dimensionless current density j/ j0 on a phase difference ϕ
in the layered superconducting structures of a SIS’IS type is presented using the current-phase rela-
tion (6.1) obtained in our investigation. All required calculations are performed considering the relation-
ship Tc = 7.4T ′c between the critical temperatures Tc and T ′c . It is significant to note that the above
presented relationship is a relationship between the critical temperatures of niobium (Nb) and aluminium
(Al) in the junctions of a Nb|Al|Nb type. The current density j is also dependent on the thickness d of
an intermediate layer S’. The particular cases d = 0.014ξ0, d = 0.044ξ0 and d = 0.1ξ0 are analyzed
with the aim to obtain the figure 1. A common feature of the three intermediate layer thicknesses is the
dimensionless current density j/ j0 with the maximum shifted into the area ϕ > π/2. It is also important
to note that the absolute value of the critical current in the case of the thickness d = 0.044ξ0 is higher
than the corresponding absolute value of the critical current in case of the thickness d = 0.014ξ0. This
interesting fact can be explained by the dependence of the dielectric layer transparency D on the thickness
d of the intermediate layer S’ because the above-mentioned dependence is a periodic function. For certain
values of the intermediate layer thickness d, the dielectric layer transparency D can be equal to 1 (see
figure 2). These are the so-called resonant tunneling modes in the layered superconducting structures of a
SIS’IS type. The most striking manifestation of the resonant tunneling modes can be observed in figure 3
containing the dependence of the critical current at the junction on the thickness d of the intermediate
layer S’. The current density j is presented via the dielectric layer transparency D. However, the current
density j is also presented via the functions Eωn (x, a, ϕ) and Fωn (x, a, ϕ). As a result, the damped
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Figure 2.The dependence of the dimensionless critical current jc/ j0 on the thickness d of the intermediate
layer S’.
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Figure 3. The dependence of the dielectric layer transparency D on the thickness d of the intermediate
layer S’.

oscillation of the critical current can be observed. When the thickness d of the intermediate layer S’ is
increased, the average value of the critical current decreases.

Let us consider a particular case ∆1 = 0. As a result, the superconducting junction of a SINIS type is
obtained. Formula (6.1) can be transformed into the formula

j
(

d
2

)
= 2πev0N(0)T

∑
ωn

1∫
0

∆2D sin ϕ
(ω̃2

n + ω
2
n) cosh 2ωna + 2ω̃nωn sinh 2ωna + ∆2(R + D cos ϕ)

xdx. (6.4)
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In the asymptotical case R � 1, formula (6.4) can also be considered. This enables us to neglect the
reflection coefficient R. We obtain a superconducting junction of a SNS type. The current-phase relation
is defined by the formula

j
(

d
2

)
= 2πev0N(0)T

∑
ωn

1∫
0

∆2 sin ϕ
(ω̃2

n + ω
2
n) cosh 2ωna + 2ω̃nωn sinh 2ωna + ∆2 cos ϕ

xdx.

In the asymptotical case d � ξ0, formula (6.1) can be transformed into the formula

j
(

d
2

)
=
π∆2

8
ev0N(0)T

∑
ωn

1∫
0

x(1 + D)
Ẽωn (x, a, ϕ)

F̃ωn (x, a, ϕ)
dx

containing the notations

Ẽωn (x, a, ϕ) = 2 sin ϕ +
4∆1
∆

(
|A1 |

2

Ω1
+
|A2 |

2

Ω2

)
ω̃n sin

ϕ

2

+
1
Ω1Ω2

[
4∆1
∆

(
|A1 |

2 + |A2 |
2
)
ω2
n sin

ϕ

2
− 2

(
ω2
n − ∆

2
1 |A1 |

2 |A2 |
2
)

sin ϕ
]
,

F̃ωn (x, a, ϕ) = ω
2
n +
∆2

2

[
1 + cos2 ϕ

2

]
+
ω̃n

Ω1

(
ω2
n + ∆1∆|A1 |

2 cos
ϕ

2

)
+
ω̃n

Ω2

(
ω2
n + ∆1∆|A2 |

2 cos
ϕ

2

)
+

1
Ω1Ω2

{(
ω2
n + ∆1∆|A1 |

2 cos
ϕ

2

) (
ω2
n + ∆1∆|A2 |

2 cos
ϕ

2

)
+
∆2

2

(
ω2
n + ∆

2
1 |A1 |

2 |A2 |
2
)

sin2 ϕ

2

}
.

In the asymptotical case d � ξ0, the functions (6.2) and (6.3) are considered to be infinitesimal
quantities. The approximations Eωn (x, a, ϕ) � 0 and Fωn (x, a, ϕ) � 0 can be used with the aim to
transform formula (6.1). A well-known identity

T
∑
ωn

1
ω2
n + α2

=
1

2α
tanh

α

2T

enables us to derive the current-phase relation [21]

j
(

d
2

)
=
π

2
ev0N(0)

1∫
0

©«
∆xD(x)dx√

1 − D(x) sin2 ϕ
2

tanh
∆

√
1 − D(x) sin2 ϕ

2

2T

ª®®¬ sin ϕ.

7. Conclusions

In this paper, a theoretical study is devoted to considering a three-dimensional superconducting
junction of a SIS’IS type. It is significant to note that an order parameter is considered to be a piecewise
constant function. It is understood that a model with a piecewise constant order parameter cannot be
applicable at the temperatures close to the critical temperature Tc . The spatial behavior of an order
parameter must always be considered at the temperatures close to the critical temperature Tc . As a result,
a self-consistency condition must be applied. Using the Matsubara Green’s functions, a mathematical
description of a three-dimensional SIS’IS junction is realized by the second order differential equations
that are also known as the Gorkov’s equations. It was found that the model with a piecewise constant
order parameter enables one to transform the Gorkov’s equations into the quasiclassical equations for the
Green’s functions in a t-representation. It is significant to note that the quasiclassical equations are the
first order differential equations. This is the main advantage of quasiclassical equations. The proposed
calculation scheme enables one to obtain a new analytical expression for the dependence of the current
density on the phase difference. It was also found that a new current-phase relation is much different
from a sinusoidal current-phase relation. It is also important to note that a new current-phase relation is
true for arbitrary values of the dielectric layer transparency and the intermediate layer thickness.

23701-12



Current-phase relation in layered superconducting structures of SIS’IS type

References

1. Radović Z., Paltoglou V., Lazarides N., Flytzanis N., Eur. Phys. J. B, 2009, 69, 229–236,
doi:10.1140/epjb/e2009-00133-4.

2. Nevirkovets I. P., Shafranjuk S. E., Phys. Rev. B, 1999, 59, 1311–1317, doi:10.1103/PhysRevB.59.1311.
3. Brinkman A., Golubov A. A., Phys. Rev. B, 2000, 61, 11297–11300, doi:10.1103/PhysRevB.61.11297.
4. Feynman R. P., Leighton R. B., Sands M., Feynman Lectures on Physics, Vol. 3, Addison-Wesley,

Boston, 1965.
5. Barone A., Paterno G., Physics and Applications of the Josephson Effect, Wiley, New York, 1982.
6. Mei T., Int. J. Mod. Phys. B, 2002, 16, No. 24, 3697–3705, doi:10.1142/S0217979202013080.
7. Carapella G., Costabile G., de Luca R., Pace S., Polcari A., Soriano C., Physica C, 1996,

259, 349–355, doi:10.1016/0921-4534(96)00115-3.
8. Ohta H., A Self-Consistent Model of the Josephson Gunction, IC-SQUID 76, Walter de Gruyter,

Berlin, 1976, 35–49.
9. Shafranjuk S. E., Phys. Rev. B, 2006, 74, 024521 (9 pages), doi:10.1103/PhysRevB.74.024521.

10. Pepe G. P., Ammendola G., Peluso G., Barone A., Appl. Phys. Lett., 2000, 77, 447–449,
doi:10.1063/1.127005.

11. De Luca R., Eur. Phys. J. B, 2013, 86, No. 6, 294 (8 pages), doi:10.1140/epjb/e2013-40095-2.
12. Nevirkovets I. P., Evetts J. E., Blamire M. G., Phys. Lett. A, 1994, 187, No. 1, 119–126,

doi:10.1016/0375-9601(94)90876-1.
13. Kupriyanov M. Yu., Brinkman A., Golubov A. A., Siegel M., Rogalla H., Physica C, 1999, 326–327,

16–45, doi:10.1016/S0921-4534(99)00408-6.
14. Nevirkovets I. P., Ketterson J. B., Lomatch S., Appl. Phys. Lett., 1999, 74, No. 11, 1624–1626,

doi:10.1063/1.123637.
15. Schulze H., Behr R., Müller F., Niemeyer J., Appl. Phys. Lett., 1998, 73, No. 7, 996–998,

doi:10.1063/1.122064.
16. Nevirkovets I. P., Evettes J. E., Blamire M. G., Barber Z. H., Goldobin E., Phys. Lett. A, 1997, 232,

299–304, doi:10.1016/S0375-9601(97)00388-5.
17. Andreev A. F., Sov. Phys. JETP, 1966, 22, No. 2, 455–458.
18. Svidzinskyi A. V., Spatially Inhomogeneous Problems in the Theory of Superconductivity, Nauka,

Moscow, 1982, (in Russian).
19. Pastukh O. Y., Sakhnyuk V. E., Svidzinsky A. V., Phys. Lett. A, 2018, 382, 2149–2155,

doi:10.1016/j.physleta.2018.05.035
20. Pastukha O. Yu., Shutovskii A. M., Sakhnyuk V. E. Low Temp. Phys., 2017, 43, No. 6, 664–669,

doi:10.1063/1.4985972
21. Shygorin P., Svidzynskyi A., Materian I., Ukr. J. Phys., 2018, 62, No. 6, 518–525,

doi:10.15407/ujpe62.06.0518.

23701-13

https://doi.org/10.1140/epjb/e2009-00133-4
https://doi.org/10.1103/PhysRevB.59.1311
https://doi.org/10.1103/PhysRevB.61.11297
https://doi.org/10.1142/S0217979202013080
https://doi.org/10.1016/0921-4534(96)00115-3
https://doi.org/10.1103/PhysRevB.74.024521
https://doi.org/10.1063/1.127005
https://doi.org/10.1140/epjb/e2013-40095-2
https://doi.org/10.1016/0375-9601(94)90876-1
https://doi.org/10.1016/S0921-4534(99)00408-6
https://doi.org/10.1063/1.123637
https://doi.org/10.1063/1.122064
https://doi.org/10.1016/S0375-9601(97)00388-5
https://doi.org/10.1016/j.physleta.2018.05.035
https://doi.org/10.1063/1.4985972
https://doi.org/10.15407/ujpe62.06.0518


A. M. Shutovskyi, V. E. Sakhnyuk

Струм-фазова залежнiсть у шаруватих надпровiдних

структурах типу SIS’IS

А.М.Шутовський, В. Є. Сахнюк
Волинський нацiональний унiверситет iменi Лесi Українки, просп. Волi, 13, 43000 Луцьк, Україна
Дослiджено залежнiсть густини струму вiд рiзницi фаз, розглядаючи шаруватi надпровiднi структури типу
SIS’IS. Побудовано квазiкласичнi рiвняння для функцiй Грiна в t-представленнi з метою спрощення обра-
хункiв. Параметр впорядкування подано у виглядi кусково-сталої функцiї. Розглянуто загальний випадок,
не накладаючи нiяких обмежень на прозорiсть дiелектричного прошарку та товщину промiжного над-
провiдника. Виявилося, що новий аналiтичний вираз для струм-фазової залежностi мiстить у собi низку
ранiше вiдомих результатiв для частинних випадкiв.
Ключовi слова: функцiя Грiна, параметр впорядкування, густина струму, рiзниця фаз
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