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Structure and thermodynamics in restricted primitive model electrolytes are examined using three recently
developed versions of a linear form of the modified Poisson-Boltzmann equation. Analytical expressions for
the osmotic coefficient and the electrical part of the mean activity coefficient are obtained and the results
for the osmotic and the mean activity coefficients are compared with that from the more established mean
spherical approximation, symmetric Poisson-Boltzmann, modified Poisson-Boltzmann theories, and available
Monte Carlo simulation results. The linear theories predict the thermodynamics to a remarkable degree of
accuracy relative to the simulations and are consistent with the mean spherical approximation and modified
Poisson-Boltzmann results. The predicted structure in the form of the radial distribution functions and themean
electrostatic potential also compare well with the corresponding results from the formal theories. The excess
internal energy and the electrical part of the mean activity coefficient are shown to be identical analytically for
the mean spherical approximation and the linear modified Poisson-Boltzmann theories.
Key words: restricted primitive model, structure, osmotic coefficient, activity coefficient, linear modified

Poisson-Boltzmann theory

1. Introduction

One of the more enduring theories in the physics and chemistry of Coulomb fluids over the past
(nearly) hundred years has been the theory of Debye and Hückel (DH) [1], which is the linearized form
of the classical Poisson-Boltzmann (PB) theory. The intuitive simplicity of the DH concept together with
the ease of its implementation have been the theory’s main attractions. For instance, almost all variables
required for a structural and thermodynamic description of an electrolyte solution occur in closed forms
in the DH and the Debye-Hückel Limiting Law (DHLL) theory [2]. Formal statistical mechanical analysis
(see for example, [3]) and subsequent machine simulations [4–9] over the years have brought out the
deficiencies of the DH, the principal ones being the neglect of the ionic exclusion volume and the ionic
correlation terms. Some of the more recent, salient references, and reviews are given by [10–15].

The potential approach to the theory with its origins in the DH mechanism has evolved over the
decades through the pioneering work of Kirkwood in the 1930s [3] and later through the works of
other authors [16–22] to the modified Poisson-Boltzmann (MPB) equations of today (see for example,
reference [22]). A popular alternate route is based on the liquid structure integral equations such as the
hypernetted chain (HNC) [23, 24] and the mean spherical approximation (MSA) [25–27]. The density
functional theory (DFT) has also been explored [28, 29].

A widely used physical model used in conjunction with the above statistical mechanical theories
in studies of electrolytes has been the primitive model (PM), viz., arbitrary sized charged rigid spheres
moving in a dielectric continuum [10]. The solvent is thus structureless being characterized by a dielectric
constant or relative permittivity εr . If the ion sizes are equal, then we have the restricted primitive model
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(RPM). The RPM is also the underlying model of the DH theory, since a RPM with the vanishing ion
radius, except perhaps for the size of the central ion, would lead to the latter. The HNC and the MPB
have been two of the most successful theories of PM or RPM electrolytes in the electrolyte solution
regime having been applied to a wide variety of situations under different physical conditions. The
MPB formalism set in the PM (or the RPM) yields a highly non-linear differential equation whose
solution requires involved numerical techniques [18] and thus may not be readily available. Fortunately,
as Outhwaite [30] showed a linear version of the MPB equation is tractable analytically leading to a
closed form expression for the mean electrostatic potential ψ.

Since the analysis of Outhwaite stated above, little has been reported in the literature on linear
theories based on the MPB, although a lot of work has been done with the MSA, viz., the works by
Blum (see for example, references [25, 27]), and by Outhwaite and Hutson [26], apart from the obvious
DH. In addition to being easier to use, linear theories can offer valuable insights and understanding
of the properties of systems being examined albeit at the cost of a little accuracy. Linear solutions
can also be valuable in iterative numerical solution of corresponding non-linear equations. In a recent
paper, Outhwaite and Bhuiyan [31] studied the linear MPB (LMPB) in some detail and formulated three
versions of the equation, LMPBi, the index i (i = 1,2,3) referring to special characteristics of a particular
equation. Significantly, these equations yielded an analytical solution for the ψ, which, for 1:1 valency
RPM electrolytes, compared well with that from the MSA and MPB for a range of concentrations,
and symmetric Poisson-Boltzmann (SPB) theory [32] at low concentrations. Linearization retained the
aspects of the MPB fluctuation potential terms since the linear ψ’s also showed damped oscillations at
higher concentrations beyond the critical yc(= κa) = 1.2412 (κ being the Debye-Hückel constant and
a the common ionic diameter). In simple terms, fluctuation potential is the potential formulation of the
inter-ionic correlations and such oscillations are signatures for inter-ionic correlations, which are not
seen with the mean-field DH or the SPB.

In view of the comparative behaviour of LMPB ψ with that from the SPB, MPB, and MSA theories
for a broad range of concentrations of RPM electrolytes seen in [31], we thought it of interest to apply
the LMPB approach to an analysis of the structure and thermodynamics in these systems. As we will
see later, the LMPB expressions for thermodynamic quantities such as the osmotic coefficient φ and
the electrical contribution to the mean activity coefficient γ(el)± develop into closed analytical forms,
which make their numerical evaluation straightforward. Addition of the hard-core component γ(HS)± to
the γ(el)± leads to the (full) γ±. It is worth mentioning here that the knowledge of φ and γ± has practical
significance in many chemical processes involving electrolyte solutions in industry and bio-sciences (see
for example, [33, 34]). Relevant to this work, we note also that recentlyQuiñones et al. [35]made extensive
comparisons of the SPB and MPB φ and γ± with the corresponding RPM or PMMonte Carlo (MC) data
of Abbas et al. [36, 37] for a wide range of solution concentrations. The MPB, and to a lesser extent,
the SPB showed a very good agreement with the simulations. It would be interesting to see how well the
LMPB predictions compare with these results. Being experimentally measurable [38], the measured φ
and γ± can also provide a good assessment of theories.

The organization of this paper is as follows. In the following section we outline the principal equations
of the LMPB theories pertinent to the calculation of structure and thermodynamics of electrolytes. In
section 3 we present and discuss the results of this work, while in section 4 some general conclusions are
drawn.

2. Model and methods

2.1. Model

The model electrolyte system employed in this work is an aqueous RPM electrolyte at around room
temperature. This is consistent with one of the models used by Abbas et al. [36, 37] in their MC
simulations, the other being the PM.
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Figure 1. (Colour online) MC and theoretical — LMPB1, LMPB2, LMPB3, MSA, SPB, and MPB
osmotic coefficient (upper panel), and natural logarithm of the mean activity coefficients (lower panel)
as functions of the square root of the solution concentration for NaF using RPM. In the theoretical
calculations, the common ionic radius is rNa+ = rF− = 1.435 ×10−10 m, taken from the MC simulation
data of references [36, 37]. The MC data are from the same references.

The various particle-particle interaction potentials are

ui j(r) =

{
∞ r < (ri + rj)

e2ZiZ j

(4πε0εr r)
r > (ri + rj)

. (1)

Here, Zs and rs are the valency and radius of ion species s, while r is the separation between two ions
of types i and j, respectively. Parameter ε0 is the vacuum permittivity and |e| is the magnitude of the
electronic charge. For the RPM we have rs = a/2 for all s.

2.2. Methods

The linearization of the MPB equation and the subsequent development of the LMPB equations for
the RPM electrolyte have been discussed in details in [31] and will not be repeated here. We restrict
ourselves to outlining the salient equations in these theories.

The Poisson equation for the ψi(1; 2) at the field point r2 in presence of an ion i at r1 is

∇2ψi(1; 2) = −
|e|
ε0εr

∑
s

Zsρsgis(1, 2). (2)

Here, gis(1, 2) is the radial distribution function for the ion pair i and s separated by ris(= r) = |r1 − r2 |,
with ρs being the mean number density of ions of type s. The operator ∇ operates on the coordinates
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of the field point 2. It is convenient to use the transformation ui = rψi(1; 2), whence the above equation
transforms to

d2ui
dr2 = −

|e|
ε0εr

∑
s

Zsρsrgis(r). (3)

In theMPB approximation, the gis has been developed for theRPMas (see for example, reference [22])

gis = g
0
is exp

{
−

(
|e|β

2

)
[ZsL(ui) + ZiL(us)]

}
. (4)

The quantity g0
is above is the exclusion volume term, which is the radial distribution function for two

discharged ions in a sea of fully charged ions, viz., g0
is = gis(Zi = Zs = 0), β = 1/(kBT), with kB the

Boltzmann’s constant and T the temperature. The operator L(u) is given by

L(u) =
1

2r(1 + y)

u(r + a) + u(r − a) + κ

r+a∫
r−a

u(R)dR
 , (5)

where y = κa, and κ = [(e2β/(ε0εr ))
∑

s Z2
s ρs]

1/2.
Linearization of the non-linear MPB equation [equation (4) substituted in (3)] above yields the

following

d2ui(r)
dr2 = g0

i j κ
2rL(u), r > a. (6)

Within the charge free space 0 < r < a, the solution of the Laplace equation d2ui (r)
dr2 = 0 is as follows:

ui(r) = r
(

dui
dr

)
r=a

+
|e|Zi

4πε0εr
, 0 6 r 6 a. (7)

Equation (6) is valid for both symmetric and asymmetric valency systems. For instance, for the linear
theory with equal ion sizes we have Ziu j = Z jui , so that in using equation (4) in equation (3) with the
expression (5) for L(u), we have the terms such as ZiL(u j), which can be written as Z jL(ui). Hence, the
equation follows.

The general solution of the linear MPB equation is governed by the roots of a transcendental equation
(cf. reference [31])

z cosh(z) + y sinh(z) = z3 (1 + y)
y2 . (8)

Taking the first two roots with the smallest real part, as these give the physical solution, we can see that
for small y there are two real roots that coalesce at the critical yc = 1.2412 for symmetric valencies. For
y > yc the roots form a complex conjugate pair becoming imaginary at a second critical point yI = 7.83.

Apart from the continuity of u and du/dr at boundaries such as r = a, there exists the exact condition,
viz., the local electroneutrality

Zi = −4π
∑
s

Zsρs

∞∫
a

r2gis(r)dr . (9)

Another useful relation is the Stillinger-Lovett (SL) second moment condition [39], although it does not
hold near the critical point of the electrolyte. The SL condition can be written as [40]

|e|β
∑
s

Zsρs

∫
ψsdV = 1. (10)

In [31], the solutions to the LMPB equation were classified depending on the boundary conditions and
the exact conditions a solution satisfies.
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Figure 2. (Colour online) MC and theoretical — LMPB1, LMPB2, LMPB3, MSA, SPB, and MPB
osmotic coefficient (upper panel), and natural logarithm of the mean activity coefficients (lower panel)
as functions of the square root of the solution concentration for NaCl using RPM. In the theoretical
calculations, the common ionic radius is rNa+ = rCl− = 1.745 ×10−10 m, taken from the MC simulation
data of references [36, 37]. The MC data are from the same references.

2.2.1. LMPB1, LMPB2 and LMPB3 equations

The LMPB1 equation satisfies the electroneutrality and the SL conditions, while the LMPB2 satisfies
the neutrality and the continuity of u(r) at r = a. In addition to the electroneutrality, and the SL conditions,
the LMPB3 satisfies the continuity of u(r) and du/dr at both r = a and r = 2a. This occurs since a
more accurate solution for u(r) can be derived in the region a 6 r 6 2a, for example, by using the linear
solution (7) in equation (5) to obtain L in a 6 r 6 2a. We refer the reader to [31] for further details.

For y 6 yc , the LMPB1 and LMPB2 solutions can be written as

ui =
Zi |e|

4πε0εr
[A1 exp(−α1r/a) + A2 exp(−α2r/a)] , r > a, (11)

where α1, α2 are the two real roots of the transcendental equation (8). The constants A1, A2 take on
different forms for LMPB1 and LMPB2. For instance, for LPMB1 we have

A1 = exp(α1)[α
2
1G2 − ω(1 + α2)]/D,

A2 = exp(α2)[−α
2
2G1 + ω(1 + α1)]/D,

D = α2
1(1 + α1)G2 − α

2
2(1 + α2)G1, ω = 6α2

1α
2
2/y

2,

G j = α
3
j + 3α2

j + 6αj + 6, j = 1, 2, (12)
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Figure 3. (Colour online) MC and theoretical — LMPB1, LMPB2, LMPB3, MSA, SPB, and MPB
osmotic coefficient (upper panel), and natural logarithm of the mean activity coefficients (lower panel)
as functions of the square root of the solution concentration for HCl using RPM. In the theoretical
calculations, the common ionic radius is rH+ = rCl− = 2.065 ×10−10 m, taken from the MC simulation
data of references [36, 37]. The MC data are from the same references.

while for LMPB2 we have

A1 = b2 exp(α1)/D,
A2 = −b1 exp(α2)/D,
D = b2(1 + α1) − b1(1 + α2),

bj =
2α2

j

λ
− (2 + y)αj − 2(1 + y) −

2y
αj
− 2

(
1 −

y

αj

)
exp(−αj), j = 1, 2,

λ =
y2

2(1 + y)
. (13)

The LMPB3 solution for this range of y has not been given in [31].
For the range yc < y < yI , again the LMPB1 and LMPB2 solutions have the common form

ui = (|e|Zi/4πε0εr )A exp[−α(r/a − 1)] cos[β(r/a − 1) − B], r > a, (14)

where α and β are now the real and imaginary parts of the complex conjugate pair of roots of equation (8).
Furthermore, A =

√
X2 + Y2/D, B = tan−1(Y/X), R = α2 − β2 and S = α2 + β2.

In the LMPB1 the constants X , Y are
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Figure 4. (Colour online) MC and theoretical — LMPB1, LMPB2, LMPB3, MSA, SPB, and MPB
osmotic coefficient (upper panel), and natural logarithm of the mean activity coefficients (lower panel)
as functions of the square root of the solution concentration for LiI using RPM. In the theoretical
calculations, the common ionic radius is rLi+ = rI− = 2.325 ×10−10 m, taken from the MC simulation
data of references [36, 37]. The MC data are from the same references.

G = G1 + iG2,

G1 = α
3 − 3αβ2 + 3α2 − 3β2 + 6α + 6,

G2 = 3α2β − β3 + 6αβ + 6β,

H =
(

6
y2

)
S2,

X = βH − RG2 + 2αβG1,

Y = (1 + α)H − RG1 − 2αβG2,

D = (1 + α)X − Y β. (15)

For the LMPB2 we have from equation (12) b1 = Y + iX, b2 = Y − iX , so that

Y =
2R
λ
− (2 + y)α − 2(1 + y) −

2yα
S
− 2 exp(−α)(p cos β + q sin β),

X =
4αβ
λ
− (2 + y)β + 2q − 2 exp(−α)(q cos β − p sin β),

D = (1 + α)X − Y β,
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λ =
y2

2(1 + y)
, p = 1 −

yα

S
, q =

qy
S
. (16)

For the LMPB3 and for the range yc < y < yI , the solution is

ui =
(
|e|Zi

4πε0εr

) (
y2

2(1 + y)

)
[DX + EY + µ(r) + c8η(r)] , a 6 r 6 2a,

ui =
(
|e|Zi

4πε0εr

)
A exp(−αr/a) cos (βr/a − B), r > 2a, (17)

where A = 2
√
(X2 + Y2) and B = tan−1(Y/X). The quantities X , Y , D, E , µ(r) and η(r) are very involved

and we refer the reader to [31] for details.

2.2.2. Structure and thermodynamics

For the LMPB formulations, the pair distribution gi j can be constructed as

gi j(r) = g0
i j exp

{
−
|e|Z j

g0
i j κ

2r

(
d2ui
dr2

)}
, (18)

which gives a non-linear gi j . Another possibility would be to use a linearized version of the above, viz.,

glineari j (r) = g0
i j −
|e|Z j

κ2r

(
d2ui
dr2

)
. (19)

The expression (18) is analogous to theDHX and EXP theories [2, 4, 18, 41, 42], while the expression (19)
is analogous to the MSA [26]. To avoid confusion, in the rest of this paper we refer to this linear form as
LMPBi (linear) gi j (i = 1, 2, 3).

A consistency check on the g’s may be carried out through the integral

ūi =
|e|
ε0εr

∑
s

Zsρs

∞∫
r

(r − t)tgis(t)dt . (20)

We note that differentiating this twice with respect to r immediately yields the requisite Poisson’s
equation for ūi . Hence, the extent of agreement between ui and ūi for an LMPB theory would be a
measure of the consistency of the particular gi j .

The osmotic coefficient φ can be calculated from the relation (see for example, reference [18])

φ = 1 +
2π
3ρ

∑
i

∑
s

ρiρsgis(a)a3 +
βU(ex)

3ρ
, (21)

where ρ =
∑

i ρi and U(ex) is the excess internal energy, viz.,

U(ex) =
|e|
2

∑
s

Zsρs

(
ψs(a) −

|e|Zs

4πε0εra

)
. (22)

Calculation of the activity coefficient is most conveniently achieved through the Günteberg charging
process where the ion at the origin is charged up from zero to its full charge in a sea of charged ions. The
individual ionic activity has been derived as [18, 20]

ln γi = ln γ(HS)i + ln γ(el)i . (23)
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Figure 5. (Colour online) MC and theoretical — LMPB1, LMPB2, LMPB3, MSA, SPB, and MPB
osmotic coefficient (upper panel), and natural logarithm of the mean activity coefficients (lower panel)
as functions of the square root of the solution concentration for MgCl2 using RPM. In the theoretical
calculations, the common ionic radius is rMg2+ = rCl− = 2.485 ×10−10 m, taken from the MC simulation
data of references [36, 37]. The MC data are from the same references.

The hard sphere part ln γ(HS)s was analyzed by Ebeling and Scherwinski [43], while the charging process
gives for the electrical part [20]

ln γ(el)i = |e|Ziβ

1∫
0

lim
r→0

(
ψi −

λ |e|Zi

4πε0εrr

)
dλ. (24)

Using now equations (7), (24) with the LMPB solutions (11), (14) and (17) it is straightforward to
calculate the electrical part of the individual activity coefficient for these theories. For example, for the
LMPB1 and LMPB2 we have

ln γ(el)i =

{
− 1

2 Z2
i Γ (A1α1 exp(−α1) + A2α2 exp(−α2)) y < yc
− 1

2 Z2
i Γ (A(α cos B − β sin B)) yc < y < yI

, (25)

where Γ = (|e|2β)/(4πε0εra), with the rest of the constants being given in equations (12), (15) for
LMPB1 and equations (13), (16) for LMPB2.

For LMPB3 we have

ln γ(el)i =
1
2

Z2
i Γ

(
y2

2(1 + y)

) {
X

(
dD
dx

)
x=1
+ Y

(
dE
dx

)
x=1
+

(
dµ
dx

)
x=1
+ c8

(
dη
dx

)
x=1

}
, (26)
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Figure 6. (Colour online) The LMPB1, LMPB2, MSA, SPB, and MPB reduced mean electrostatic
potential ψ∗(r/a)[= (β |e|)ψ(r/a)] (upper panel) and the radial distribution function gi j (r/a) (lower
panel) as functions of r/a for a 1:1 RPM electrolyte at c = 0.01 mol/dm3) (y = 0.13985). The gi j (r/a)
from the linearized LMPB1 and LMPB2 theories are also shown in the lower panel.

with x = r/a. The mean activity coefficient follows from the individual coefficients [2]

ln γ± =
|Z+ | ln γ− + |Z− | ln γ+

|Z+ | + |Z− |
. (27)

2.2.3. Equivalence of lnγ(el)± = βU(ex)/ρ

In the course of these calculations we have observed an equivalence of the excess internal energy
with the natural logarithm of the electrical component of the mean activity coefficient for the LMPB and
the MSA theories, viz.,

βU(ex)

ρ
= ln γ(el)± , (28)

where ρ =
∑

s ρs.
Here, we outline an argument why this is expected for a linear theory. Such an equivalence has recently

been observed byKjellander with regard to hisMultiple-Decay ExtendedDebye-HückelMDE-DH theory
of electrolytes [44].

From equation (7) we have

ψi(r) =
(

dui
dr

)
r=a

+
|e|Zi

4πε0εrr
(29)
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Figure 7. (Colour online) TheLMPB1,LMPB2, LMPB3,MSA, SPB, andMPB reducedmean electrostatic
potentialψ∗(r/a)[= (β |e|)ψ(r/a)] (upper panel) and the radial distribution function gi j (r/a) (lower panel)
as functions of r/a for a 1:1 RPM electrolyte at c = 1 mol/dm3 (y = 1.3985).

with (
dui
dr

)
r=a

= a
(

dψi
dr

)
r=a

+
ui(a)

a
. (30)

Using the Gauss’s law for the electric field −(dψi/dr)r=a, and assuming that ui(a) is linear in ei(= |e|Zi),
equation (29) can be written as

ψi(r) =
|e|Zi

4πε0εrr
+
|e|ZiC

4πε0εra
, (31)

where C is independent of ei . Combining now equations (22) and (31) we get

U(ex) =
e2C

8πε0εra

∑
s

Z2
s ρs = −

e2ρCZ+Z−
8πε0εra

, (32)

for a single electrolyte. In writing the above we have invoked the global neutrality
∑

s Zsρs = 0. Now,
from equations (24) and (31), we immediately have

ln γ(el)i =
e2βZ2

i C
8πε0εra

. (33)
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Figure 8. (Colour online) TheLMPB1,LMPB2, LMPB3,MSA, SPB, andMPB reducedmean electrostatic
potentialψ∗(r/a)[= (β |e|)ψ(r/a)] (upper panel) and the radial distribution function gi j (r/a) (lower panel)
as functions of r/a for a 1:1 RPM electrolyte at c = 4 mol/dm3 (y = 2.797).

Hence, using equation (27) the mean activity can be written as

ln γ(el)± = −
e2βCZ+Z−
8πε0εra

. (34)

Equation (28) now follows upon eliminating C between the equations (32) and (34).

3. Results and discussion

In presenting the results we include data from the SPB, MPB, and the MSA theories for comparison
purposes. While the MSA results were obtained from the relevant analytic expressions (see, for example,
references [27, 45, 46]), the non-linear SPB and MPB equations were solved numerically using a quasi-
linearization technique [47] used successfully in earlier works [19–21, 32]. The hard sphere part g0

is
was approximated by the Percus-Yevick uncharged pair distributions [48, 49] and their corrections due
to Verlet and Weis [50]. In evaluating the g0

is we used an efficient numerical technique developed by
Perram [51]. Similarly, the hard sphere individual activity coefficient ln γ(HS)s was determined using the
formulations of Ebeling and Scherwinski [43].

Except for one case of asymmetric 2:1 valency system, all calculations reported here are for 1:1
symmetric valency systems at temperature T = 298 K and relative permittivity ε = 78.38, which
corresponds to a water-like solvent. These values are in line with that used in the MC simulations
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Figure 9. (Colour online) The LMPB2 reduced mean electrostatic potential ψ∗(r/a)[= (β |e|)ψ(r/a)]
together with the LMPB2 ψ∗(r/a) taken from equation (20) (upper panel) and the LMPB2 and
LMPB2(linear) radial distribution function gi j (r/a) (lower panel) as functions of r/a for a 1:1 RPM
electrolyte at c = 1 mol/dm3 (y = 1.3985).

of Abbas et al. [36, 37]. The other physical parameters like the common ionic diameter a and the
concentration c were variable and were fitted to the MC system being compared to.

3.1. Thermodynamics

We begin this discussion by considering the results for φ and lnγ± in four 1:1 RPM salt solutions,
viz., NaF, NaCl, HCl, and LiI shown in figures 1, 2, 3, and 4, respectively. Abbas et al. [36, 37] actually
simulated over 100 PM and RPM salts with different valencies 1:1, 2:1, and 3:1 and covering a wide
range of ionic sizes and solution concentrations. We have chosen these four since these encompass a fair
range of ionic size starting from a = 1.435 × 10−10 m for NaF (figure 1) to a = 2.325 × 10−10 m for LiI
(figure 4). We have actually carried out calculations for more 1:1 salts at their MC parameters, where
the results show similar characteristics and are hence not shown here for brevity. The four sets of results
being displayed also constitute a good representative sample.

A striking feature in figures 1–4 is the remarkable consistency of the LMPB curves both among
themselves and with the MC data. Indeed, the results of all the theories including that from the MSA and
the MPB are in very close agreement with each other with only the SPB lnγ± showing some deviation at
the two lower diameters (figures 1 and 2). This behaviour pattern carries over to the 2:1 valency (MgCl2)
situation in figure 5 where again the LMPB theories are at par with the formal theories in reproducing
the MC data.
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Figure 10. (Colour online) The LMPB2 reduced mean electrostatic potential ψ∗(r/a)[= (β |e|)ψ(r/a)]
together with the LMPB2 ψ∗(r/a) taken from equation (20) (upper panel) and the LMPB2 and
LMPB2(linear) radial distribution function gi j (r/a) (lower panel) as functions of r/a for a 1:1 RPM
electrolyte at c = 4 mol/dm3 (y = 2.797).

3.2. Structure

The structural results are presented in figures 6–10. For these calculations, we have used a fixed
value of a = 4.25 ×10−10 m. Figure 6 shows the LMPB1, LMPB2, SPB, MPB, and MSA results for
the reduced mean electrostatic potential ψ∗(= |e|βψ = |e|β)u/r) (upper panel) and the gi j (lower panel)
at the electrolyte concentration c = 0.01 mol/dm3 (y = 0.13985). For the ψ∗, the various curves are
indistinguishable from each other, which is also the case with the gi j’s except for the MSA curves. This
occurs owing to the linear nature of theMSA. The contact values of theMSA gi j’s are underestimated and
generally theMSA curves lie below the others. The unphysical negative values of theMSA coion g around
the contact are noticeable. This is of course a known shortcoming of the MSA at low concentrations. In
the lower panel, we have also plotted the corresponding LMPB1(linear) and LMPB2(linear) gi j’s. It is
interesting, although perhaps not surprising, to note that these linear gi j’s follow the MSA very closely
leading to the coion g’s also becoming negative at and near the contact.

The results at the higher concentrations of c = 1 mol/dm3 (y = 1.3985) and c = 4 mol/dm3

(y = 2.797) are displayed in figures 7 and 8, respectively. In both situations y > yc , and we see the
beginnings of oscillations in the LMPB, MPB, and MSA profiles in figure 7, which, expectedly, become
more pronounced in figure 8. Although not quite as quantitative as they are at the lower c = 0.01 mol/dm3

in figure 6, the LMPB predictions continue to show good qualitative agreement overall with that from
the MPB at these enhanced concentrations. Nonetheless, the differences in the structure can produce
discrepancies in various properties such as thermodynamics via different routes and transport properties,
especially at higher concentrations and valencies.
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The oscillations in the LMPB curves are due to the fact that linearization of the MPB equation retains
the aspects of the fluctuation potential terms. By contrast, no such terms occur in the classical SPB and
hence no oscillations.

A consistency check on the LMPB gi j’s and a comparison of these gi j’s with their linear version are
shown in figures 9 and 10 at c = 1 mol/dm3 (y = 1.3985) and c = 4 mol/dm3 (y = 1.3985), respectively.
For illustrative purposes we only show the results for LMPB2 since the other LMPB1 and LMPB3
results are very similar. In the upper panels, the LMPB2 ψ∗ from equations (14) and (20) are plotted.
The consistency of these ψ∗ at both of these concentrations is noteworthy, and points, in turn, to the
consistency of the approximation made in equation (18). A similar effect is observed with regard to the
non-linear LMPB2 and the linear LMPB2(linear) gi j’s, viz., equations (18) and (19), in the lower panels
with the linear gi j’s showing some discrepancy only near the contact.

4. Conclusion

This work represents a continuation of our earlier study, [31], on the applicability of linear modified
Poisson-Boltzmann theory to the electrolyte solution theory. The main achievement of this paper is
the characterization of thermodynamics of RPM electrolytes using the set of three linear modified
Poisson-Boltzmann theories proposed in [31]. The osmotic and mean activity coefficients predicted by
the LMPB1, LMPB2, and LMPB3 theories for model electrolytes mimicking NaF, NaCl, HCl, LiI, and
MgCl2 solutions are consistent among themselves, and show a very good agreement with those from
the MPB and the MSA theories. The linear results also reproduce the MC data for these systems to a
comparable degree of accuracy.

We have also studied structural aspects of RPM electrolytes at different concentrations through the
mean electrostatic potential and the radial distribution functions as revealed by the LMPB theories.
Again, the results show an overall qualitative or better level of correspondence with the MPB and
MSA data. A notable feature of the LMPB gi j and ψ∗i curves is that they show oscillations at higher
solution concentrations. These oscillations are manifestations of inter-ionic correlations and occur since
linearization of the MPB equation retains the aspects of the (MPB) fluctuation terms in the LMPB
equations as seen in [31]. In contrast, the classical mean-field theories such as the DH and SPB do not
incorporate ionic correlations and as such fail to capture such oscillations.

An interesting finding of the present work is the equivalence of the excess internal energy and the
electrical contribution to the mean activity coefficient for linear theories. In the course of our calculations
we have found this to be true of the LMPB1, LMPB2, LMPB3, and the MSA — all linear theories, and
under all physical conditions. This has also been observed by Kjellander [44] with his MDE-DH theory
of electrolytes. We have outlined here a general argument as to why this should necessarily be so for all
linear theories. This exact result is likely to be useful when working with such theories. For the non-linear
SPB and MPB cases, however, we have found the numerical values of these two quantities to be close,
but not identical.

The results of this study give a practical relevance to the LMPB approach. In some sense, the
LMPB theories are intermediate between the DH/DHLL theories and the MPB or other formal statistical
mechanical theories. There are parallels to the DH/DHLL in that many of the thermodynamic and
structural quantities of interest in the LMPB theories are analytical. However, unlike the former theories,
the latter incorporate the ionic exclusion volume and correlation terms and hence improve the accuracy of
their results relative to the DH/DHLL. These features of the LMPB theories can be useful in the routine,
everyday analysis of experimental data. Similarly, in the analysis of numerically intensive theoretical
problems (see for example, reference [52]) the use of LMPB analytical expressions as initial input in
iterative processes can prove to be useful. Furthermore, the success of the LMPB approach in analyzing
the thermodynamics of 1:1 valency systems makes this a potentially attractive method that can be used
to explore more complex situations such as higher valency systems [44] and/or systems with a variable
dielectric constant [53]. Studies of higher valency and mixed electrolyte systems would also be useful in
order to see the limitations of the LMPB theories.
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Структурнi та термодинамiчнi властивостi систем у рамках

лiнiйної модифiкованої теорiї Пуассона-Больцмана для

примiтивної моделi електролiтiв

Л. Б. Буiян
Лабораторiя теоретичної фiзики, Фiзичний факультет унiверситету Пуерто-Рiко, 17 Авенiда Унiверсидад,
STE 1701, Сан Хуан, Пуерто-Рiко 00925-2537, США
Структура та термодинамiка систем в рамках обмеженої примiтивної моделi електролiту дослiджуються за
допомогою трьох нещодавно розроблених варiантiв лiнiйної форми модифiкованого рiвняння Пуассона-
Больцмана. Отриманi аналiтичнi вирази для осмотичного коефiцiєнта та електричної складової середньо-
го коефiцiєнта активностi. Результати для осмотичного коефiцiєнта та середнього значення активностi
порiвнюються з даними для iнших рiзновидiв середньосферичного наближення, симетричної та модифi-
кованої теорiй Пуассона-Больцмана, а також з наявними результатами моделюванняМонте-Карло. Лiнiй-
нi теорiї надзвичайно точно передбачають термодинамiку систем у порiвняннi з комп’ютерним моделю-
ванням i узгоджуються iз середньосферичним наближенням та модифiкованими результатами Пуассона-
Больцмана. Прогнозована структура, представлена у виглядi радiальних функцiй розподiлу та середнього
електростатичного потенцiалу, також добре узгоджується з вiдповiдними результатами сумiжних теорiй.
Показано, що надлишкова внутрiшня енергiя та електрична складова середнього коефiцiєнта активностi
аналiтично iдентичнi для середньосферичного наближення та лiнiйно модифiкованих теорiй Пуассона-
Больцмана.
Ключовi слова: обмежена примiтивна модель, структура, осмотичний коефiцiєнт, коефiцiєнт

активностi, лiнiйна модифiкована теорiя Пуассона-Больцмана
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