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Since its introduction in 1963, the Hubbard model has becomes one of the most popular models used in the lit-
erature to study cooperative phenomena in narrow-band metals (ferromagnetism, metal-insulator transitions,
charge-density waves, high-Tc superconductivity). Amongst all these cooperative phenomena, the problem ofitinerant ferromagnetism in the Hubbard model has the longest history. However, in spite of an impressive
research activity in the past, the underlying physics (microscopic mechanisms) that leads to the stabilization
of itinerant ferromagnetism in Hubbard model (narrow-band metals) is still far from being understood. In this
review we present our numerical results concerning this subject, which have been reached by small cluster ex-
act diagonalization, density matrix renormalization group and quantumMonte Carlo calculations within various
extensions of the Hubbard model. Particular attention is paid to a description of crucial mechanisms (interac-
tions) that support the stabilization of the ferromagnetic state, and namely: (i) the long-range hopping, (ii) the
correlated hopping, (iii) the long-range Coulomb interaction, (iv) the flat bands and (v) the lattice structure. Most
of the presented results have been obtained for the one-dimensional case, but the influence of the increasing
dimension of the system on the ferromagnetic state is also intensively discussed.
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1. Introduction

The microscopic description of itinerant ferromagnetism in narrow-band metals is one of the most
interesting as well as the most complicated many-particle problems in condensed matter physics. This
is expected to be due to the interplay between ordinary, spin-independent Coulomb interaction (strong
and strongly screened) and kinetic energy of itinerant electrons within the frames determined by the
Pauli exclusion principle. The single-band Hubbard model [1], possibly the simplest lattice model of
correlated electrons, was first thought to encompass a minimal description of band-ferromagnetism. The
Hamiltonian of this model can be written as a sum of two terms:

H =
∑
i jσ

ti jc+iσcjσ +U
∑
i

ni↑ni↓, (1.1)

where c+iσ and ciσ are the creation and annihilation operators for an electron of spin σ =↑, ↓ at site i and
niσ is the corresponding number operator, which counts the number of electrons of spin σ on site i.

The first termof (1.1) is the kinetic energy of itinerant electrons. It corresponds to quantum-mechanical
hopping of the σ-spin electrons between sites i and j, with transition hopping probabilities ti j . Usually,
it is assumed (the ordinary Hubbard model) that ti j = −t if i and j are nearest neighbors and ti j = 0
otherwise.

The second term corresponds to the Coulomb repulsion between two electrons of opposite spins at
the same site. The long-range contribution is assumed to be screened and only the interaction when both
the σ =↑ and σ =↓ electrons are on the same atom is retained, yielding an additional energy of U when
the atom is doubly occupied.
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Thus, naively the ordinary Hubbard model might be thought to describe the competition between
the kinetic energy and the short-range Coulomb interaction, but in fact there is the third “force” at work
which severely complicates the problem: Pauli exclusion. Electrons are fermions and so the many-particle
wave function must be antisymmetric under interchange of any two electrons. Unlike the first two forces
which are basically short-range interactions, antisymmetrizingwave functions are effectively a long-range
interaction that significantly complicates a description of correlation effects within, at the first glance,
the very simple model. On the other hand, there were very pleasurable arguments which, at least in the
first stages of the study, favored the Hubbard model as the generic model for a description of the band
ferrommagnetism in the transition metal compounds. Indeed, writing the magnetization as mi = ni↑−ni↓
and total number of n electrons (per site) as ni = ni↑ + ni↓, the interaction part of the Hubbard model can
be rewritten as Uni↑ni↓ = U(n2

i − m2
i )/4. Since the number n of electron per atom is fixed, the Coulomb

interaction favors the formation of a magnetic moment.
However, the subsequent studies of the model showed that the single-band Hubbard model is not the

canonical model for ferromagnetism. Indeed, the existence of saturated ferromagnetism has been proven
rigorously only for very special limits. The first well-known example is the Nagaoka ferromagnetism
that comes from the Hubbard model in the limit of infinite repulsion and one hole in a half-filled
band [2]. Another example, where saturated ferromagnetism has been shown to exist, is the case of
the one-dimensional Hubbard model with nearest and next-nearest-neighbor hopping at low electron
densities [3]. Furthermore, several examples of the fully polarized ground state have been found on
special lattices as are the bipartite lattices with sublattices containing a different number of sites [4], the
fcc-type lattices [5, 6], the lattices with long-range electron hopping [7–9], the flat bands [10–14] and
the nearly flat-band systems [15–23]. This indicates that the lattice structure, which dictates the shape of
the density of states (DOS), plays an important role in stabilizing the ferromagnetic state.

To examine in more detail the role of these (and some other) factors on the stabilization of the
ferromagnetic state in the generalized Hubbard model, in our previous studies we have used small-
cluster-exact diagonalization [24], density matrix renormalization group [25–27] and projector-quantum
Monte Carlo[28–30] calculations. In particular, we have examined the role of the long-range hopping [31,
32] and long-range Coulomb interaction [33] with exponentially decaying amplitudes, the correlated
hopping [34], the flat bands [35] and the lattice structure [36, 37]. The main results of our numerical
studies are summarized in this short review.

2. Results and discussion

2.1. The effect of long-range hopping

2.1.1. One-dimensional case

Since the model including the electron hopping only to the nearest neighbors may seem at first
glance a very crude approximation, in order to have a more realistic description of electron processes
in transition metal compounds, we have generalized this model by taking into account also transitions
to next neighbors. Basically, there are two possible ways of performing such a generalization. The first
way is to assign independent transition amplitudes for the first (t1), second (t2), third (t3), forth (t4),...
nearest neighbors, while the second way is to describe the electron hopping by a simple one-parametric
formula [38, 39] with exponentially decaying hopping amplitudes between Ri and Rj lattice sites, i.e.,

ti, j(q) =
{

0, Ri = Rj,
−q |Ri−Rj |/q, Ri , Rj,

(2.1)

where q is the parameter that controls the range of electron hopping (0 6 q 6 1). From the practical
point of view, the second method is more suitable because it does not expand the model parameter space
and has a clearer physical meaning, since the atomic wave functions have also the exponential decay with
increasing distance. For this reason, for a description of electron hopping in the generalized model, we
have chosen the long-range hopping with exponentially decreasing amplitudes.
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Figure 1. The non-interacting (D = 1) DOS corresponding to the long-range hopping for different q and
L = 4000 [31].

The selection of hoppingmatrix elements in the form given by equation (2.1) has several advantages. It
represents a much more realistic type of electron hopping on a lattice (in comparison to nearest-neighbor
hopping), and it allows us to change continuously the type of hopping (band) from nearest-neighbor
(q = 0) to infinite-range (q = 1) hopping and thus immediately study the effect of the long-range
hopping. Another advantage follows from figure 1, where the density of states (DOS) corresponding to
equation (2.1) is displayed for several values of q. It is seen that with increasing q, more weight shifts to
the upper edge of the band and the DOS becomes strongly asymmetric. Thus, one can simultaneously
study (by changing only one parameter q) the influence of the increasing asymmetry in the DOS and the
influence of the long-range hopping on the ground state properties of the Hubbard model.

The Hamiltonian of the single-band Hubbard model with long-range hopping is given by:

H =
∑
i jσ

ti j(q)c+iσcjσ +U
∑
i

ni↑ni↓. (2.2)

The exact results on the ground states of the Hubbard model with the generalized type of hopping (2.2)
exist only for the special case of q = 1 when the electrons can hop to all sites with equal probabilities [7–
9]. For this type of hopping and the electron filling just above half-filling (N =

∑
σ Nσ = L + 1, where

L is the number of lattice sites), it was shown that the ground state is not degenerate with respect to the
total spin S and it is maximum ferromagnetic with S = (L − 1)/2 (for all U > 0). For higher fillings
(N > L + 1), the ferromagnetic ground state still exists but it is completely degenerate with respect to S.
The limit of infinite-range hopping is, however, the least realistic limit of equation (2.1). It is interesting,
therefore, to look at the possibility of ferromagnetism in the Hubbard model with a generalized type of
hopping for smaller values of q that describe a much more realistic type of electron hopping.

In our paper [31] we have extended calculations to arbitrary q and arbitrary band fillings n = N/L.
The ground states of the model have been determined by exact diagonalizations for a wide range of
model parameters (q,U, n). Typical examples are chosen from a large number of available results to
represent the most interesting cases. The results obtained are presented in the form of phase diagrams in
the U–q plane. To determine the phase diagram in the U–q plane (corresponding to some L and n), the
ground state energy of the model is calculated point by point as functions of q and U. Of course, such
a procedure demands in practice a considerable amount of CPU time, which imposes severe restrictions
upon the size of clusters that can be studied using this method (L ∼ 16). Fortunately, we have found that
the ground-state energy of the model depends on L only very weakly (for a wide range of the model
parameters) and thus already such small clusters can satisfactorily describe the ground state properties
of the model.

Although the appearance of the ferromagnetic state at q = 1 and N = L + 1 (discussed above) is
interesting from the theoretical point of view, in the thermodynamic limit (L → ∞) this result is not
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significant if the ferromagnetic state does not persist also for higher fillings. Analytical results obtained
for q = 1 predict, however, that the ground states for N > L + 1 are completely degenerate with respect
to the total spin S and thus the only possibility for the stabilization of the ferromagnetic state is that the
long-range hopping with q , 1 removes this degeneracy. Numerical calculations that we have performed
for a wide range of electron fillings n > 1 fully confirmed this assumption. It was found that the long-range
hopping with q , 1 not only removes the degeneracy of the ground states with respect to S but at the
same time stabilizes the ferromagnetic state. Furthermore, these calculations showed that the effect of the
long-range hopping on the stability of the ferromagnetic state is extremely strong, especially for small
values of q. The results of our small-cluster exact-diagonalization calculations obtained on finite clusters
up to L = 16 sites are summarized in figure 2. There is shown a critical interaction strength Uc , above
which the ground state is ferromagnetic, as a function of q for several values of electron concentrations
n (n = 5/4 , 3/2 , 7/4). To reveal the finite-size effects on the stability of ferromagnetic domains, the
behavior of the critical interaction strength Uc(q) has been calculated on several finite clusters at each
electron filling. It is seen that finite-size effects onUc are small and thus these results can be satisfactorily
extrapolated to the thermodynamic limit L →∞. Our results clearly demonstrate that the ferromagnetic
state is strongly influenced by q for electron concentrations above half-filling and generally it is stabilized
with increasing q. The effect is especially strong for small values of q where small changes of q reduce
dramatically the critical interaction strength Uc and so the ferromagnetic state becomes stable for a wide
range of model parameters. The results presented in figure 2d show that only for q = 0 (nearest-neighbor
hopping) Uc = ∞, while for finite q (that represents a much more realistic type of electron hopping), the
critical interaction strength Uc is finite. Thus, the absence of ferromagnetism in the ordinary Hubbard
model with the nearest-neighbor hopping (q = 0) can be explained as a consequence of too simplified
description of electron hopping on the lattice. For any q > 0, ferromagnetism comes naturally from
the Hubbard model with a generalized type of hopping for a wide range of model parameters without
any other assumptions. This opens up a new route towards the understanding of ferromagnetism in the
Hubbard model.
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Figure 2. The critical interaction strengthUc (1/Uc) as a function of q calculated for different n and L [31].
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Figure 3. The non-interacting (D = 2) DOS corresponding to the long-range hopping for different q and
L = 160 × 160 [32].

2.1.2. Two-dimensional case

We have also performed the same calculations for the physically more interesting two-dimensional
case [32]. Since in the two-dimensional case only very small clusters (L ∼ 20) are accessible by the
exact diagonalization method, we support these calculations by the quantum Monte Carlo method that
can treat several times larger clusters.

Similarly to the one-dimensional case, let us start with a discussion of long-range hopping effects on
the noninteracting two-dimensional DOS (see figure 3). It is seen that with an increasing q, more weight
shifts to the upper edge of the band and the DOS becomes strongly asymmetric, indicating possible
ferromagnetic regions in the limit n > 1 For this reason, we have focused our attention on the case
of electron concentrations above half-filling n > 1. First, we have examined the model Hamiltonian
by the exact diagonalization method on the finite 4 × 4 cluster for several selected values of on-site
Coulomb interaction U (U = 1, 2, 4, 8) and electron concentrations n > 1 (n = 3/2 and n = 7/4).
The results of our numerical calculations are displayed in figure 4. There is plotted the difference
∆E = E f − Eg between the exact ground state Eg and the ferromagnetic state E f (which is exactly
known) as a function of 1/q. The ground state is ferromagnetic in the regions where ∆E = 0. It can
be seen that for higher electron concentrations (n = 7/4), the ground states of the two-dimensional
Hubbard model with generalized hopping are non-ferromagnetic for all examined values of the on-site
interaction U, which strongly contrasts with the one-dimensional case, where the ferromagnetic state has
been stabilized for all electron concentrations above the half-filled band case n > 1. However, for smaller
values of electron concentrations (n = 3/2), the situation is fully different. In this case, the ferromagnetic
state is the ground state of the model for all examined values of U above some critical value of the
long-range hopping parameter qc . As shown in the inset in figure 4, 1/qc scales linearly with U, from
which it can be directly determined that 1/qc = 1.13 + 0.558U. Analysing these results one can see that
already for relatively small values of the Coulomb interaction U, the critical values of the long-range
hopping parameter qc are from the physically realistic regime (e.g., qc � 0.44 for U = 2, qc � 0.3 for
U = 4 and qc � 0.18 for U = 8). This confirms the importance of the long-range electron hopping term
for a correct description of ferromagnetism in real materials.

Since our numerical results revealed a strikingly different behaviour of the model in one and two
dimensions for electron concentrations above half filling, and namely, the existence of the critical electron
concentration nc below (above) which the ground state is ferromagnetic (non-ferromagnetic), we have
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Figure 4. The left-hand panel: The difference ∆E = E f − Eg between the exact ground state Eg and
the ferromagnetic state E f (which is exactly known since the state has no double hole occupancy) as a
function of 1/q calculated for n = 7/4 and different U on the L = 4 × 4 cluster. The inset shows the
situation in the limit 1/q → 1. The right-hand panel: ∆E = E f − Eg as a function of 1/q calculated for
n = 3/2 and different U on the L = 4 × 4 cluster. The inset shows the U dependence of 1/qc [32].
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Figure 5. The phase diagram of the two-dimensional Hubbard model with long-range hopping in the
1/q − n plane calculated for U = 2 and L = 4 × 4 [32].

decided to study in detail the comprehensive phase diagram of the model in the q-n plane. Again we
have used the small cluster exact diagonalization technique and the cluster of L = 4× 4 sites. The results
of our numerical calculations obtained for the intermediate value of the Coulomb interaction U = 2 are
summarized in figure 5. They show that just n = 7/4 is the critical electron concentration above which
the ground state is non-ferromagnetic. Below this value, the ground state is ferromagnetic. The critical
value of the inverse long-range hopping parameter 1/qc increases with an decreasing n and reaches its
maximum (1/qc ∼ 2.4) at n = 3/2. A further decrease in n gradually reduces the critical value of 1/qc
to one. A similar behaviour of the model has been observed for both smaller (U = 1) as well as larger
(U = 4) values of the Coulomb interaction. Thus, we can conclude that the ferromagnetic phase in the
two dimensional Hubbard model, in spite of its partial reduction (in comparison to the one dimensional
case), remains robust.

Unfortunately, these results cannot be considered as definite, since they were obtained on a very small
cluster and, therefore, it is necessary to prove them independently by other methods. To fulfill this goal,
we performed the same calculations for one representative value of U (U = 2) and for two representative
values of n (n = 3/2 , 5/4) by the projector quantumMonte Carlo (QMC) method [28–30] that is capable
of treating several times larger clusters with high accuracy. The QMC simulations were performed using a
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Figure 6. The difference ∆E = E f − Eg between the ground state Eg and the ferromagnetic state E f as a
function of 1/q calculated for U = 2, two different values of n (n = 3/2 and n = 5/4) and three different
finite clusters of L = 4 × 4, L = 6 × 6 and L = 8 × 8. The QMC results [32].
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Figure 7. The difference ∆E = E f − Eg between the exact ground state Eg and the ferromagnetic state
E f as a function of q calculated for U = 2 and different electron fillings N on the L = 4 × 4 cluster [32].

projector algorithm which applies exp(−θH) to a trial wave-function (in our case, the solution forU = 0).
A projector parameter θ ∼ 30 and a time slice of ∆θ = 0.05 suffice to reach well converged values of the
observables discussed here.

The results of numerical calculations performed on larger clusters consisting of L = 6×6 and L = 8×8
sites (over the whole interval [0, 1] of q values with the step ∆q = 0.02) and clusters of L = 10 × 10
and L = 12 × 12 sites (over a restricted set of q values near qc) are displayed in figure 6. These results
clearly show that the finite size effects on the critical values of the long-range hopping parameter are
negligible (see insets in figure 6), and thus, the magnetic phase diagram found for the 4 × 4 cluster can
be satisfactorily extrapolated on macroscopic systems.

Finally, let us briefly discuss the numerical results obtained for electron concentrations less than the
half-filled band case (n = 1). They are displayed in figure 7 for U = 2 and the complete set of even
electron fillings with N < L on the 4 × 4 cluster. These results clearly demonstrate the absence of the
ferromagnetic ground state in the two-dimensional Hubbard model with exponentially decaying hopping
amplitudes for all values the hopping parameter q and electron concentrations n < 1, showing a key role
of the band filling n in the mechanism of stabilization of the ferromagnetic state.

2.2. The effect of correlated hopping

Let us now further generalize the single-band Hubbard model with long-range hopping by introducing
the correlated hopping term [40–43], in which the σ-electron hopping amplitudes between lattice sites i
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Figure 8. The critical interaction strengthUc as a function of q calculated for different t ′ and L at n = 3/2
(the left-hand panel) and at n = 7/4 (the right-hand panel). Curves from up to down correspond to:
t ′ = 0, 0.2 and 0.4 [34].

and j depend explicitly on ni−σ and nj−σ occupancy, i.e.,

tσi j = ti j[1 + t ′(ni−σ + nj−σ)]. (2.3)

The importance of the action of the correlated hopping term on the ground-state properties of the Hubbard
model has been already mentioned by Hubbard [1]. Later, Hirsch [44] pointed out that this term may be
relevant in explaning the superconducting properties of strongly correlated electrons. Here, we discuss
the effects of this term on the stability of the fully polarized ferromagnetic state. The same subject was
studied by Amadon and Hirch [45], as well as by Kollar and Vollhardt [46], though they considered the
hopping only between the nearest-neighbor sites.

The Hamiltonian of the single-band Hubbard model in which the effects of long-range and correlated
hopping are incorporated is given by

H =
∑
i jσ

tσi j c
+
iσcjσ +U

∑
i

ni↑ni↓. (2.4)

To examine the possibilities for the existence of ferromagnetism in this model, the ground states
are determined by exact diagonalizations for a wide range of model parameters (q, t ′,U, N =

∑
σ Nσ).

Typical examples are then chosen from a large number of available results to represent themost interesting
cases. The results of our small-cluster exact-diagonalization calculations obtained on finite clusters up
to L = 16 sites are summarized in figure 8. There is shown the critical interaction strength Uc , above
which the ground state is ferromagnetic, as a function of q for the selected values of n = N/L and t ′

(n = 3/2 , 7/4; t ′ = 0, 0.2 , 0.4). To reveal the finite-size effects on the stability of ferromagnetic domains,
the behavior of the critical interaction strength Uc(q) was calculated on several finite clusters at each
electron filling. It is seen that finite-size effects onUc are small and thus these results can be satisfactorily
extrapolated to the thermodynamic limit L →∞. Our results clearly demonstrate that the ferromagnetic
state is strongly influenced by correlated hopping (t ′) and generally it is stabilized with increasing t ′. The
effect is especially strong for intermediate and strong values of q. There even exists some critical value
of q above which the ground state is ferromagnetic for all nonzero U. With an increasing t ′, this critical
value shifts to lower values of q (that represent a much more realistic type of electron hopping) and the
ferromagnetic domain correspondingly increases. Performing exhaustive numerical studies of the model
for a wide range of electron concentrations (on different lattice clusters) we have found that the model
exhibits the same behavior for all electron concentrations above half-filling1 and that with an increasing

1n 6 1 and t′ < 0 does not stabilize the ferromagnetic state.
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concentration this effect becomes more pronounced. These results clearly show that ferromagnetism
comes naturally from the Hubbard model with long-range and correlated hopping for a wide range of
model parameters without any other assumptions.

2.3. The effect of long-range Coulomb interaction

The microscopic model of electronic correlations in solids based on the picture of long-range electron
hopping with exponentially decaying hopping amplitudes in combination with the standard on-site
description of the Coulomb interaction between electrons on a lattice does not model very realistically
the situation in real transition metal compounds. Indeed, it would be more correct to describe the
Coulomb interaction between electrons by a similar formula that corresponds to the electron hopping
[equation (2.1)], i.e., by exponentially decaying interaction amplitudes Ui j ,

Ui j(qU ) =


U, i = j,

U
2

q |i−j |U , i , j,
(2.5)

where U is the strength of the on-site Coulomb interaction and qU (0 6 qU 6 1) is the parameter of
the long-range Coulomb interaction. Such a selection is natural, since the overlap of the atomic wave
functions decreases exponentially with a distance of two atoms on a lattice and thus the model based on
such a supposition describes more realistically the situation in transition metal compounds.

Thus, our generalized Hamiltonian taking into account the effects of the long-range electron hopping
as well as the effects of the long-range Coulomb interaction, both in the form of exponentially decaying
amplitudes, can be written as follows:

H =
∑
i jσ

ti j(qt )c+iσcjσ +
∑
i jσσ′

Ui j(qU )niσnjσ′ . (2.6)

To reveal the behaviour of the model in different concentration limits, we selected three different values
of the electron concentration, and namely, n = 1/2, n = 1 and n = 3/2 that represent three physically
most interesting limits of the model. Let us start the discussion of our results with the half-filled band case
n = 1. To see the pure effects of the long-range Coulomb interaction on the stability of the ferromagnetic
state, we first examined the conventional limit of the electron hopping corresponding to the following
selection of the hopping amplitudes ti j = −1 if i and j are the nearest neighbour and ti j = 0 otherwise. For
this case, we calculated the ground states of the model Eg(N↑) in all different spin sectors Sz = N↑ − N↓
as a function of U and qU with steps ∆U = 0.2 and ∆qU = 0.02. The resulting behaviours of Eg(N↑)
as functions of qU and U are used directly to identify the stability regions of the fully polarized state,
i.e., where the following inequality Eg(0) < min[Eg(1), Eg(2), . . . , Eg(N/2)] is satisfied for a given U
and qU . The results of our numerical simulations obtained for L = 12, n = 1 and four different values of
U are shown in figure 9 (the left-hand panels). One can see that for each selected value of the Coulomb
interaction U, there exists a critical value of the interaction parameter qU above which the ground state is
the fully polarized state, i.e., N↑ = 0, N↓ = L. Since the ground state of the ordinary (nearest-neighbour)
half-filled Hubbard model in one dimension is antiferromagnetic for all Coulomb interactions, our results
point to the crucial role of the long-range interaction on the stabilization of the ferromagnetic state.
Moreover, we have found that the critical value of qU above which the ground state is ferromagnetic
decreases rapidly with an increasing U and thus already small, but physically the most realistic values of
qU , are capable of generating the ferromagnetic state for intermediate and strong Coulomb interactions.
The same conclusions are also valid for electron concentrations smaller than the half-filled band case
(n < 1), as illustrates figure 9 (the right-hand panels) for the quarter-band filling n = 1/2, while in the
opposite limit n > 1 no effects of long-range interaction on the stabilization of the band ferromagnetism
are observed. Comparing these results with the ones discussed above for qU = 0 and qt > 0, one can
find a fundamentally different response of the electron system to the long-range electron hopping and the
long-range Coulomb interaction. Indeed, while the long-range electron hopping itself, i.e., without the
long-range Coulomb interaction, stabilizes the ferromagnetic state for the electron concentrations above

42701-9



P. Farkašovský

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

q
u

E
g

L=12, n=1, U=0.4

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

40

q
u

E
g

L=12, n=1, U=1

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80

100

q
u

E
g

L=12, n=1, U=2

0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

q
u

E
g

L=12, n=1, U=4

0 0.2 0.4 0.6 0.8 1
−12

−10

−8

−6

−4

−2

0

q
u

E
g

L=12, n=1/2, U=0.4

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

q
u

E
g

L=12, n=1/2, U=1

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

q
u

E
g

L=12, n=1/2, U=2

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

q
u

E
g

L=12, n=1/2, U=4

Figure 9. The left-hand panel: The ground-state energy Eg as a function of qU calculated for qt = 0, L =
12, n = 1 and different values of U and N↑. The dashed line corresponds to N↑ = 0 (the fully polarized
state) and the full lines (from up to down) correspond to N↑ = 1, 2, 3, 4, 5 (the partially polarized states)
and N↑ = 6 (the non-polarized state). The right-hand panel: The ground-state energy Eg as a function of
qU calculated for qt = 0, L = 12, n = 1/2 and different values of U and N↑. The dashed line corresponds
to N↑ = 0 (the fully polarized state) and the full lines (from up to down) correspond to N↑ = 1, 2 (the
partially polarized states) and N↑ = 3 (the non-polarized state) [33].

the half-filled band case (n > 1), the long-range Coulomb interaction itself stabilizes the ferromagnetic
state in the opposite limit, i.e., for n 6 1. Thus, one can intuitively expect that the combined effects of the
long-range electron hopping and the long-range Coulomb interaction could lead to the stabilization of
the ferromagnetic state for the electron concentrations smaller as well as larger than the half-filled band
case.

To verify this conclusion, we performed exhaustive numerical studies of the model for a wide range of
the model parameters. In particular, we selected five different values of the long-range hopping parameter
qt > 0 (qt = 0.1, 0.2, 0.3, 0.4, 0.5) and for each of them we calculated the ground-state energy Eg(N↑)
in all different spin sectors, for the following sequences of qU and U values: qU = 0, 0.02, . . . , 1 and
U = 0, 0.2, . . . , 30. The results obtained are summarized in the form of the U–qU magnetic phase
diagram, where the critical interaction strength Uc(qU ) represents the phase boundary above which the
ground state is a fully polarized state. The situation for the quarter-band filling is shown in figure 10
(the left-hand panel). Our results clearly demonstrate that the ferromagnetic state is strongly influenced
by qU for electron concentrations bellow half-filling and generally it is stabilized with an increasing qU .
The effect is especially strong for small values of qU where small changes of qU reduce dramatically
the critical interaction strength Uc and so the ferromagnetic state becomes stable for a wide range of
Coulomb interaction U. The second general trend that can be deduced from our numerical calculations is
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Figure 10. (Colour online) The left-hand panel: The critical interaction strength Uc as a function of qU
calculated for L = 12, n = 1/2 and different values of qt . The inset shows the scaling of Uc calculated
for three different values of qU . The scaling function is the second order polynomial expression in
1/L. The middle panel: Uc as a function of qU calculated for L = 12, n = 1 and different values of
qt . The inset shows scaling Uc calculated for three different values of qU . The scaling function is the
second order polynomial expression in 1/L. The right-hand panel: Uc as a function of qU calculated
for L = 12, n = 3/2 and different values of qt . The inset shows the scaling of Uc calculated for three
different values of qU . The scaling function is the third order polynomial expression in 1/L [33].

depicted by the ferromagnetic domain being reduced with an increasing qt , though it remains robust for a
wide range of qU and U values. For n < 1, this result is intuitively expected since the long-range hopping
itself stabilizes the ferromagnetic state only for n > 1. To exclude the finite-size effects on the stability of
ferromagnetic domains we performed an exhaustive numerical study of the L-dependence of the critical
interaction strength Uc for selected values of qt and qU on finite clusters from L = 4 to L = 20. The inset
in figure 10 (the left-hand panel) shows that finite-size effects on Uc are small for all examined values of
qU and thus these results can be satisfactorily extrapolated to the thermodynamic limit L →∞.

We also obtained similar results for the half-filled band case n = 1 (see figure 10, the middle panel).
However, in this case the critical interaction strength Uc(qU ) exhibits a universal behaviour, i.e., it does
not depend on the value of the long-range hopping parameter qt . Since in the half-filled band case and
qU = 0, the ground states of the ordinary (qt = 0) as well as the generalized (qt > 0) Hubbard model are
non-ferromagnetic [31], the existence of the ferromagnetic state at this filling is purely a consequence of
long-range interactions. Moreover, analysing the behaviour ofUc(qU ) for qU → 0, we found that only for
qU = 0 (the Hubbard model with one-site interaction)Uc = ∞, while for finite qU (that represents a much
more realistic type of interactions between electrons on a lattice), the critical interaction strength Uc is
finite. Thus, the absence of ferromagnetism in an ordinary model as well as in a generalized Hubbard
model with long-range hopping at n 6 1 could be explained as a consequence of a too simplified
description of electron-electron interactions on the lattice. For any qU > 0, ferromagnetism comes
naturally from the Hubbard model with long-range interactions for a wide range of model parameters
without any other assumptions. As it is shown in the inset in figure 10 (the middle panel), our numerical
results obtained for n = 1 depend only very weakly on the size of the lattice and thus they can be
satisfactorily extrapolated to macroscopic systems.

Above the half-filled band case n > 1, we expect a strong interplay between the effects of long-range
hopping and long-range interaction, since the long-range hopping itself stabilizes the ferromagnetic state
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for n > 1 [31], while the long-range interaction itself produces a fully opposite effect. The results of our
numerical simulations obtained for n = 3/2 are presented in figure 10 (the right-hand panel) and they
fully confirm this conjecture. Due to the combined effects of the long-range hopping and the long-range
Coulomb interaction, the stability region of the ferromagnetic phase is reduced in comparison to the on-
site case (qU = 0), though it remains finite for all the examined values of qt . Similarly to the preceding
cases, the results can be satisfactorily extrapolated to the thermodynamic limit L → ∞ and can be used
for a description of macroscopic systems.

2.4. The effect of flat bands

2.4.1. One-dimensional case

In our previous paper we showed [47] that the ferromagnetic state can be also found in the so-called
static limit of the Hubbard model, where only one kind of electrons, say with spins up, can move on the
lattice, while electrons of the opposite spins are immobile. In this limit, the ferromagnetic state is stabilized
for a wide range of the on-site Coulomb interaction U between the up and down spin electrons for both
the hole doped case (the total concentration of electrons n < 1) and for the electron doped case (n > 1).
From this point of view, it is interesting to ask whether the ferromagnetic state found for the zero value of
the down-spin electron hopping integral t↓ persists also at finite t↓, or vanishes discontinuously as soon
as t↓ > 0. To answer this question, we numerically examined using the density matrix renormalization
group (DMRG) method [25–27], the asymmetric Hubbard model [48–50] (0 6 t↓ 6 1) that incorporates
both the full Hubbard model t↑ = t↓ and its static (t↓ = 0) limit (in the rare-earth community also known
as the Falicov-Kimball model [51]).

The Hamiltonian of the asymmetric Hubbard model is

H = −t↑
∑
<i j>

c+i↑cj↑ − t↓
∑
<i j>

c+i↓cj↓ +U
∑
i

c+i↑ci↑c
+
i↓ci↓, (2.7)

where c+
i↑
(ci↑) and c+

i↓
(ci↓) is the creation (annihilation) operator of light (↑) and heavy (↓) electron at

the lattice site i.
The first two terms of (2.7) are the kinetic energies corresponding to quantum-mechanical hopping

of up-spin and down-spin electrons between the nearest neighbor sites i and j with hopping probabilities
t↑ and t↓, respectively. The third term represents the on-site Coulomb interaction between the up-spin
electrons with density n↑ = 1

L

∑
i d+

i↑
di↑ and the down-spin electrons with density n↓ = 1

L

∑
i d+

i↓
di↓. The

model is called “asymmetric” because the hopping integrals for up-spin and down-spin electrons may be
different. Usually, the hopping integral of the up-spin electrons is taken to be the unit of energy (t↑ = 1)
and the down-spin-electron hopping integral is considered in the limit t↓ 6 1. This is the reason why the
up-spin electrons are called light ones and the down-spin electrons are called heavy.

Based on the results obtained in the static limit of themodel [47],we chose three different concentration
limits, and namely, n = 1/4, 1/2 and 3/4, at which we performed exhaustive numerical studies of the
asymmetric Hubbard model, with a goal to reveal the effects of the down-spin electron hopping on the
stability of the ferromagnetic state found at t↓ = 0. In all three limits, the comprehensive magnetic phase
diagrams of the model in the t↓–U plane are constructed using the DMRG method, that allows us to
treat relatively large clusters with high accuracy. To identify different magnetic phases that enter the
ground-state phase diagrams, we calculated the DMRG ground-state energy EDMRG, the total spin S in
the DMRG ground state by evaluating

〈S2〉 =
∑
i,j
〈SiSj〉 (2.8)

and the energy of the fully polarized state E f , which is exactly known since the state has no double
occupancy. Different phases are then classified as follows: (i) the fully polarized state, EDMRG > E f and
S = Smax, (ii) the partially polarized state, EDMRG < E f and S , Smax and (iii) the non-polarized state,
EDMRG < E f and S = 0.
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The resultant magnetic phase diagrams are presented in figure 11. For small electron concentrations
(n = 1/4), the ferromagnetic domain takes the largest part of the phase diagram. The ferromagnetic state
is stable for all values of the down-spin electron hopping integrals t↓ > 0.75, and its stability region
is further stabilized with an increasing Coulomb interaction U. The non-polarized state is stable only
in a very narrow region near the full Hubbard limit (t↑ = t↓ = 1) and thereby it becomes extremely
sensitive to small changes in t↑ and t↓. This is probably also the reason why the ferromagnetic state
can be stabilized by the correlated hopping [45], when the original electron hopping amplitudes are
reduced according to whether the sites i and j are occupied or are not occupied by the electron of the
opposite spin. The qualitatively same picture is also observed for intermediate electron concentrations
(n = 1/2), with only one exception, and namely, that the ferromagnetic phase is now reduced against
the non-polarized and partially polarized phases. This trend also holds for higher electron concentrations
(n = 3/4), when the ferromagnetic phase persists only in the strong coupling limit, exactly in accordance
with conclusions obtained for the static limit t↓ = 0. In addition, using two complementary methods based
on the calculations of the structure factors [52] and the most probable distribution of heavy particles [53]
we found that with an exception of the partially polarized phase (at n = 3/4), all remaining phases are
homogeneous. The partially polarized phase found at n = 3/4 is homogeneous only for sufficiently large
t↓ while in the opposite limit, the phase separation takes place. This result accords with the ones obtained
for the case of the asymmetric Hubbard model in which both n↑ and n↓ are fixed [52–54].
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Figure 11. Phase diagrams of the asymmetric Hubbard model in D = 1 calculated for three electron
concentrations (n = 1/4, n = 1/2 and n = 3/4). Different phases correspond to the non-polarized NP
phase (the black areas), the partially polarized PP phase (the gray areas) and the fully polarized FP phase
(the light gray areas). In the PS region (n = 3/4), the ground states are phase separated. The inset in
figure 11a shows the results for D = 2 obtained on L = 8× 8 cluster. Figure 1d presents finite-size effects
on the phase boundary between the FP and PP phase in D = 1 [35].

To exclude the influence of finite-size effects on the magnetic-phase diagrams of the asymmetric
Hubbard model, we also calculated the phase boundaries for different finite clusters of L = 32 and
L = 64 sites. The results of numerical calculations obtained for n = 1/4, 1/2 and 3/4 are shown in
figure 11d and they clearly show that finite size effects are negligible and thus the results obtained can be
satisfactorily extrapolated to the macroscopic systems.
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Figure 12. (Colour online) (a) The original SSL with the first (t1) and second (t2) nearest-neighbor
couplings. (b) The generalized SSLwith the first (t1), second (t2) and third (t3) nearest-neighbor couplings,
and (c) the topologically identical structure realized in the (001) plane of rare-earth tetraborides [36].

2.4.2. Two-dimensional case

From the point of view of real materials, the question of fundamental importance is whether these
results also persist in higher dimensions. For this reason, we also performed similar calculations in two
dimensions. Since the DMRGmethod does not work very well in D > 1, especially for the calculation of
long-range correlation functions like 〈SiSj〉, instead of the DMRGmethod we used the projector quantum
Monte Carlo method [28–30]. The quantum Monte Carlo simulations were performed using a projector
algorithm which applies exp(−θH) to a trial wave-function (in our case, the solution for U = 0). A
projector parameter θ ∼ 30 suffices to reach well converged values of the observables discussed here. A
time slice of ∆θ = 0.05 was used in general. The resultant numerical solutions for the critical values of
the down-spin electron hopping integrals t↓ below which the ground state is ferromagnetic are shown in
the inset in figure 11a. One can see that the ferromagnetic state is also robust in two dimensions although
the corresponding values of t↓ in two dimensions are slightly smaller than the ones in D = 1.

2.5. Influence of lattice structure

2.5.1. Short-range hopping

The results presented in the previous sections indicate that the lattice structure, which dictates the
shape of theDOS, plays an important role in stabilizing the ferromagnetic state.Motivated by these results,
we performed the same calculations on the special type of lattice, the so-called Shastry-Sutherland lattice
(SSL). The SSL represents one of the simplest systems with geometrical frustration, so that putting the
electrons on this lattice, one can simultaneously examine both the effect of interaction and the effect
of geometrical frustration on the ground-state properties of the Hubbard model. This lattice was first
introduced by Shastry and Sutherland [55] as an interesting example of a frustrated quantum spin system
with an exact ground state. It can be described as a square lattice with the nearest-neighbor links t1 and the
next-nearest neighbors links t2 in every second square (see figure 12a). The SSL attracted much attention
after its experimental realization in the SrCu2(BO3)2 compound [56]. The observation of a fascinating
sequence of magnetization plateaus (at m/ms =1/2, 1/3, 1/4 and 1/8 of the saturated magnetization ms)
in this material [57] stimulated further theoretical and experimental studies of the SSL. The SSL with
the first, second and third nearest-neighbor links is shown in figure 12b and this is just the lattice that
will be used in our next numerical calculations.

Thus, our starting Hamiltonian, corresponding to the one band Hubbard model on the SSL, can be
written as follows:

H = −t1
∑
〈i j 〉1,σ

c+iσcjσ − t2
∑
〈i j 〉2,σ

c+iσcjσ − t3
∑
〈i j 〉3,σ

c+iσcjσ +U
∑
i

ni↑ni↓. (2.9)

The first three terms of (1) are the kinetic energies corresponding to the quantum-mechanical hopping of
electrons between the first, second and third nearest neighbors and the last term is the Hubbard on-site
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Figure 13. Non-interacting DOS calculated numerically for different values of t2 and t3 on the finite
cluster of L = 200 × 200 sites [36].

repulsion between two electrons with opposite spins. We set t1 = 1 as the energy unit and thus t2 (t3) can
be seen as a measure of the frustration strength. It should be noted that most of the papers on the SSL
concern various spin models, while there are only a few papers concerning the interacting electrons (the
Hubbard model) on the SSL [58].

To identify the nature of the ground state of the Hubbard model on the SSL we have used the small-
cluster-exact-diagonalization (Lanczos)method [24] and the projector quantumMonteCarlomethod [30].
In both cases, the numerical calculations proceed in the following steps. Firstly, the ground-state energy
of the model Eg(Sz) is calculated in all different spin sectors Sz = N↑ − N↓ as a function of the model
parameters t2, t3 and U. Then, the resulting behaviors of Eg(Sz) are used directly to identify the regions
in the parametric space of the model, where the fully polarized state has the lowest energy. To reveal the
possible stability regions of the ferromagnetic state in the Hubbard model on the SSL, let us first examine
the effects of the geometrical frustration, represented by nonzero values of t2 and t3, on the behavior
of the non-interacting DOS. The previous numerical studies of the standard one-dimentional and two-
dimensional Hubbard model with next-nearest [3] as well as long-range [31, 32] hopping showed that just
this quantity could be used as a good indicator for the emergence of ferromagnetism in the interacting
systems. The noninteractingDOS of theU = 0Hubbardmodel on the SSL of size L = 200×200, obtained
by exact diagonalization of H (for U = 0) is shown in figure 13. The left-hand panels correspond to
the situation when t2 > 0 and t3 = 0, while the right-hand panels correspond to the situation when
both t2 and t3 are finite. Numerical calculations were performed for different values of the delta function
broadening ε and it was found that the value of ε = 0.02 (the case presented in this section) is sufficient to
satisfactorily reproduce all significant features of DOS. One can see that once the frustration parameter t2
is nonzero, the spectral weight starts to shift to the upper band edge and the noninteracting DOS becomes
strongly asymmetric. Thus, taking into account the above mentioned scenario, there is a real chance that
the interacting system could be ferromagnetic in the limit of high electron concentrations. To verify this
conjecture, we performed exhaustive numerical studies of the model Hamiltonian (2.9) for a wide range
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Figure 14. (Colour online) The difference ∆E = E f − Emin between the ferromagnetic state E f and the
lowest ground-state energy from Eg(Sz) as a function of the frustration parameter t2 calculated for n 6 1
(a) and n > 1 (b) on the finite cluster of L = 6 × 6 sites (U = 1, t3 = 0). The inset shows ∆E , calculated
for two different electron densities on clusters of L = 6 × 6 and L = 8 × 8 sites [36].

of the model parameters U, t2 and n at t3 = 0. Typical results of our PQMC calculations obtained on
finite cluster of L = 6 × 6 sites, in two different concentration limits (n 6 1 and n > 1) are shown in
figure 14. There is plotted the difference ∆E = E f − Emin between the fully saturated ferromagnetic state
E f , which can be calculated exactly and the lowest ground-state energy from Eg(Sz) as a function of
the frustration parameter t2. According to this definition, the ferromagnetic state, strictly referred to as
the fully saturated ferromagnetic state, corresponds to ∆E = 0 (everywhere in the paper, the notation
ferromagnetism (ferromagnetic state) concerns the fully saturated ferromagnetism (the fully saturated
ferromagnetic state)). It is seen that for electron concentrations below the half filled band case n = 1, ∆E
is the increasing function of t2, and thus there is no sign of stabilization of the ferromagnetic state for
n 6 1, in accordance with the above mentioned scenario.

The situation looks more promising in the opposite limit n > 1. In this case, ∆E is considerably
reduced with an increasing t2, though this reduction is still insufficient to reach the ferromagnetic state
∆E = 0 for physically reasonable values of t2 (t2 < 1.6) that correspond to the situation in the real
materials. To exclude the finite-size effect, we also performed the same calculations on the larger cluster
of L = 8 × 8 sites, but again no signs of stabilization of the ferromagnetic state were observed (see the
inset to figure 14b).

For this reason, we turned our attention to the case t2 > 0 and t3 > 0. The noninteracting DOS corre-
sponding to this case is displayed in figure 13 (the right-hand panels). These panels clearly demonstrate
that with the increasing value of the frustration parameter t3, a more spectral weight is still shifted to the
upper band edge. A special situation arises at t3 = 0.6, when the spectral weight is strongly peaked at
the upper band edge. In this case, the nonintercting DOS is practically identical to the one corresponding
to noninteracting electrons with long-range hopping [31, 32]. Since the long-range hopping supports
ferromagnetism in the standard Hubbard model for electron concentrations above the half-filled band
case [31, 32], we expect that this could be also true for the Hubbard model on the SSL, at least for
some values of frustration parameters t2 and t3. Therefore, we decided to perform numerical studies of
the model for a wide range of t3 values at fixed t2,U and n (t2 = 1,U = 1, n = 7/4). To minimize the
finite-size effects, the numerical calculations were done on two different finite clusters of L = 6 × 6 and
L = 8 × 8 sites. The results of our calculations for ∆E as a function of t3 are displayed in figure 15a. In
accordance with the above mentioned assumptions, we find a relatively wide region of t3 values around
t3 = 0.6, where the ferromagnetic state is stable. It is seen that the finite-size effects on the stability region
of the ferromagnetic phase are negligible and thus these results can be satisfactorily extrapolated to the
thermodynamic limit L =→ ∞. Moreover, the same calculations performed for different values of the
Hubbard interactionU showed that the correlation effects (nonzeroU) further stabilize the ferromagnetic
state and lead to the emergence of macroscopic ferromagnetic domain in the t3–U phase diagram (see
inset to figure 15a). This confirms the crucial role of the Hubbard interaction U in the mechanism of
stabilization of ferromagnetism on the geometrically frustrated lattice. In figure 15b, we plotted the com-
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Figure 15. (Colour online) (a) The difference ∆E = E f − Emin as a function of the frustration parameter
t3 calculated for U = 1, t2 = 1, n = 7/4 and two different finite clusters of L = 6 × 6 and L = 8 × 8 sites.
The inset shows the ground-state diagram of the model in the t3–U plane. (b) The comprehensive phase
diagrams of the model in the t3–t2 and t3–n plane [36].

prehensive phase diagrams of the model in the t3–n as well as t3–t2 plane, which clearly demonstrate that
the ferromagnetic state is robust with respect to doping and frustration. In addition, we also calculated
the stability region of the ferromagnetic state using the well-known Stoner criterion, and surprisingly, we
found a nice correspondence of the results over the whole region of t2 and t3 values (see the lower inset
to figure 15b), despite the fact that the Stoner criterion is in general a crude approximation.

To check the convergence of PQMC results, we performed the same calculations by the Lanczos exact
diagonalization method. Of course, on such a large cluster, consisting of L = 6× 6 sites, we were able to
examine (due to high memory requirements) only several electron fillings near the fully occupied band
(N = 2L). The exact diagonalization and PQMC results for the width of the ferromagnetic phase obtained
on finite cluster of L = 6 × 6 sites, for three different electron fillings from the high concentration limit
(N = 66, 67, 68), are displayed in the inset to figure 15b and they show a nice convergence of PQMC
results.

Let us finally turn our attention to the question of possible connection between ferromagnetism and
the noninteracting DOS that is discussed at the beginning of the paper. Figure 15a and figure 15b show
that for each finite U and n sufficiently large (n ∼ 7/4), there exists a finite interval of t3 values, around
t3 ∼ 0.6, where the ferromagnetic state is the ground state of the model. To examine a possible connection
between ferromagnetism and the noninteracting DOS, we numerically calculated the noniteracting DOS
for several different values of t3 from this interval and its vicinity. The results obtained forU = 1, n = 7/4
and t2 = 1 are displayed in figure 16. Comparing these results with the ones presented in figure 15a for
the stability region of the ferromagnetic phase at the same values of U, n and t3, one can see that there
is an obvious correlation between the shape of the noninteracting DOS and ferromagnetism. Indeed, the
ferromagnetic state is stabilized only for these values of frustration parameters t2, t3, which lead to the
single peaked noninterating DOS at the band edge. From the moment that two or more peaks appear in
the noninteracting DOS at the band edge (by changing t2 or t3), ferromagnetism is suppressed.

2.5.2. Long-range hopping

With respect to the above presented results, it is natural to ask what happens in the situation when
also the next-nearest neighbor hopping terms will be included (for example, the t4 and t5 terms are of the
same order as the t3 term). To answer this question, we performed the same calculations with the same
one-parametric formula [equation (2.1)] as was used in the section 2.1. To reveal the possible stability
regions of the ferromagnetic state in the generalized Hubbard model on the SSL, let us first examine the
effects of the long-range hopping on the behavior of the non-interacting DOS. As mentioned above, just
this quantity, particularly, the appearance of the single-peaked DOS near the band edge could be used
as a good indicator for the emergence of ferromagnetism in the interacting systems. The noninteracting
DOS of the U = 0 Hubbard model on the SSL of size L = 200 × 200, obtained by exact diagonalization
of H (for U = 0) is shown in figure 17 for several different values ot the long-range-hopping parameter
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Figure 16. (Colour online) Non-interacting DOS calculated numerically for t2 = 1 and different values
of t3 (near t3 = 0.6) on the finite cluster of L = 200 × 200 sites [36].
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Figure 17. (Colour online) Non-interacting DOS calculated numerically for different values of the long-
range hopping parameter α on the finite cluster of L = 200 × 200 sites [37].

α = ln q. One can see that the DOS is strongly asymmetric with practically all spectral weight located
at the upper band edge, which in accordance with some previous works indicates a possible region of
ferromagnetism for electron concentrations above the half-filed band case n > 1. Moreover, the DOS is
double-peaked for α > 1 and single-peaked for α < 1, indicating ferromagnetism in the limit of small
values of α.

To verify these conjectures, we performed exhaustive numerical studies of the model for a wide range
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Figure 18. (Colour online) (a) The difference ∆E = E f −Emin between the ferromagnetic state E f and the
lowest ground-state energy from Eg(Sz) as a function of the long-range hopping parameter α calculated
for three different electron concentrations on the finite cluster of L = 6 × 6 sites (U = 2). The inset
shows ∆E calculated for n = 3/2 on clusters of L = 6 × 6 and L = 8 × 8 sites. (b) The ground-state
phase diagram of the generalized Hubbard model with long-range hopping on the SSL calculated for
two different finite clusters of L = 36 and L = 64 sites at U = 2. The inset shows the critical value of
the long-range hopping parameter αc (bellow which the ground state is ferromagnetic) as a function of
the Coulomb interaction U calculated for two different electron concentrations n = 3/2 and n = 4/3 at
U = 2 and L = 36 [37].

of the model parameters U, α for all even electron concentrations above the half-filled band case. The
nature of the ground state of the Hubbard model on the SSL is identified by the projector quantumMonte
Carlo method [30] with θ ∼ 30 and a time slice of ∆θ = 0.05 which suffices to reach well converged
values of the observables. Typical results of our PQMC calculations obtained on the finite cluster of
L = 6 × 6 sites for three different electron concentrations (n = 7/6, 4/3 and n = 3/2) are shown in
figure 18a. It is seen that for all electron concentrations, there exists a finite interval of α values where
∆E = 0 indicating the fact that ferromagnetism in the generalized Hubbard model with exponentially
decaying hopping amplitudes is not restricted only to high electron concentrations, as in the case of the
Hubbard model on the SSL with the first, second and third nearest-neighbor electron hopping, but also
extends to smaller values of electron concentrations. To exclude the finite-size effect, we also performed
the same calculations on the larger cluster of L = 8 × 8 sites. One can see that the finite-size effects on
the stability region of the ferromagnetic phase are negligible and thus these results can be satisfactorily
extrapolated to the thermodynamic limit L =→∞.

The second step of our study was to specify more precisely the stability region of the ferromagnetic
state. For this reason, we performed exhaustive numerical studies of the model for a wide range of model
parameters U, α and n. The results obtained are presented in the form of the ground-state phase diagram
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Table 1. The hopping amplitudes t ′i for the first, second, third, forth and fifth nearest neighbors on
the real Archimedean lattice. Note that on the real Archimedean lattice corresponding to rare-earth
Shastry-Sutherland magnets t ′1 = t1 = t2 [37].

α t ′1 t ′2 t ′3 t ′4 t ′5
0.1 1 0.9594 0.9294 0.9110 0.8699
0.2 1 0.9205 0.8638 0.8299 0.7567
0.3 1 0.8831 0.8028 0.7561 0.6582
0.4 1 0.8473 0.7461 0.6888 0.5725
0.5 1 0.8129 0.6935 0.6276 0.4980
0.6 1 0.7799 0.6445 0.5717 0.4332
0.7 1 0.7483 0.5990 0.5208 0.3768
0.8 1 0.7179 0.5567 0.4745 0.3278
0.9 1 0.6888 0.5174 0.4323 0.2851
1.0 1 0.6609 0.4809 0.3938 0.2480

in the n − α plane (see figure 18b). These results clearly support our aforementioned conjecture that
ferromagnetic state in the Hubbard model with the exponentially decaying hopping amplitudes on the
SSL is robust and exists for all electron concentrations above the half-filled band case n > 1. The width
of the ferromagnetic domain very strongly depends on the values of electron concentrations and reaches
its maximum for intermediate values of n. Again, we performed the evaluation of the finite size effects by
calculating the same phase diagram on the larger 8 × 8 cluster, but no significant effects were observed
and thus these results can be also satisfactorily extrapolated to the thermodynamic limit.

We also performed the same calculations for different values of the Coulomb interaction in order to
demonstrate the interplay between the long-range electron hopping and the on-site electron interaction.
The results of our numerical calculations obtained for two different electron concentrations (n = 4/3
and n = 3/2) are summarized in the inset to figure 18a and they clearly demonstrate strong effects of
the Coulomb interaction that considerably shifts αc to higher values. This leads to a very important
conclusion, namely, that correlation effects can, under some conditions (e.g., a special lattice structure),
stabilize the ferromagnetic state in strongly correlated systems.

To reveal the physical limits of the model, in table 1 we presented the actual values of the first,
second, third, fourth and fifth nearest-neighbour hopping amplitudes on the real Archimedean lattice,
corresponding to the real structure of rare-earth tetraborides, for selected values of themodel parameter α.
One can see that the smallest values of α (α 6 0.2) are of interest only from the academic point of view
(a very small decay of hopping amplitudes t ′i ) and of physical interest are only those values of α,
which are greater than 0.2, representing the realistic situation in the Shastry-Sutherland materials. The
ferromagnetic domain in this limit is still robust indicating a significant impact of lattice structure and
long-range hopping on the stabilization of ferromagnetism in the strongly correlated electron systems.

3. Conclusion

In this review we presented the results of our numerical calculations concerning the problem of
stabilization of ferromagnetism in the generalized Hubbard model, considered herein as a generic model
for a description of itinerant ferromagnetism in narrow-band systems. In particular, we examined the
effects of (i) the long-range hopping, (ii) the correlated hopping, (iii) the long-range Coulomb interaction,
(iv) the flat bands and (v) the lattice structure. We found that each of the above mentioned terms plays
a significant role in stabilizing the ferromagnetic state, and for each of these terms we determined the
domains in the parametric space of the model where the the ferromagnetic state is the ground state of
the generalized Hubbard model. Our results can be summarized as follows: (i) It is found that the long-
range hopping with exponentially decaying hopping amplitudes stabilizes the ferromagnetic state for a
wide range of electron interactions U and electron concentrations n for both the one-dimensional and
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two-dimensional case. In the one dimensional case, the ferromagnetic state is stable (above some critical
value of Coulomb interaction) for all electron concentrations n > 1, while in the two-dimensional case,
it is stable only for electron concentrations from the interval 1 < n < nc < 2, where the critical value of
electron concentration nc strongly depends on the strength of Coulomb interaction U. (ii) Examining the
combined effects of long-range and correlated hopping, we found that ferromagnetic state for nonzero q,U
and n is further stabilized with an increasing strength of the correlated hopping term t ′. The effect is
especially strong for intermediate and strong values of q. There even exists some critical value of q
above which the ground state is ferromagnetic for all nonzero U. With an increasing t ′, this critical
value shifts to lower values of q (that represent a much more realistic type of electron hopping) and the
ferromagnetic domain correspondingly increases. (iii) Similarly, examining the combined effects of the
long-rage hopping and long-range Coulomb interaction (both considered with exponentially decaying
amplitudes), we found that the long-range interaction plays a crucial role in the stabilization of the
ferromagnetic state for electron concentrations n 6 1, while the long-range hopping for n > 1. (iv)
With respect to the influence of flat bands on the formation and stabilization of the ferromagnetic state
within the Hubbard model, we found that at fixed U, the ferromagnetic state is stabilized with increasing
concentration of holes (1 − n) in the system, and at a fixed n, the ferromagnetic state is generally
stabilized with an increasing U. (v) The study of the Hubbard model on the SSL with the first, second
and third couplings showed that there are strong correlations between ferromagnetism and the shape of
the noninteracting density of states (the lattice structure). In particular, it is found that ferromagnetism
is stabilized only for these values of frustration parameters (t1, t2, t3), which lead to the single peaked
noninterating density of states at the band edge. From the moment that two or more peaks appear in the
noninteracting density of states at the band edge, the ferromagnetic state is suppressed. (vi) In addition,
we found that the ferromagnetic domain for the case of the first, second and third nearest neighbors is
considerably enhanced, when long-range hopping with exponentially decaying amplitudes is considered.
All these results point to the fact that the absence of ferromagnetism in the ordinary Hubbard model
with the nearest-neighbour hopping and on-site Coulomb interaction is obviously the consequence of
oversimplified description of electron hopping and electron interactions on the lattice.
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Itinerant ferromagnetism in narrow-band metals

Зонний феромагнетизм у вузькозонних металах

П. Фаркашовськи
Iнститут експериментальної фiзики, Словацька академiя наук
вул. Ватсонова 47, 043 53 Кошiце, Словаччина
З моменту запровадження у 1963 р., модель Хаббарда стала однiєю з найбiльш популярних в лiтературi,
що використовуються для вивчення колективних явищ у вузькозонних металах (феромагнетизм, перехо-
ди “метал-дiелектрик”, хвилi зарядової густини, високотемпературна надпровiднiсть). Серед усiх цих ко-
лективних явищ проблема зонного феромагнетизму в моделi Хаббарда має найдовшу iсторiю. Незважа-
ючи на вражаючу дослiдницьку активнiсть у минулому, розумiння фiзиками мiкроскопiчних механiзмiв,
що призводять до стабiлiзацiї зонного феромагнетизму в моделi Хаббарда (вузькозоннi метали), поки що
є далеко не повним. У цьому оглядi представлено нашi числовi результати з цiєї проблеми, отриманi
точною дiагоналiзацiєю для малих кластерiв, методом ренормгрупи для матрицi густини та квантовим
методом Монте-Карло в рамках рiзних узагальнень моделi Хаббарда. Особливу увагу придiлено опису
вирiшальних механiзмiв (взаємодiй), що сприяють стабiлiзацiї феромагнiтного стану, а саме: (i) дальнiх
перескокiв, (ii) скорельованих перескокiв, (iii) далекосяжної кулонiвської взаємодiї, (iv) плоских зон, (v)
структури ґратки. Хоча бiльшiсть представлених результатiв отримано для одновимiрного випадку, але
також обговорюється i вплив збiльшення розмiрностi системи на її феромагнiтний стан.
Ключовi слова: зонний феромагнетизм, системи скорельованих електронiв, модель Габбарда
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