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The replica Ornstein-Zernike equations for an electrolyte adsorbed in a charged, disorderedmatrix were applied
to a model, where both subsystems consisted of points carrying a single (positive or negative) charge. While the
system as a whole was electroneutral, each of the subsytems had a net charge. The results of this study are
compared with the ones previously obtained, where the interactions in such a system were considered to be
the same as in the case of electroneutral subsystems.
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1. Introduction

Disordered porous materials that serve as adsorbents are of considerable interest, not just for basic
research, but for various applications, such as: separation sciences, medicine, and catalysis [1–4]. Systems
of this kind can be viewed as partly-quenched, where some degrees of freedom are quenched (frozen),
while others are annealed (freely moving). Accordingly, we can use statistical-mechanical theories for
the description of such systems [5–7]. One of the approaches that has been developed for studying partly
quenched systems containing charges is the replica Ornstein-Zernike (ROZ) theory [8, 9]. In correspon-
dence with this theory, the correlation functions are divided into the “connecting” part, representing the
interactions between ions within the same replica, and into the “blocking” part, describing the interaction
mediated by matrix particles [5, 6, 9]. Equations can be used within the integral equation theory approx-
imations to obtain structural, as well as thermodynamic properties of partly quenched systems, that are
in good agreement with computer simulation results.

The ROZ equations were also extended to describe partly quenched systems where a templated matrix
was used. Templated particles were present during thematrix equilibration process but were removed after
the quench [10, 11]. These equations have also been used to study partly quenched systems containing
charges [12, 13]; the matrix was prepared by equilibrating an electrolyte solution, and after the quench,
only cations remained frozen (the matrix itself was carrying a net positive charge), while anions became
part of the annealed fluid (which was also carrying a net charge, although the system as a whole was
electroneutral). In studies of this kind, it has been assumed that the long-range parts of the correlation
functions remain the same as in the case of non-templated, electroneutral subsystems.

In the present work we use a rigorous derivation of the renormalization scheme for partly quenched
systems containing charges, where quenched and annealed components are charged. This paper is organ-
ised as follows: after the short introduction, we describe the model under consideration. We continue by
presenting the theoretical procedure, and showing some numerical results. Conclusions are given in the
end.
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2. The model description

The system under study consists of two subsystems, the first one is called matrix, and the second is
an annealed ionic fluid. The notation used in this paper is similar to the used before: the superscripts 0,
0′, and 1 correspond to the matrix, the template, and the annealed fluid species, respectively [9, 12, 13].

In our model, the matrix is obtained by equilibrating a +1:−1 primitive model electrolyte with the
number density ρ0

+ = ρ0
− = ρ0 at temperature T0. After equilibration, the cations remain frozen, while

the anions (that served as a template) become annealed. The adsorbing electrolyte is also a +1:−1
primitive model electrolyte. Note that the number density of annealed cations is lower than the number
density of annealed anions since the adsorbing electrolyte also contains the annealed ions of the matrix:
ρ1
+ + ρ

0
+ = ρ

1
− + ρ

0′
− ; the system as a whole is electroneutral. All the ions are singly charged. The system is

studied at temperatureT1, which in general can differ from the temperatureT0. The ratio ε0T0/ε1T1 = Q is
called quenching parameter. Here εi is the dielectric constant of the solution at corresponding temperature.

The ions in this article are modelled as points carrying a single (positive or negative), charge so the
interactions between them can be written as:
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1
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i j = −
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j e
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4πεε1kBT1r
= −

z1
i z1

j Lb

r
, (2.1)

e0 denotes the elementary charge, ε is the permittivity of vacuum, and kB is Boltzmann constant. zmi are
valencies of the ions. Lb is the so-called Bjerrum length, defined as Lb = e2

0/4πεε0kBT1.
Note that there are no interactions between ions in different replicas (Φ12 = 0), and there are no

interactions between annealed ions and the template (Φ10′ = 0).

3. Theoretical procedure

In the case where the structure of the matrix is obtained by being treated as a template, the set of
ROZ equations can be written as [10, 11]:

h10 = c10 + ρ0c10 ⊗ h00 + ρ0′c10′ ⊗ h0′0 + ρ1c11 ⊗ h10 − ρ1c12 ⊗ h10,

h10′ = c10′ + ρ0c10 ⊗ h00′ + ρ0′c10′ ⊗ h0′0′ + ρ1c11 ⊗ h10′ − ρ1c12 ⊗ h10′,

h11 = c11 + ρ0c10 ⊗ h01 + ρ0′c10′ ⊗ h0′1 + ρ1c11 ⊗ h11 − ρ1c12 ⊗ h21,

h12 = c12 + ρ0c10 ⊗ h01 + ρ0′c10′ ⊗ h0′1 + ρ1c11 ⊗ h12 + ρ1c12 ⊗ h11 − 2ρ1c12 ⊗ h21, (3.1)

where the symbol ⊗ denotes convolution, cmn the direct correlation function and hmn the total correlation
function. They are 2 × 2 matrices for electrolyte solutions, that contain elements ++, +−, −+, and −−.
ρm is a 2 × 2 diagonal matrix containing the number density of cations and anions. Since there are no
short-range interactions between model ions for our system, both kinds of correlation functions only
consist of a long range part:

cmn
ij = Φ

mn
ij ,

hmn
ij = qmn

ij . (3.2)

From equation (3.1) we obtain:
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We proceed by obtaining the long range parts of the total correlation functions.

3.1. Fluid-matrix (10) correlations

We begin with the correlation functions between the fluid and the matrix. Since the fluid consists of
two components, cations (z1

+ = +1), and anions (z1
− = −1), we can rewrite the first equation of (3.3) into

the following matrix form, using the Fourier transform of correlation functions (denoted by ˜ ):[
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1
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Taking into account that in our model Φ̃11
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11
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11
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−0, one obtains:[
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Taking into further account that:
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where k2
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4πLb
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where F (1/r) denotes the Fourier transform of (1/r) with the well known expression F (1/r) = 4π/k2.
In our case z0 = z0

+, and z0′ = z0′
− . The final result for q̃10

i j is as follows:[
q̃10
+0

q̃10
−0

]
=

4πz0z1
+Lb(Q(k2 + k2

0) − 4πLbρ
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[
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. (3.9)

By splitting the above expression into a sum of three fractions, one can readily invert the equations into
r space obtaining: [

q10
+0

q10
−0

]
=

(
ac

4πrQ(k2
0 − b2)

(e−k0r − e−br ) +
a

4πr
e−br

) [
−1

1

]
, (3.10)
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where a = 4πz0z1
+Lb, b =

√
4πz1

+z1
+Lb(ρ

1
+ + ρ

1
−) and c = 4πLbρ

0. Note that in the case of single-valent
ions described in this paper, z0 and z1

i are equal to 1. The derivation, however is valid for arbitrary
nominal ionic charges.
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Figure 1. (Colour online) q10
i j

functions for Q = 1.2, Lb = 7.14 Å, c0 = 0.425 M (ρ0′ = ρ0). c1 =

6.8325 ·10−5 M (top), 3.187 ·10−3 M (middle), and c1 = 3.0 ·10−2 M (bottom). q10
i0 denote the functions

obtained in this work, while q10
i j

denote the functions obtained for electroneutral subsystems.

3.2. Fluid-fluid (11) correlations

Similarly to the case of fluid-matrix correlation functions, we begin by rewriting the third equation
of (3.3) for different components of the annealed fluid, which in matrix form reads:
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[
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Note that due to asymmetry of the system, the matrix form cannot be used directly to obtain the
expression for q̃11

i j . Therefore, we had to develop each expression separately. The expressions for q̃11
i j

obtained from (3.11) are:
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Here, we again took into account that Φ̃11
++ = Φ̃

11
−− = −Φ̃

11
+−, and Φ̃10

+0 = −Φ̃
10
−0 for our model.

Since the expression for q̃11
+− requires q̃11

++, and q̃11
−−, we first obtained the solutions for the latter. By

inserting the expressions for q̃10
i0 obtained above [equation (3.9)], one can show:
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Now, by introducing two more constants, b+ =
√
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Similarly to the case of fluid-matrix functions, we proceed by inverting the equations into r space.
Introducing two more constants, α = az1

+/z
0 and β = a2ρ0, we get the final expressions for our desired

quantities:
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4. Numerical results

To illustrate how the electro-nonneutrality of matrix and fluid subsystems influences the particle-
particle correlations, we plotted q10

i j , and q11
i j for three sets of parameters (three different fluid concen-

trations, leading to three different types of screening), that showed unusual qualitative behavior in the
case of electroneutral subsytems, and compared them with the corresponding correlations obtained in
the electroneutral subsystems [8] containing the same particles. The results for fluid-matrix correlations,
and fluid-fluid correlations are shown in figures 1, and 2, respectively. The results of this study are shown
with solid red lines (color on-line), and the results for electroneutral subsystems are shown with dotted
black lines.

One can see that, as expected, no particular differences are observed for fluid-matrix correlations
(q10

i j ) between the case where the matrix is electroneutral, and in the case of charged matrix (this paper),
regardless of the annealed fluid concentration. The fluid-matrix correlations are namely due to the direct
interactions between matrix and fluid particles, and these are the same in both cases.

There are, however, differences observed in the case of fluid-fluid correlations (q11
i j ). In all cases, the

interactions between oppositely charged fluid particles, are of similar range as in the case of electroneutral
matrix. However, the characteristic sign changing of −− and +− function (crossing of the functions) that
is observed at low fluid concentration in the case of electroneutral matrix, does not occur in the case where
the matrix carries a net charge. Since it has been established that this crossing occurs as a consequence
of matrix-mediated interactions [8], the result can be explained by the fact that less matrix particles are
present in this case. Note that even in the case of electroneutral matrix this kind of behavior is only
observed in the cases of low fluid to matrix concentration ratio [8]. The interactions between co-ions
of the matrix (dashed blue line in figure 2), however, are longer ranged (less screening is observed
due to lower concentration of this kind of ions). The effect is less pronounced at higher annealed fluid
concentrations.
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Figure 2. (Colour online) q11
i j . Parameters as in figure 1. The blue dashed lines denote the cation-cation

(matrix co-ions) correlations.

5. Conclusions

In this paper we present a rigorous derivation of the charged particle-charged particle interactions in
the system, where the matrix and the annealed fluid are both electro-nonneutral. By comparing the results
with those, where both subsystems are electroneutral one can see that generally the screening between
ions depends on the charge of the subsystems. One should take that into account when developing the
renormalization procedure for such systems.
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Екранування iон-iонних кореляцiй у розчинах електролiтiв,

адсорбованих у невпорядкованих матрицях: застосування

реплiчного пiдходу у рiвняннях Орнштейна-Цернiке

Т.Млакар, Б. Грiбар-Лi
Унiверситет Любляни, факультет хiмiї та хiмiчних технологiй, вул. Вечна 113, 1000 Любляна, Словенiя
Реплiчнi рiвняння Орнштейна-Цернiке для електролiту, адсорбованого у зарядженiй невпорядкованiй
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