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Phase transition kinetics of aqueous hydroxypropyl cellulose solution was studied by using turbidimetric mon-
itoring and mathematical modelling techniques. Based on the nonlinear Cahn-Hilliard equation with a mobil-
ity depending on the component concentration, the phase separation has been modeled on a simple one-
dimensional Flory lattice. For value set of the interfacial energy parameter, data were obtained on the changing
of the average values of the cluster sizes, their mass and concentration. The simulation results allow us to dis-
tinguish three stages of the spinodal decomposition: early, intermediate and final. It was found that for the
intermediate stage, the kinetics of the cluster mass growth is described by a dependence that is characteristic
of the usual diffusion mass transfer; the change in the average cluster size can be represented by a scaling
function with an exponent close to 1/3, typical of the systems with a conserved scalar order parameter. It is
shown that the concentration of clusters at the final stage is determined by the temperature dependence of the
interfacial energy.
Key words: thermoresponsive polymer, spinodal decomposition, Cahn-Hilliard equation

1. Introduction

Phase separation of thermoresponsive polymers—cellulose ethers— is an intensive area of researches
based on promising technologies in various fields, including the food industry, personal hygiene products,
medicine, pharmacology, and environmentally friendly materials [1, 2]. The kinetics of phase separation
in solutions of cellulose derivatives is a rather complex process, the understanding of which is necessary
to create materials with specified physicochemical properties.

Aqueous solutions of thermoresponsive polymers undergo a sol-gel transition upon heating, returning
to their original state upon cooling [3, 4]. Gelation of such a system is associated with an increase of
the solution turbidity resulting from phase separation. To date, the gelation mechanism is still not
well understood, although many different hypotheses have been proposed ([5] and references therein).
Structural and rheological properties of polymer gels based on cellulose derivatives have been intensively
studied since 1935 and all the experimental data accumulated to date indicate that the mechanism of phase
separation in such systems is spinodal decomposition [5–8]. Spinodal decomposition is the initial stage
of phase transformation when the system was preliminarily brought to a thermodynamically unstable
state. This instability at a given temperature corresponds to the section of the free energy curve where its
second derivative with respect to concentration is negative. In the region of spinodal decomposition, the
solution domains with an increased or decreased concentration relative to its average value — clusters
— arising due to thermal fluctuations become stable and begin to grow. This process is maintained by
ascending diffusion [9], when the mutual attraction of the same type of particles leads at the next time
moments to an even greater increase of their concentration in the cluster and to a further depletion of the
adjacent solution zone. In the case of spinodal decomposition, the separation of a substance into various
phases occurs uniformly throughout the entire solution volume; therefore, the sol-gel transition in such
systems is also called the volume phase transition [10, 11].
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Figure 1. Installation scheme for turbidity measuring (see explanations in the text).

This paper is devoted to the study of the phase transition kinetics in aqueous solutions of thermore-
sponsive polymers — cellulose derivatives.

2. Experiment

As the object of our study we selected a 2 wt% aqueous solution of hydroxypropyl cellulose man-
ufactured by Alfa Aesar [12]. For this hydroxypropyl cellulose, its molecular weight was 105, and the
substitution degree was 75.7%.

Figure 1 illustrates the scheme of the experimental setup, which is an improved version of the device
used in [13] for turbidity measuring.

As a light source 1, the GNL-5013PGC LED was used. It was powered by a micropower current
stabilizer made on the LP2951 chip. Light beam with a wavelength of 525 nm was fed through the
optical-fiber cable 2 into the thermostated chamber 3 filled with a polymer solution. The beam reflected
from the mirror 4 was returned via the fiber cable 6 to the digital optical sensor 7 (TLS237) connected to
the microcontroller 8 (AVR ATmega328P). As a result, the total intensity was measured: JΣ = JT + JR,
where JT is the intensity of the weakened light flux due to the passage through the sample, JR is the
intensity of the light flux reflected (backscattered) by the sample. Tomeasure JR, mirror 4 was shielded by
a shutter 5 made of light-absorbing material (black anodized aluminum). Thus, in order to determine JT
and JR for a specific sample, it was necessary to perform two measurements: with and without screen 5.

The solution temperature was measured by the digital temperature sensor 9 (LMT01LPG) connected
to the second identical microcontroller of unit 8. The values of luminosity and temperature were syn-
chronously read by the unit 8 and transmitted via the RS-232 protocol into a USB ports of a PC. Data
capture, their subsequent processing, and visualization were implemented by a programwritten in Delphi.
The luminosity measurement error did not exceed 0.1 lux, and the temperature measurement accuracy
was ±0.1◦C. Chamber 3 was enclosed in a light-tight case 10 and was connected through outputs 11,12
to a Julabo ME-6 circulation thermostat. Structurally, elements 4, 5, 9 together with the output (input) of
fiber cables 2, 6 were designed as a probe immersed in the solution to be researched.

Figure 2 shows the measurement results for the investigated polymer solution. The curve in this figure
was calibrated with a turbidity level of 0%, which corresponds to the illumination value of the photo
sensor at a sample temperature of 25◦C.

From the analysis of the experimental curve behavior it follows that the observed turbidity can be
conditionally divided into three sections, each of which is approximated by linear dependencies (straight
lines a, b, and c). The intersection point of straight lines a and b corresponds to TA = 38.6◦C — the
so-called cloud point [5]; the intersection point of straight lines b and c determines TB = 40.8◦C —
the temperature of the phase transition completion. The phase transition temperature can be defined as
TP = (TA + TB)/2 = 39.7◦C. The obtained temperature is in agreement with the data of other authors:
TP = 39 ± 1◦C [14], TP = 40.3◦C [15].
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Figure 2. Turbidity as a function of temperature for the 2 wt% aqueous hydroxypropyl cellulose solution;
the temperature was ramped from 25 to 60◦C at a rate of 1.1◦C/min. See other explanations in the text.

3. Formalism

When describing the features of phase formation in the region of spinodal decomposition, one of
the most successful approaches is the Cahn-Hilliard model [16–18], developed on the basis of the free
energy density functional method [19, 20]. The Cahn-Hilliard equation does not contain any microscopic
details of the described system, but includes such macroscopic characteristics as the diffusion coefficient,
free and interfacial energy. The free energy density functional method makes it possible to describe in a
natural way the diffusion interaction between clusters and their coagulation during the growth of a new
phase without any approximations [20].

The Ginzburg-Landau type functional for the total energy of the polymer-solvent system has the
form [21]

U[φ] =
∫

dr
{
F(φ) + κ(φ)|∇φ|2)

}
, φ = φ(r, t), (3.1)

where φ is the order parameter which has the meaning of the polymer concentration, F(φ) is the free
energy density. The second term in curly brackets under the integral sign in (3.1) describes the contribution
of spatial correlation effects to free energy [9] with the gradient coefficient [22]

κ(φ) =
a2

36 φ(1 − φ)
, (3.2)

where a is the size of the polymer chain segments. For the Flory model, a = 1 [23]; therefore, we omit
this parameter in further notation. Let us introduce in (3.1) the dimensionless parameter α

U[φ] =
∫

dr
{
F(φ) + α2κ(φ)|∇φ|2)

}
, (3.3)

the physical meaning of which will be clarified in the next section. For α = 1, the total energy has the
form (3.1). In this work, we consider the solutions of the Cahn-Hilliard equation with α , 1.

The Cahn-Hilliard equation describing the concentration evolution at a certain point in space r at a
certain time moment t has the form [21]

∂φ

∂t
= ∇

{
M∇

δU[φ]
δφ

}
+ ξ, (3.4)

where M is the mobility, ξ = ξ(r, t) is a stochastic function (thermal noise) that satisfies the fluctuation-
dissipation theorem [24].

To solve equation (3.4) with functional (3.3), we use the Flory-Huggins free energy of mixing for
polymer-solvent systems [23, 25]

F(φ) = N−1
P φ ln φ + (1 − φ) ln(1 − φ) + χφ(1 − φ), (3.5)
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where NP is the polymerization degree, χ is the Flory-Huggins parameter describing pair interactions
between monomers. Then, the total energy variational derivative with respect to φ takes the form [21]

δU[φ]
δφ

= f (φ) − α2 [λ(φ)|∇φ|2 + 2κ(φ)∆φ
]
, (3.6)

where
f (φ) = N−1

P (ln φ + 1) − ln(1 − φ) − χ(2φ − 1) − 1, (3.7)

λ(φ) =
2φ − 1

36 φ2(1 − φ)2
. (3.8)

Let us believe that the mobility of polymer molecules depends on their concentration [26]

M = M0φ(1 − φ). (3.9)

Thus, the Cahn-Hilliard equation takes the form

∂φ

∂t
= M0∇

{
φ(1 − φ)∇

(
f (φ) − α2 [λ(φ)|∇φ|2 + 2κ(φ)∆φ

] )}
+ ξ. (3.10)

This is a fourth-order nonlinear parabolic partial differential equation with a stochastic term. To
enforce the mass conservation law and descending of total energy with time, equation (3.10) must be
equipped with the homogeneous Neumann boundary conditions [19].

4. Calculation results and discussion

Equation (3.10) describes the temporal evolution of a conservative (potential) field, which is a
continuous and sufficiently differentiable function. In [27], the solvability of the Cahn-Hilliard equation
and the existence of a set of stationary states, to which the initial distributions φ(r, 0) are attracted at
t →∞, were proved.

Without loss of generality, let us investigate solutions of the one-dimensional equation (3.10). In-
troducing a spatio-temporal grid for xi ∈ [1, L] (i = 1, 2, ..., L) and tn ∈ [0,∞) (n ∈ N) with periodic
boundary conditions, we use for (3.10) the semi-implicit difference scheme proposed in [21]

φn+1
i = φni +M0τ∇h

{
φni (1 − φ

n
i )∇h

(
f (φni ) − α

2 [λ(φni )|∇hφni |2 + 2κ(φni )∆hφ
n+1
i

] )}
+ ε∇hηi . (4.1)

Here, τ is the time step, h = 1 is the spatial step, ∇h and ∆h are the discrete versions of corresponding
differential operators [28], ε is the intensity of thermal noise, ηi is the sequence of standard normally
distributed random variables, which is calculated once at the beginning of computations.

According to (4.1), the transition from the n-th time layer to the (n + 1)-th time layer is carried out
in one step, but before that the value of φn+1

i in the right-hand side of equation (4.1) is found each time
by the method of successive approximations from the initial φni . The iterations were performed until the
condition ����φn+1

i ( j + 1) − φn+1
i ( j)

φn+1
i ( j)

���� 6 10−3

was satisfied between two successive iterations j and ( j + 1), the maximum number of iterations did not
exceed 10.

The Flory-Huggins interaction parameter is χ = 0.48 [29] for the researched system, the initial phase
was homogeneous, and the corresponding polymer concentration for a 2 wt% solution was φin = 0.02/ρ,
where ρ = 1.27 g/cm3 is the density of hydroxypropyl cellulose [30]. The degree of polymerization was
chosen equal to NP = 300, the values of the other parameters were: M0 = 0.3, ε = 10−5, and τ = 10−5

(these optimal values are chosen exclusively for convenience reasons: maximum simulation time and
available computing resources, since parameters specified affect only the growth rate of clusters rather
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Figure 3.Distribution of the reduced concentration φ(x, t) on a one-dimensional lattice during the spinodal
decomposition in the hydroxypropyl cellulose-water system (a); the result of the wavelet transforms of
the corresponding phase structures (b). The value of α is 0.28.

than the microscopic features of their spatial structure). The phase structure growth was simulated on a
lattice with L = 128.

In figure 3a, as an example, the result of numerical simulation is demonstrated for α = 0.28, where it
is seen how the reduced concentration φ = φ/φin changes depending on the dimensionless distance x and
time t. It can be seen how an unstable regime arises on the basis of a random distribution (t = 0.001 − 0.2),
which leads to the primary structure of a new phase (t = 0.5), and then to its further coarsening and final
formation (t = 1 − 5).

Figure 3b shows the wavelet transforms of the corresponding spatio-temporal structures presented
in figure 3a; MATLAB Wave Toolbox [31] was used to construct these pictures. The numbers of the
expansion coefficients using the Mexican Hat Wavelet, NW , are shown on the vertical axis. In figure 3b, it
can be seen that local features (non-smoothness) correspond to vertical lines going from the points where
the singularities are located. The picture of the wavelet coefficients reproduces the hierarchical structure
of fluctuations in the value of φ(x, t): for the interval t = 0.001 − 0.5, one can see how the distribution
of NW (x, t) gradually loses its fractal features — the characteristic branching inherent to local extrema
disappears over time.

Note that the self-organization process of the phase structure, modeled here by the Cahn-Hilliard
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Figure 4. Dependencies of the average cluster mass over time for the set of α values: 0.12 (1), 0.16 (2),
0.2 (3), 0.24 (4), 0.28 (5). Averaging was performed for 100 runs of the program simulating the phase
structure.

Figure 5. The same as in figure 4, but for the average cluster radius.

Figure 6. The same as in figure 4, but for the total energy.

equation, is provided exclusively due to diffusionmass transfer, while other mechanisms are also possible,
for example, mass transfer due to interfacial tension [32]. The mechanism of internal mass transfer
governing the evolution of φ(x, t) is confirmed by an analysis of the calculation results shown in figure 4.
This figure shows the time dependencies of the average cluster mass m(t) = 〈S/Nc〉, where S is the area of
the phase structure formed at the moment t above level φ = 1, and Nc is the number of clusters at the level
φ = 1. The kinetics of mass changing was analyzed using the power function m(t) ∼ tγ: approximating
the results in figure 4 by linear dependencies in the range t = 0.5 − 5, and we get γ = 0.545 ± 0.179. This
value of γ, close to 1/2, corresponds to the square root law for diffusion mass transfer [33].

Another characteristic of the asymptotic behavior of the system at large times is dynamic scalingwhich
is determined by the characteristic length L(t) of separate ordered regions of the phase structure [34].
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Figure 7. The same as in figure 4, but for the average number of clusters Nc .

Figure 8. Volume concentration of clusters n as a function of parameter α. Simulation time is t = 5.

Choosing the average radius of cluster R(t) as characteristic length at the level φ = 1, we find the scaling
exponent for the growth law R(t) ∼ tδ . The analysis of the time dependencies R(t) in their longest linear
sections in figure 5 gives the value δ = 0.307 ± 0.139. This value is close to the exponent δ = 1/3 which
is typical of the laws of growth in systems with a conserved scalar order parameter [35, 36].

The growth of the phase structure during spinodal decomposition occurs, on the whole, due to the
coagulation of clusters (as can be seen from figure 3a), while the system relaxes into an energetically
more favorable state with a lower energy U[φ] (figure 6).

The descent in the total energy over time, as follows from (3.3), occurs not only due to the change in
the free energy F(φ), but also because of a decrease in the second term under the integral sign in (3.3),
which has a simple physical meaning. Cahn and Hilliard [16] showed that∫

dr κ(φ)|∇φ|2 = σ/2 , (4.2)

where σ is the density of interfacial energy at equilibrium. During relaxation, the system tends to take a
more energetically favorable state, reducing the total surface area of the clusters due to their coagulation.
As a result, the interfacial energy decreases. Consequently, the α parameter in (3.3) determines the
contribution of the interfacial energy to the total energy; besides,α can also depend on temperature [37, 38]
like the mobility M0 or the Flory-Huggins parameter χ. In the calculations, it was found that these three
parameters mainly determine the phase transition dynamics, but if M0 and χ affect only the growth rate
of new phase, then α determines the number of clusters in the final stage of spinodal decomposition
(figure 7).

In other words, if the density of interfacial energy depends on the temperature T , then the number of
clusters also depends on T . It is possible to establish the form of the phenomenological dependence α(T)
based on the following considerations.

The result shown in figure 7was obtained for one-dimensional case. Assuming that the solution turbid-
ity JT is proportional to the volume concentration of clusters n = N3

c [39], we approximate the dependence

43601-7



V. I. Kovalchuk

of n(α) for the formed phase structure (at t = 5) by the scaling function n ∼ αν with ν = −(3.203 ± 0.011)
(figure 8).

In the phase transition region, turbidity is proportional to temperature (section AB in figure 2) or
JT ∼ αν ∼ T , whence α ∼ T−0.312, i.e., the contribution of the interfacial energy into the total energy
decreases when temperature rises.

5. Conclusion

In the present study, the dynamic behavior of the phase separation in aqueous solution of hydrox-
ypropyl cellulosewas analyzed by turbidimetry andmathematicalmodellingmethods.Using the nonlinear
Cahn-Hilliard equation with mobility depending on the component concentration, the phase separation
was simulated on a simple one-dimensional lattice. For different values of the interfacial energy pa-
rameter, the time dependencies of the average values of cluster sizes, their mass, and concentration per
unit volume were obtained. The simulation results allow us to distinguish three stages of the spinodal
decomposition: early, intermediate, and final. For the intermediate stage, the kinetics of the change in
the average cluster mass is described by the dependence m(t) ∼ tγ, γ = 0.545 ± 0.179, which corre-
sponds to the square root law typical of the usual diffusion mass transfer. The growth of the average size
of the phase structure elements can be described by the scaling function R(t) ∼ tδ with the exponent
δ = 0.307 ± 0.139; this value is close to 1/3 that is characteristic of the systems with a conserved scalar
order parameter. For the final stage, the concentration of clusters is determined by the contribution of the
interfacial energy into the total energy of the system; this contribution is described by the temperature
dependence α(T) ∼ T−0.312.

6. Acknowledgements

This work was supported by the Ministry of Education and Science of Ukraine by the grant “Fractal
dimension and properties of liquid systems relevant for medicine and nuclear technologies” (project
No. 0120U102176).

All the simulations for this work were performed using the computing cluster of the Taras Shevchenko
National University of Kyiv [40].

References

1. Anastas P. T., Warner J. C., Green Chemistry: Theory and Practice, Oxford University Press, New York, 1998.
2. Kamide K., Cellulose and Cellulose Derivatives, Elsevier Science, Amsterdam, 2005.
3. Garate H., Li K.-Wo, Bouyer D., Guenoun P., Soft Matter, 2017, 13, 7161–7171, doi:10.1039/c7sm01501a.
4. Lodge T. P., Maxwell A. L., Lott J. R., Schmidt P. W., McAllister J. W., Morozova S., Bates F. S., Li Y.,

Sammler R. L., Biomacromolecules, 2018, 19, No. 3, 816–824, doi:10.1021/acs.biomac.7b01611.
5. Fairclough J. P. A., Yu H., Kelly O., Ryan A. J., Sammler R. L., Radler M., Langmuir, 2012, 28,

10551–10557, doi:10.1021/la300971r.
6. Sarkar N., J. Appl. Polym. Sci., 1979, 24, 1073–1087, doi:10.1002/app.1979.070240420.
7. Takeshita H., Saito K., Miya M., Takenaka K., Shiomi T., J. Polym. Sci. B., 2010, 48, 168–174,

doi:10.1002/polb.21885.
8. Villetti M. A., Soldi V., Rochas C., Borsali R., Macromol. Chem. Phys., 2011, 212, 1063–1071,

doi:10.1002/macp.201000697.
9. Skripov V. P., Skripov A. V., Sov. Phys. Usp., 1979, 22, 389–410, doi:10.1070/PU1979v022n06ABEH005571.

10. Weißenborn E., Braunschweig B., Soft Matter, 2019, 15, 2876–2883, doi:10.1039/c9sm00093c.
11. Xia X., Tang S., Lu X., Hu Z., Macromolecules, 2003, 36, 3695–3698, doi:10.1021/ma0216728.
12. Hydroxypropyl Cellulose, URL https://www.alfa.com/en/catalog/043400/.
13. Alekseev O. M., Zabashta Yu. F., Kovalchuk V. I., Lazarenko M. M., Bulavin L. A., Ukr. J. Phys., 2019, 64,

No. 3, 238–244, doi:10.15407/ujpe64.3.238.
14. Desai D., Rinaldi F., Kothari S., Paruchuri S., Li D., Lai M., Fung S., Both D., Int. J. Pharm., 2006, 308, 40–45,

doi:10.1016/j.ijpharm.2005.10.011.

43601-8

https://doi.org/10.1039/c7sm01501a
https://doi.org/10.1021/acs.biomac.7b01611
https://doi.org/10.1021/la300971r
https://doi.org/10.1002/app.1979.070240420
https://doi.org/10.1002/polb.21885
https://doi.org/10.1002/macp.201000697
https://doi.org/10.1070/PU1979v022n06ABEH005571
https://doi.org/10.1039/c9sm00093c
https://doi.org/10.1021/ma0216728
https://www.alfa.com/en/catalog/043400/
https://doi.org/10.15407/ujpe64.3.238
https://doi.org/10.1016/j.ijpharm.2005.10.011


Phase separation dynamics in aqueous solutions of thermoresponsive polymers

15. Khumana P., Singh W. B. K., Devi S. D., Naorem H., J. Macromol. Sci. A., 2014, 51, 924–930,
doi:10.1080/10601325.2014.953377.

16. Cahn J. W., Hilliard J. E., J. Chem. Phys., 1958, 28, 258–267, doi:10.1063/1.1744102.
17. Cahn J., Acta Metall., 1961, 9, 795–801, doi:10.1016/0001-6160(61)90182-1.
18. Glotzer S. C., Paul W., Annu. Rev. Mater. Res., 2002, 32, 401–436,

doi:10.1146/annurev.matsci.32.010802.112213.
19. Lee D., Huh J.-Y., Jeong D., Shin J., Yun A., Kim J., Comput. Mater. Sci., 2014, 81, 216–225,

doi:10.1016/j.commatsci.2013.08.027.
20. L’vov P. E., Svetukhin V. V., Phys. Solid State, 2017, 59, 355–361, doi:10.1134/S1063783417020160.
21. Li X., Ji G., Zhang H., J. Comput. Phys., 2015, 283, 81–97, doi:10.1016/j.jcp.2014.11.032.
22. De Gennes P. G., J. Chem. Phys., 1980, 72, 4756–4763, doi:10.1063/1.439809.
23. Flory P. J., Principles of Polymer Chemistry, Cornell University Press, New York, 1953.
24. Landau L. D., Lifshits E. M., Statistical Physics, Course of Theoretical Physics, Vol. 5, Elsevier, 3 edn., 2013.
25. Huggins M. L., Physical Chemistry of High Polymers, Literary Licensing LLC, 2013.
26. Dolinnyi A. I., Polym. Sci. A., 1994, 36, No. 5, 801–821 (in Russian).
27. Chafee N., Infante E. F., J. Appl. Anal., 1974, 4, 17–37, doi:10.1080/00036817408839081.
28. Samarskii A. A., The Theory of Difference Schemes, CRC Press, New York, 2001.
29. Polymer-Solvent Interaction Parameter at Infinite Dilution (Flory-Huggins),

URL http://polymerdatabase.com/polymer%20physics/Chi%20Table.html.
30. Hydroxypropyl Cellulose 9004-64-2, URL https://www.guidechem.com/dictionary/en/9004-64-2.html.
31. Wavelet Toolbox, URL https://uk.mathworks.com/help/wavelet/.
32. Siggia E. D., Phys. Rev. A, 1979, 20, No. 2, 595–605, doi:10.1103/PhysRevA.20.595.
33. Zhukhovitsky A. A., Schwarzman L. A., Physical Chemistry, Metallurgy, Moscow, 2001 (in Russian).
34. Bray A. J., Rutenberg A. D., Phys. Rev. E, 1994, 49, R27–R30, doi:10.1103/physreve.49.r27.
35. Lifshitz I. M., Slyozov V. V., J. Phys. Chem. Solids, 1961, 19, 35–50, doi:10.1016/0022-3697(61)90054-3.
36. Bray A. J., Phys. Rev. E, 1993, 47, 3191–3195, doi:10.1103/PhysRevE.47.3191.
37. Palmer S. J., Phys. Educ., 1976, 11, No. 2, 119–120, doi:10.1088/0031-9120/11/2/009.
38. Lielmezs J., Herrick T. A., Chem. Eng. J., 1986, 32, 165–169, doi:10.1016/0300-9467(86)80004-1.
39. Stratton J. A., Houghton H. G., Phys. Rev. 1931, 38, 159–165, doi:10.1103/PhysRev.38.159.
40. High-performance computing cluster of Information and Computer Center of National Taras Shevchenko Uni-

versity of Kyiv, URL http://cluster.univ.kiev.ua/eng/.

Динамiка фазового роздiлення у водних розчинах

термореактивних полiмерiв

В. I. Ковальчук
Київський нацiональний унiверситет iменi Тараса Шевченка,
вул. Володимирська, 64/13, Київ 01601, Україна
Дослiджена кiнетика фазового переходу у водному розчинi гiдроксипропiлцелюлози з використанням
турбiдиметричного експерименту та методу математичного моделювання. На основi нелiнiйного рiвня-
ння Кана-Хiлларда з рухливiстю,що залежить вiд концентрацiї компонента, виконана симуляцiя роздiле-
ння фаз на простiй одновимiрнiй решiтцi Флорi. Для набору значень параметра мiжфазної енергiї одер-
жано данi про змiну у часi середнiх розмiрiв кластерiв, їх маси та концентрацiї. Результати моделювання
дозволяють видiлити три стадiї спiнодального розпаду: ранню, промiжну та фiнальну. Встановлено, що
для промiжної стадiї кiнетика збiльшення маси кластера описується залежнiстю, характерною для звичай-
ної дифузiйної масопередачi; змiна середнього розмiру кластера може бути представлена скейлiнговою
функцiєю з показником, близьким до 1/3, типовим для систем з консервативним скалярним параметром
порядку. Показано,що концентрацiя кластерiв на фiнальнiй стадiї визначається температурною залежнi-
стю мiжфазної енергiї.
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