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In simulations of crystals, unlike liquids or gases, it may happen that the properties of the studied systemdepend
not only on the volume of the simulation cell but also on its shape. For such cases it is desirable to change
the shape of the box on the fly in the course of the simulation as it may not be known ahead of time which
geometry fits the studied system best. In this work we derive an algorithm for this task based on the condition
that the distribution of specific geometrical parameter observed in simulations at a constant volume matches
that observed in the constant-pressure ensemble. The proposed algorithm is tested for the system of hard-
core ellipses which makes lattices of different types depending on the asphericity parameter of the particle.
It is shown that the performance of the algorithm critically depends on the range of the sampled geometrical
parameter. If the range is narrow, the impact of the samplingmethod isminimal. If the range is large, inadequate
sampling can lead to significant distortions of the relevant distribution functions and, as a consequence, errors
in the estimates of free energy.
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1. Introduction

Today computer simulations play a key role in fundamental research across multiple disciplines,
including physics, chemistry and materials science [1]. A large share of computational studies employ
simulation boxes with fixed volume. This choice is mainly motivated by convenience as constant-
volume/constant-temperature ensemble is easier to program than the equivalent ensemble with constant
pressure. But this is also due to the involvement of the constant-volume ensemble in other, specialized
simulation techniques such as free energy calculations [2], Gibbs ensemble [3] or replica-exchange
method [4–6]. Regardless of the particular context, it is always understood that the effect of volume
vanishes in the thermodynamic limit where the results are thought to be independent of the employed
ensemble. This claim is certainly true for liquids or gases, whose properties are independent of the
geometry of the box.

In the case of crystals, however, the situation could be quite different [7, 8]. In crystalline materials
there could be properties that depend explicitly on the volume as well as on the shape of the box. Take
for instance the example of a rectangular lattice with lattice constants 𝑎 and 𝑏, as shown in figure 1. The
dimensions of the box that accommodates 𝑛 columns and 𝑚 rows are 𝐿𝑥 = 𝑎𝑛 along 𝑥 axis and 𝐿𝑦 = 𝑏𝑚
along 𝑦 axis as shown in figure 1 (a). The corresponding aspect ratio is 𝜏 = 𝐿𝑥/𝐿𝑦 = 𝑎𝑛/𝑏𝑚. Now, let
us assume that the lattice constants are not known ahead of time but are meant to be determined in the
course of the simulations. If we initially choose a box with the wrong aspect ratio, 𝜏′ > 𝜏 for instance,
see figure 1 (b) for appropriate illustration, the lattice constant determined in simulations will also be
incorrect. Since the geometry of the cell drives the structure of the lattice, wrong geometry translates
into wrong structure. Importantly, lattice distortions will not go away easily even when the size of the
simulation box is increased.
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Figure 1. Aspect ratio of simulation boxes is governed by the geometry of the modelled lattice. Incorrect
initial guess will result in lattice distortions in constant volume simulations, for instance leading to 𝑎′ > 𝑎.
To circumvent this problem, the box should be capable of changing its shape.

One way to deal with this issue is to estimate the free energy of the studied system 𝐹 as a function
of some geometrical parameter of the cell, for instance 𝜏, and then choose the geometry with the
lowest 𝐹. This can be done by a variety of tools, including the Einstein crystal method for the free
energy computation [2, 9]. Although formally correct, this approach is cumbersome and carries a large
computational cost. An alternative is to allow the shape of the box to change in the course of the
simulation. The proper geometry then corresponds to the free energy minimum, so it will be seen as the
most frequently visited structure. An additional benefit will be for systems that can populate multiple
geometries at the same time as their relative free energy in this case can be determined from a single
Monte Carlo (MC) trajectory.

The question then is how does one allow the shape of the box to change? How is that accomplished
in practice? Would, for instance, generating randomly, from time to time, a new aspect ratio 𝜏 in the
course of the simulation constitute a good method? If not, what is the good method? These questions had
been addressed before as multiple studies report using simulation cells with constant volume but variable
shape (MCVS) [7, 8, 10, 11]. Unfortunately, the details of the performed simulations are scarce and to
establish the specifics of the used algorithms appears difficult. Yet, we find evidence that the method
one employs to sample the trial geometries may have measurable consequences for physical properties
extracted from simulations. Thus, which geometry parameters are best to choose in MCVS simulations,
and how to choose them remains unclear. These are the questions that we answer in the present article.
We show that in order for the constant-volume ensemble with variable shape to be consistent with the
constant-pressure ensemble, the aspect ratio should be sampled from the 1/𝜏 distribution. Any other
sampling law will lead to erroneous results. We illustrate this point for the system of impenetrable
ellipses in two-dimensional space, for which we evaluate the performance of the method that relies on
uniformly sampled 𝜏, or on the so-called 𝜏-sampling and show that it produces wrong free energy for the
relevant states of the system.

2. Theory

2.1. Sampling law for 𝝉

Let us assume that, in addition to volume, the partition function in the canonical, or NVT for short,
ensemble 𝑄(𝑁,𝑇,𝑉 ; 𝜏) =

∫
𝑉 ;𝜏 exp[−𝛽U(Γ)]dΓ explicitly depends on some geometrical parameter 𝜏,

for instance the aspect ratio of the box sides. Here, 𝛽 is the inverse temperature, 𝑉 is the volume,𝑈 (Γ) is
the potential energy and Γ is the abbreviation for the point in the configuration space. The integration is
carried out over volume𝑉 with the set parameter 𝜏. The full partition function then should be constructed
as a weighted sum (or integral) over all possible realizations of the additional degree of freedom [12]. In
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the most general case, one finds:

𝑄(𝑁,𝑇,𝑉) =
∫
𝑄(𝑁,𝑇,𝑉 ; 𝜏) 𝑓 (𝜏)d𝜏 =

∫
𝑃(𝜏)d𝜏, (2.1)

where 𝑓 (𝜏) is the weighting function of the extended ensemble defined by both volume and the shape
of the box and 𝑃(𝜏) is the probability distribution function of 𝜏, characteristic of the NVT ensemble
with variable shape. In principle, one is free to choose 𝑓 (𝜏) arbitrarily, provided that it satisfies certain
conditions typically imposed on distribution functions, such as positive definiteness or integrability. Here,
we will select 𝑓 (𝜏) on the condition that the extended ensemble with fixed volume satisfies distribution
of 𝜏 specific for the constant pressure, or NPT, ensemble. In this way, modelling in the two ensembles,
constant-volume and constant-pressure, will be consistent, hence minimizing finite size effects.

The distribution function in the constant-pressure ensemble reads:

𝑃(Γ, 𝑁, 𝑇,P) ∼ e−𝛽P𝑉 e−𝛽𝑈 (Γ) , (2.2)

where P is the pressure. Let us focus now on 2D space and obtain formulas for this simpler case first.
The relevant volume is 𝑉 = 𝐿𝑥𝐿𝑦 sin𝛼, where 𝐿𝑥 and 𝐿𝑦 are the lengths of the simulation box and sin𝛼
is the sine of the angle between them. In NPT simulations, volume is sampled randomly from a uniform
distribution. This can be achieved either by uniformly sampling one of the variables involved in volume,
𝐿𝑥 , 𝐿𝑦 or sin𝛼, or by non-uniformly sampling some combination of these variables which leads to a
uniformly distributed volume [2]. Let us assume that the first scenario takes place, as it is more general
and can be applied to both liquids and crystals, and each concerned variable is sampled uniformly, one
at a time and in random order. The joint distribution function measured in such simulations for variables
𝐿𝑥 , 𝐿𝑦 and sin𝛼 will be given by the following expression:

𝑃
(
𝐿𝑥 , 𝐿𝑦, sin𝛼

)
∼ e−𝛽P𝐿𝑥𝐿𝑦 sin 𝛼 𝑄(𝑁,𝑇,𝑉 ; 𝜏), (2.3)

which can also be obtained by integrating distribution function (2.2) over all configurations Γ. The
dependence on 𝜏 in the partition function arises because the integration over Γ is carried out for the
box with specific dimensions 𝐿𝑥 and 𝐿𝑦, which in addition to the volume 𝑉 = 𝐿𝑥𝐿𝑦 also define other
geometrical parameters including 𝜏 = 𝐿𝑥/𝐿𝑦.

Figure 2. Cartoon illustrating hypothetical joint distribution function of variables 𝐿𝑥 and 𝐿𝑦 for the
constant-pressure ensemble. Constant-volume configurations correspond to the sub-ensemble bound to
the line 𝐿𝑦 = 𝑉/𝐿𝑥 , where 𝐿𝑥 is treated as the independent variable. Sampling along this line uniquely
defines the distribution function 𝑃𝑉 (𝜏) for geometrical parameter 𝜏.

As an illustration, consider a schematic distribution 𝑃(𝐿𝑥 , 𝐿𝑦) shown in figure 2, specific for rectan-
gular boxes with sin𝛼 = 1. Among all possible configurations, those that correspond to volume 𝑉 satisfy
the constraint 𝑉 = 𝐿𝑥𝐿𝑦, creating a one-dimensional sub-ensemble characterized by a single degree of
freedom. If 𝐿𝑥 is chosen as the independent degree of freedom, configurations with given 𝑉 and 𝐿𝑥 will
appear in simulations with probability 𝑃(𝐿𝑥 , 𝑉/𝐿𝑥). Any other geometric parameter of the system will
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also be characterized by a unique distribution function. This includes the aspect ratio 𝜏 = 𝐿𝑥/𝐿𝑦, for
which the distribution function 𝑃𝑉 (𝜏) represents the relative frequency of seeing conformations with
different 𝜏. This function is directly accessible in simulations.

Our goal is to evaluate 𝑃𝑉 (𝜏) and then try to reproduce it in simulations at a constant volume. Using
𝑃(𝐿𝑥 , 𝐿𝑦, sin𝛼) as the starting point, 𝑃𝑉 (𝜏) can be evaluated as 𝑃𝑉 (𝜏) =

〈
𝛿
(
𝜏 − 𝐿𝑥/𝐿𝑦

)〉
𝑉

, where
the brackets ⟨· · · ⟩𝑉 indicate a statistical average over sub-ensemble with fixed 𝑉 . The constant-volume
constraint can be imposed through another delta function, leading to the following expression in terms
of the unbiased distribution function:

𝑃𝑉 (𝜏) ∼
∫

d𝐿𝑥d𝐿𝑦𝛿
(
𝑉 − 𝐿𝑥𝐿𝑦 sin𝛼

)
𝛿(𝜏 − 𝐿𝑥/𝐿𝑦)e−𝛽P𝐿𝑥𝐿𝑦 sin 𝛼 𝑄(𝑁,𝑇, 𝐿𝑥𝐿𝑦 sin𝛼; 𝐿𝑥/𝐿𝑦).

(2.4)
This integral can be evaluated in two steps. First, a change of variables 𝑦 = 𝐿𝑥𝐿𝑦 sin𝛼 helps to eliminate
the integration over 𝐿𝑦 while keeping the other variable constant. The result is:

𝑃𝑉 (𝜏) ∼
∫

d𝐿𝑥𝛿
(
𝜏 − 𝐿2

𝑥 sin𝛼
𝑉

)
1

𝐿𝑥 sin𝛼
e−𝛽P𝑉𝑄(𝑁,𝑇,𝑉 ; 𝐿2

𝑥 sin𝛼/𝑉). (2.5)

The second integration can be carried out by making a change of variables 𝑦 = 𝐿2
𝑥 sin𝛼/𝑉 , which after

dropping the terms that are independent of 𝜏 yields:

𝑃𝑉 (𝜏) =
1
𝜏
𝑄(𝑁,𝑇,𝑉 ; 𝜏). (2.6)

Let us now require that 𝑃𝑉 (𝜏) = 𝑃(𝜏), i.e., the distribution functions in the NPT and NVT ensembles are
equal. It is easy to see then from equation (2.1) that

∫
𝑄(𝑁,𝑇,𝑉 ; 𝜏) 𝑓 (𝜏)d𝜏 =

∫
𝑃(𝜏)d𝜏 =

∫
𝑃𝑉 (𝜏)d𝜏 =∫

𝑄(𝑁,𝑇,𝑉 ; 𝜏) (1/𝜏)d𝜏, indicating that 𝑓 (𝜏) = 1/𝜏. In other words, we arrive at the conclusion that
new aspect ratios in constant-volume simulations should be drawn from the 1/𝜏 distribution in order
to reproduce the result of the NPT simulations. Furthermore, it is seen from equation (2.6) that free
energy 𝛽𝐹 (𝜏) = − log [𝑄(𝑁,𝑇,𝑉 ; 𝜏)] associated with the degree of freedom 𝜏 can be computed as
𝛽𝐹 (𝜏) = − log [𝜏𝑃𝑉 (𝜏)]. Therefore, the aspect ratio 𝜏 is not suitable for the computation of free
energy differences directly from the distribution function. In other words, 𝛽Δ𝐹 = 𝛽 [𝐹 (𝜏1) − 𝐹 (𝜏2)] ≠
log [𝑃𝑉 (𝜏2)/𝑃𝑉 (𝜏1)], where 𝜏1 and 𝜏2 are some values defining two macroscopic states. It is easy to
show, however, that 𝑃𝑉 (𝑧) = 𝜏(𝑧)𝑃𝑉 (𝜏(𝑧)) is the distribution function for a new variable 𝑧 = log(𝜏).
Thus, in terms of this variable 𝛽𝐹 [𝜏(𝑧)] = 𝛽𝐹 (𝑧) = − log[ 𝜏(𝑧)𝑃𝑉 (𝜏(𝑧))] = − log[𝑃𝑉 (𝑧)], making 𝑧
the proper order parameter associated with the geometry parameter 𝜏. In the Appendix we show that 1/𝜏
sampling law also applies in the three-dimensional space.

2.2. Simulation algorithm

Given that the sampling law is known, how does one conduct a constant-volume simulation with
the variable shape? Let us first point out the following auxiliary results. The lengths of the box can be
expressed in terms of 𝜏 and volume when the cell angle is considered constant: 𝐿𝑥 =

√︁
𝑉𝜏/sin𝛼 and

𝐿𝑦 =
√︁
𝑉/(𝜏 sin𝛼). Given that the volume is fixed, one can find the appropriate distributions for the

lengths using the standard identity: 𝑃𝑒𝑞 (𝑥)d𝑥 = 𝑃𝑒𝑞 (𝑦)d𝑦, where 𝑦(𝑥) is some function of 𝑥 and 𝑃𝑒𝑞 (𝑥)
is the distribution function of this variable. It can be shown that they are given by the same expression
as for 𝜏: 𝑓 (𝐿a) ∼ 1/𝐿a , where a = 𝑥, 𝑦. In other words, the sampling distributions of the size in 𝑥
and 𝑦 directions obey the same law. This result is of fundamental importance. The invariance with respect
to the swap of 𝑥 and 𝑦 coordinates is central to simulations of condensed matter (with the exception
of cases where external fields are imposed that break the symmetry). Any algorithm that violates this
condition should be considered flawed. For instance, uniform sampling of 𝜏 assumes that 𝑓 (𝜏) ∼ const,
and so one can find that 𝑓 (𝐿𝑥) ∼ 𝐿𝑥 while 𝑓

(
𝐿𝑦

)
∼ 1/𝐿3

𝑦. Both distributions are incorrect and will lead
to a bias in the sampled ensemble. Another point that should be made regarding the 1/𝜏 law concerns
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its interpretation. Since small 𝜏’s correspond to narrow boxes while large ones — to wide boxes, the
decline of the distribution function with 𝜏 may seem to indicate that the balance between the two types
of boxes is broken. This impression, however, is misleading and the number of generated narrow and
wide boxes is actually the same. The number of the former can be estimated as 𝑓 (𝜏)Δ𝐿/𝐿𝑦, where Δ𝐿

is some small range in which 𝐿𝑥 is allowed to vary. If, instead, one varies 𝐿𝑦, the same number of
boxes should be 𝑓 (𝜏) (𝐿𝑥Δ𝐿/𝐿2

𝑦). Now, let us swap 𝑥 and 𝑦 coordinates in the last expression and obtain
𝑓 (1/𝜏) (𝐿𝑦Δ𝐿/𝐿2

𝑥). This operation is expected not to affect the number of boxes, so one should find
that 𝑓 (𝜏)Δ𝐿/𝐿𝑦 = 𝑓 (1/𝜏) (𝐿𝑦Δ𝐿/𝐿2

𝑥). After some rearrangement, it follows that the condition for the
balance between narrow and wide boxes is 𝑓 (𝜏)𝜏 = 𝑓 (1/𝜏) 1/𝜏. It is easy to see that the derived 1/𝜏
formula satisfies this condition, proving that the symmetry between different shapes is preserved.

Up to this point we implicitly assumed that 𝜏 can be changed by changing either 𝐿𝑥 or 𝐿𝑦. It is easy
to see, however, that when the volume of the box 𝑉 = 𝐿𝑥𝐿𝑦 sin𝛼 is kept fixed 𝜏 = 𝐿2

𝑥 sin𝛼/𝑉 . Thus, it is
possible to change the aspect ratio also by changing the cell angle 𝛼. It is clear that the distribution law
should not depend on how 𝜏 is changed. We conclude, therefore, that the 1/𝜏 function should also apply
for the angle moves. It is also clear from the expression of the volume that the term sin𝛼 can be treated
on the same footing as that of 𝐿𝑦. Thus, one can bypass the derivation and immediately conclude that the
sampling probability𝑃(sin𝛼) ∼ 1/sin𝛼. The pertinent order parameter for the cell angle is 𝑧 = log(sin𝛼).
Accordingly, free energy associated with 𝛼 can be computed as 𝛽𝐹 (𝛼) = − log [𝑃𝑉 (𝛼) (sin𝛼/cos𝛼)].

It is convenient to combine the two types of moves, one in which 𝐿𝑥 and 𝐿𝑦 change simultaneously
and one in which sin𝛼 changes together with either 𝐿𝑥 or 𝐿𝑦, in one algorithm that consists of two steps:

1. A new value for 𝐿′𝑥 is generated from 1/𝐿𝑥 distribution.

2. A decision is made randomly with equal probability about which step is to take next: a) new
𝐿′𝑦 = 𝑉/(𝐿′𝑥 sin𝛼), or b) new sin𝛼′ = 𝑉/(𝐿′𝑥𝐿𝑦). The coordinates of the particles are appropriately
scaled by 𝐿′𝑥/𝐿𝑥 and 𝐿′𝑦/𝐿𝑦 in the 𝑥 and 𝑦 directions in trial moves. Changes of the cell angle 𝛼
do not affect the coordinates.

Generating 1/𝜏 distributions can be achieved in a variety of ways. Probably, the easiest is the Metropolis
importance sampling [9]. It consists in using a uniformly distributed random variable to generate a trial 𝜏′
that is then accepted with probability 1/𝜏′.

3. Model and methods

3.1. Mathematical model

We test the designed algorithm for the system of hard-core ellipses. Ellipses have long and short
half-axes 1

2𝜎𝑎 and 1
2𝜎𝑏, respectively. Aspect ratio is defined as ^ = 𝜎𝑎/𝜎𝑏 > 1. It is a key parameter

determining the general behavior of the system. The geometrical details are explained in figure 3 (a).

Figure 3. Details of the system studied in this work. (a) Hard-core ellipses with aspect ratio ^ = 𝜎𝑎/𝜎𝑏.
(b) Skew reference frame used in simulations. Each particle is characterized by two translational and one
rotational variable. (c) Simulation box under periodic boundary conditions.

There are 𝑁 particles in the system. For the sake of generality we use a skew reference frame. Each
particle is characterized by three degrees of freedom: two coordinates 𝑥𝑖 , 𝑦𝑖 and one rotation angle
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𝜙𝑖 , 𝑖 = 1, 𝑁 , see figure 3 (b) for illustration. In addition to the skew coordinates, one can also assign
Cartesian coordinates 𝑥′, 𝑦′ to each particle; the two are related as follows:{

𝑥′ = 𝑥 + 𝑦 cos𝛼,
𝑦′ = 𝑦 sin𝛼,

{
𝑥 = 𝑥′ − 𝑦′ cos 𝛼

sin 𝛼 ,

𝑦 = 𝑦′ 1
sin 𝛼 .

(3.1)

The volume elements of the two coordinates systems are related through the Jacobian of transformation
d𝑉 = d𝑥′d𝑦′ =

𝜕(𝑥′ ,𝑦′ )
𝜕(𝑥,𝑦) d𝑥d𝑦 = sin𝛼d𝑥d𝑦. The particles are placed in a box with sides 𝐿𝑥 and 𝐿𝑦

and an angle 𝛼 between them under periodic boundary conditions, as shown in figure 3 (b)–(c). The
skew simulation boxes are designed to accommodate lattices of all possible types. The minimum image
convention is applied to compute the interaction energy. As illustrated in figure 3 (c), certain particle 𝑖
interacts with the closest periodic image of particle 𝑗 . The distance between the two particles is computed
as 𝑟𝑖 𝑗 =

√︃
𝑥2
𝑖 𝑗
+ 𝑦2

𝑖 𝑗
+ 2𝑥𝑖 𝑗𝑦𝑖 𝑗 cos𝛼, where 𝑥𝑖 𝑗 = 𝑥𝑖 −𝑥 𝑗 and 𝑦𝑖 𝑗 = 𝑦𝑖 −𝑦 𝑗 . The usual rule for computing the

shortest distance is used: if 𝑥𝑖 𝑗 > 𝐿𝑥/2, then it is replaced by 𝑥𝑖 𝑗 −𝐿𝑥 . Similarly, if 𝑥𝑖 𝑗 < −𝐿𝑥/2, then it is
replaced by 𝑥𝑖 𝑗 +𝐿𝑥 . The same transformations are applied to the coordinate 𝑦. The Cartesian coordinates
of the vector d®𝑟 ′ connecting two particles are d𝑥′ = 𝑥𝑖 𝑗 + 𝑦𝑖 𝑗 cos𝛼 and d𝑦′ = 𝑦𝑖 𝑗 sin𝛼. Together with the
rotation angles 𝜙𝑖 and 𝜙 𝑗 , they are used to determine whether two ellipses overlap [13]. The density of
the system is reported in reduced units 𝜌 = (𝑁/𝑉) (1/𝜌max) where 𝜌max = (2/

√
3) [1/(𝜎𝑎𝜎𝑏)] is the

density of the maximally compact lattice configuration.

3.2. Relative free energy

To measure free energy difference between prospective lattice structures, we use the properly defined
order parameters. As discussed in the section 2, one such parameter is log(𝜏), where 𝜏 = 𝐿𝑥/𝐿𝑦. The
ratio of the side lengths is measured directly in simulations and then binned to compute the associated
distribution.

Another order parameter that will be utilized is 𝛼. The rational why the cell angle can be employed
as an order parameter is as follows. The system of ellipses can exist either as a fluid or a solid lattice
phase, depending on the density [14]. At ^ ≲ 1.5 [15, 16], ellipses in the solid phase are not aligned with
one another, making the so-called plastic lattice [13]. At larger aspect ratios, the particles are aligned
similarly to nematic fluids. An example of the simulation cell in which ellipses are aligned is shown
in figure 4 (a). The depicted close-packed conformation can be generated from the minimal motif that
contains 4 ellipses. It is shown in panel (b) and also highlighted in the right-hand lower corner of the cell.
This motif can be obtained from a close-packed configuration of disks by a sequence of unique steps. Let
us assume that the diameter of the disks is 𝜎 and the angle that the left side of the initial box makes with
the vertical axis is π/6, see figure 4 (e). Let us rotate the box counterclockwise by an angle 𝛾, as shown
in figure 4 (d). After that let us stretch the box by the amount ^ > 1 in the vertical direction. As a result,
disks are transformed into ellipses. The length of the long axis of the ellipses becomes ^𝜎, as shown in
figure 4 (c). Simultaneously, stretching changes the angle that the lower side of the box makes with the
horizontal axis, as figure 4 (c) illustrates. While initially it was 𝛾, now the angle becomes

𝛽 = cos−1 ©«
cos 𝛾√︃

cos2 𝛾 + ^2sin2 𝛾

ª®®¬ . (3.2)

The angle between the left-hand side and the vertical axis also changes. Immediately following the
rotation, it is π/6 − 𝛾 but after stretching it becomes

_ = cos−1


^ cos(π/6 − 𝛾)√︃

sin2 (π/6 − 𝛾) + ^2cos2 (π/6 − 𝛾)

 . (3.3)

As can be seen from figure 4, physically distinct configurations are generated when 𝛾 changes between
0 and π/6. All other values lead to redundant configurations. To characterize the state of each ellipse in
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a specific lattice state, one can use, for instance, the angle that the long axis makes with the horizontal
axis, 𝜙. As can be seen from figure 4 (b) 𝜙 = π/2 − 𝛽. The geometry of the box, on the other hand, can
be uniquely specified by its angle 𝛼 (given that the aspect ratio ^ is fixed). Both angles, 𝜙 and 𝛼, are
functions of 𝛾, so there is only one independent variable that fully defines the close-packed structure. All
other parameters can be expressed as functions of the chosen variable via relations (3.2) and (3.3). For
instance, the rotation angle 𝜙 can be cast as a function of 𝛼:

𝜙 = 𝐹 (𝛼; ^), (3.4)

where ^ is the aspect ratio. For the purpose of illustration, figure 4 (e) shows this function for ^ = 2,
𝐹2(𝛼).

Figure 4. Geometrical details of the simulation cell employed in this study. (a) Geometry of the cell
in the longitudinal and transverse lattice states. (b)–(e) A step-wise procedure to establish one-to-
one correspondence between the cell angle 𝛼 and the rotation angle of ellipses 𝜙 in the close-packed
configurations. At the first step, e), a minimal non-rectangular box is selected to represent the infinite
lattice of hard disks with diameter 𝜎. At the second step, d), the box is rotated counterclockwise by an
angle 𝛾. At the third step, c), the vertical axis is stretched by the magnitude ^. At the last step, b), the box
is rotated clockwise by the angle 𝛽 necessary to align the lower side with the horizontal axis. Panel e) —
dependence of 𝜙 on 𝛼 for ^=2.

It can be shown that 𝛼 varies in the range {𝛼min = cos−1 [
√︁

3/(3 + ^2)], 𝛼max = π/2 −
cos−1 [

√︁
3^2 /(3 + ^2)]}, while the corresponding limits of the rotation angle 𝜙 are {𝜙min = π/2 −

cos−1 [
√︁

3 /(3 + ^2)], 𝜙max = π/2}. As 𝛼 changes, the structure of the lattice changes with it, creating
the manifold of an infinite number of lattices differing from one another by the rotation angle 𝜙. This is in
contrast to the system of disks, which makes a single hexagonal lattice at high densities. As will become
clear below, the lattice types corresponding to the extreme points have a special meaning. At 𝛼 = 𝛼min,
see figure 4 (a), the lattice can be viewed as being assembled from vertical lines of ellipses that make
contact with one another through the pole at the short side of the particle. The ellipses are aligned along
the line connecting their centers. Consequently, the corresponding lattice type is termed longitudinal (L).
The lattice observed at 𝛼 = 𝛼max can be assembled from horizontal lines of ellipses which contact
each other through the pole at their long side. The orientation of particles is perpendicular to the line
connecting their centers, so the corresponding lattice type is called transverse (T). In simulations, the
longitudinal lattice can be transformed into the transverse lattice and vice versa by varying the angle 𝛼.
If 𝛼 is treated as a variable, the transition will happen spontaneously. The system in this case will sample
various types of lattices in the course of a single simulation, thereby enabling the computation of their
statistical weight. A major difficulty associated with this approach is convergence. To collect sufficient
statistics for the distribution function 𝑃(𝛼), the system should visit different lattice types a large number
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of times, which may be difficult if the free energy difference between the concerned lattices is large.
To improve the convergence, in this study we employ the method of umbrella sampling [17]. The range
[𝛼min, 𝛼max] is broken equidistantly into a number of bins, or windows, each assigned a distinct value
of 𝛼. Harmonic potential is applied to bias sampling in simulations to the vicinity of each window. The
unbiased distribution 𝑃(𝛼) is reconstructed by collecting information on 𝛼 sampled in all windows. The
order parameter relevant for the cell angle is log(sin𝛼).

3.3. Method of Einstein crystal

We also compute free energy differences by the method of Einstein crystal (EC) [18, 19]. The key
idea of this method is to obtain free energy of the lattice states of interest relative to a common reference
state. The free energy of the reference state then drops when the free energy difference is taken. The
reference state is modelled by the harmonic Hamiltonian 𝑈H. Free energy with respect to this model is
computed by thermodynamic integration with the help of a coupling constant _. How this scheme works
in skew coordinates is described in detail in the Appendix. The main formula we use to compute the free
energy difference between lattice states characterized by different 𝛼’s is:

Δ𝐹 (𝛼) = −𝑘𝑇 (𝑁 − 1) log(sin𝛼) +
1∫

0

⟨Δ𝑈⟩_d_. (3.5)

Here, ⟨Δ𝑈⟩_ is the average of the potential energy difference Δ𝑈 = 𝑈HS −𝑈H computed in simulations
driven by the “hybrid” Hamiltonian 𝑈 (_) = 𝑈H + _Δ𝑈. The actual potential energy of the hard-ellipse
system is 𝑈HS and the simulations are performed at a fixed volume 𝑉 and cell angle 𝛼 in the reference
frame associated with the center of mass. As _ is varied between 0 and 1, the Hamiltonian 𝑈 (_) is
transformed from 𝑈H to 𝑈HS. As the harmonic potential gradually becomes weaker, the integral in
equation (3.5) reports on the spatial extent by which the system is allowed to deviate from the initial
configuration, thus providing a measure of the configurational freedom.

The reference Hamiltonian

𝑈H =

𝑁∑︁
𝑖=1

{𝛾𝑇
2

[
(𝑥𝑖 − 𝑥0

𝑖 )2 + (𝑦𝑖 − 𝑦0
𝑖 )2] + 𝛾𝑅

2
(𝜙𝑖 − 𝜙0

𝑖 )2
}

contains a set of coordinates 𝑥0
𝑖
, 𝑦0
𝑖
, 𝑖 = 1, 𝑁 with respect to which the free energy is evaluated. As a

reference we chose a lattice configuration 𝑥0
𝑖
= ( 𝑗 −0.5)𝐿𝐸𝑥 /𝑛, 𝑗 = 1, 𝑛 and 𝑦0

𝑖
= (𝑘−0.5)𝐿𝐸𝑦 /𝑛, 𝑘 = 1, 𝑛;

𝑖 =
∑ 𝑗

𝑗′=1
∑𝑘
𝑘′=11, 𝑛 × 𝑛 = 𝑁 . Here, 𝐿𝐸𝑥 and 𝐿𝐸𝑦 are the dimensions of the simulation cell in 𝑥 and 𝑦

direction, 𝜙0
𝑖

are initial angles and 𝛾𝑇 and 𝛾𝑅 are adjustable spring constants. It is easy to show that
𝑁/𝜌 = 𝜏𝐿𝐸𝑦

2 sin𝛼, where 𝜏 = 𝐿𝐸𝑥 /𝐿𝐸𝑦 is the ratio of the 𝑥 and 𝑦 dimensions. Thus, 𝐿𝐸𝑦 is uniquely
defined by 𝑁 , 𝜌, 𝛼 and 𝜏. Parameter 𝜏 was extracted from constant-volume simulations as the average
over all sampled cell side ratios. The integral in equation (3.5) was evaluated by numerical quadrature.
In order to reduce the variation seen in ⟨Δ𝑈⟩_, a non-uniform transformation Z (_) was applied before
integration. A total of 33 grid points, Z𝑖 , 𝑖 = 1, 33, were generated non-uniformly between Z (0) and Z (1).
The points were chosen so as to maintain a constant level of the numerical integration error, which, after
optimization, we judge to be negligible. The statistical error was estimated by performing 5 independent
measurements for each state point from which standard deviation was extracted.

3.4. Numerical details

The performed MCVS simulations consist of two types of moves. The first type is the regular MC
steps in which particles are randomly displaced and rotated. The maximum magnitude of these steps are
adjusted to achieve greater than 30% acceptance. The second type of moves are changes of geometry.
They are attempted randomly with 10% overall probability. Box lengths and box angle are updated
as described in the previous section. Parameters of these moves are adjusted to achieve greater than
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50% acceptance rate. Changes of box lengths are accompanied with the appropriate scaling of particle
coordinates. The algorithm of Vieillard-Baron [13] is used to determine if two ellipses overlap.

To perform the umbrella sampling simulations, the range [𝛼min, 𝛼max] was divided equidistantly into
50 windows, 𝛼𝑖 = 𝛼min +Δ(𝑖−1), Δ = (𝛼max − 𝛼min)/49, 𝑖 = 1, 50. Simulations were performed in each
window with an additional harmonic potential𝑈ℎ = 1

2 𝜖 (𝛼 − 𝛼𝑖)2 applied. The strength of the potential 𝜖
was set such that the adequate overlap of the histograms at the neighboring windows was achieved.
The unbiased distribution 𝑃𝑉 (𝛼) was obtained at the end of the simulations by the multiple-histogram
reweighting method [20, 21].

4. Results

We test the proposed algorithm in simulations of the system of hard-core ellipses. For the sake of
comparison, we consider the scheme in which 𝜏 is sampled uniformly, i.e., the 𝜏-sampling algorithm, in
addition to the proper 1/𝜏 sampling law. It is found that proper sampling is essential when the parameter
controlling the geometry of the cell varies in a wide range. In other cases, different sampling methods
lead to indistinguishable results.

4.1. Solid plastic phase

The first test was performed for a system with ^ = 1.2. We used rectangular boxes and set the density
at 𝜌 = 0.83 which is high enough to trigger the transition into the crystalline state yet low enough to
preclude aligning of the ellipses. Under these conditions, the system makes the so-called plastic lattice
in which particles occupy lattice sites but are capable of rotating by all 180 degrees. A time trace of
𝜏 observed in simulations of this system is shown in figure 5 (a). The aspect ratio varies in the range
[1.0, 1.3] around an average of ~1.15. At all times, the system occupies a lattice configuration with
the distance between neighboring sites 1.17𝜎𝑏 while the ellipses are capable of adopting any angle
0 < 𝜙 < π. A cartoon representation of this structure and its pair distribution function computed for
the centers of the ellipses are shown in figure 5 (f) and figure 5 (e), respectively. The lack of alignment
between particles is immediately apparent.

We find that the alignment (or rotational degrees of freedom more generally) plays a critical role in
determining the structure of the lattice. When it is introduced manually by constraint 𝜙𝑖 = 𝜙, 𝑖 = 1, 𝑁
where 𝜙 is the common angle of all particles which is allowed to change, the lattice splits into two sub-
lattices with a distinct structure. One sub-lattice displays contacts between neighboring ellipses going
through the pole at the long side and can be recognized as the transverse lattice. A cartoon representation
of this lattice is shown in figure 5 (h). The second sub-lattice is the longitudinal lattice, exhibiting closest
contacts between the neighboring ellipses going through their short side, as illustrated in figure 5 (g). All
other lattice configurations correspond to free energy maxima and are not directly observable. It is not
clear if this is a genuine property of the system or an artifact resulting from the use of rectangular box
geometry, suppressing all structures other than the mentioned two. For the demonstration purposes, we
considered a small system consisting of 𝑁 = 16 particles making 4×4 lattice, so as to enable spontaneous
T-L transitions. The time trace of 𝜏 obtained in simulations of this system is shown in figure 5 (b). It is
seen that 𝜏 changes in a discontinuous manner among four different values, indicating that the geometry
of the box is specific to the lattice type that it contains and suggesting that the aspect ratio can be used as
a structural parameter to distinguish between T and L states. Pair distribution functions 𝑔(𝑟) obtained for
each lattice type, shown in figures 5 (c), (d), demonstrate that the two lattices have a noticeably different
structure. The most obvious differences concern the first coordination shell. Compared to the model with
full particle rotations, 𝑔(𝑟) in the T and L states is split into two sub-maxima. The position of the first
sub-maximum in T conformations is at 1.01𝜎𝑏 while in L conformations it is at 1.1𝜎𝑏, demonstrating
that the particles in the transverse arrangement are capable of approaching each other at shorter distances.
This is understandable, given how ellipses are stacked in the two structures, see figure 5 (g) and (h). The
second sub-maximum appears at 1.2𝜎𝑏 in both states. The second and third coordinate shells also show
significant differences between T and L conformations.
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Figure 5. Time traces of the aspect ratio 𝜏 obtained for models with ^ = 1.2 in which a) ellipses
have different rotation angles and b) — the same rotation angle. Panels f), g) and h) show cartoon
representation of lattices in which ellipses are not aligned, or are aligned in the longitudinal (L) and
transverse (T) structures, respectively. The pair distribution functions corresponding to these lattices are
shown in panels e), d) and c).

Figure 6. (Colour online) Free energy profile obtained for ellipses with ^ = 1.2 in simulations where
particles have full rotational freedom, a), and where particle rotation angles are rigidly coupled, b).
Minima seen for the constrained system correspond to various stable structures consistent with particular 𝜏
such as transverse and longitudinal states. The results of two sampling methods are as labeled. The 𝜏-
sampling method is seen to shift artificially the balance in the statistical weight toward wider boxes. Error
bars were estimated from 5 independent trajectories.
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So how well does the proposed algorithm reproduce the statistics of the different conformational
states? Figure 6 shows the free energy profile 𝛽𝐹 (𝜏) = − log[𝜏𝑃𝑉 (𝜏)] obtained for the system where all
particles are free to rotate — panel a), and for the rotationally-constrained system — panel b). As can
be expected from figure 5, a single minimum is seen for the unconstrained system and four minima are
present for the constrained one. The specific aspect ratios of the minima are 𝜏 = 0.7, 0.95, 1.05 and 1.4.
The two extreme values, 0.7 and 1.4 ≈ 1/0.7, correspond to the longitudinal state. The two minima in
the middle are characteristic of the transverse state; they appear to merge in the graph because of being
closely spaced. Conformations with 𝜏 = 0.95 and 1.05, and those with 𝜏 = 0.7 and 1.4, are related by
a 90-degree rotation of the reference frame (note that no such transformation ever takes place in the
simulations). Corresponding to the same state, they should exhibit the same free energy. It is a crucial
test for the algorithm to reproduce this behavior. It is seen from figure 6 (b) that 𝛽𝐹 (0.95) = 𝛽𝐹 (1.05)
and 𝛽𝐹 (0.7) = 𝛽𝐹 (1.4) within the error bars, so the proposed 1/𝜏 algorithm successfully passes the
test. By contrast, the 𝜏-sampling algorithm predicts that 𝛽𝐹 (0.95) = 𝛽𝐹 (1.05) but 𝛽𝐹 (1.4) < 𝛽𝐹 (0.7)
and the difference is statistically significant. The greater population of 𝜏 = 1.4 state can be explained
by the greater statistical weight assigned to conformations with larger 𝜏 by an algorithm in which the
sampling probability is flat compared to the case when it declines with 𝜏. Furthermore, even though the
𝜏-sampling method generates the same free energy for 𝜏 = 0.95 and 1.05, the value it predicts is twice as
large as that of the proper algorithm. Again, the difference is statistically meaningful, which leads us to
the conclusion that this method is not capable of reproducing accurately the inter-state statistics for the
constrained model under the considered conditions.

By contrast, figure 6 (a) shows that both sampling algorithms lead to the same results, within error
bars, for the unconstrained system. It follows, therefore, that the performance of geometry sampling
algorithms strongly depends on the system under study, more specifically on the range in which the
geometry parameter is varied. If the range is narrow, as in figure 6 (a), the use of the proper algorithm
does not make much difference. The average 𝜏 and the shape of the distribution function are generally well
reproduced. The algorithm matters, however, when 𝜏 changes in a wide range, as shown in figure 6 (b).
Improper sampling leads to significant distortions in 𝑃𝑉 (𝜏) that may ultimately affect the free energy
estimates.

4.2. Free energy difference between distinct lattice types

When ^ is increased beyond ~1.5, the ellipses in the crystalline state become aligned [15, 16]. What is
the statistical weight of lattice types with different ellipse orientations? To find that out, we considered the
system with ^ = 4. The cell angle 𝛼 for this system varies in the range [0.41, 1.43], which is much wider
than the range [0.96, 1.12] appropriate for ^ = 1.2. This improves the chances of observing a quantitative
difference between the results of using different sampling methods. We considered the cells with 6 rows
and 6 columns of ellipses because smaller systems failed to produce stable lattices. Since spontaneous
transitions among different lattice types were not observed for the considered system, we had to employ
umbrella sampling method to compute the distribution function of the structural order parameter 𝛼. The
details are provided in the section 3. The density of the system was set at 𝜌 = 0.95 which is much higher
than the density of the fluid-solid transition.

Free energy profile 𝛽𝐹 (𝛼) = − log
[
𝑃𝑉 (𝛼) sin 𝛼

cos 𝛼
]

obtained in simulations using the proposed sampling
algorithm is shown in figure 7 by black line. It has two minima with the lowest free energy corresponding
to the transverse and longitudinal states. This agrees with our results for the constrained model of ^ = 1.2,
suggesting that the presence of two identified stable states is not an artifact of the used cell geometry.
The free energy of the longitudinal state is 𝛽Δ𝐹 = 3.5 ± 0.5 higher than that of the transverse state.
The corresponding figure obtained by the 𝜏-sampling method is 𝛽Δ𝐹 = 2.2 ± 0.4. It is seen that this
method assigns additional statistical weight to the longitudinal state with smaller 𝛼. This is in line with
our observation from the previous section where we saw states with larger 𝜏 experiencing more frequent
sampling. Indeed, since sin𝛼 = 𝑉/𝜏𝐿2

𝑦, more sampling for large 𝜏 means more sampling for small sin𝛼
and, by extension, small 𝛼.

Free energy difference between the L and T states was also evaluated by the EC method. The
geometry of the cell was determined in simulations using 1/𝜏 sampling. For the longitudinal structure
we used 𝛼 = 𝜙0 = 𝛼min = 0.43 and 𝜏 = 0.558. For the transverse state, the corresponding numbers
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Figure 7. (Colour online) Free energy profile obtained for ellipses with ^ = 4. Cartoons show longitudinal
and transverse states corresponding to the two minima. Results of the two sampling methods are as
labeled.

were 𝛼 = 𝛼max = 1.43, 𝜏 = 0.288 and 𝜙0 = π/2. The initial ellipse orientations 𝜙0 were generated by
𝐹4(𝛼) for both structures. Upon combining the results of 5 independent measurements, the free energy
difference was evaluated as 𝛽Δ𝐹 = 3.2 ± 0.2. This number is in excellent numerical agreement with the
prediction made in the 1/𝜏 sampling simulations, 3.5 ± 0.5, providing an essential validation for this
method. By contrast, the 𝜏-sampling algorithm generates an incorrect free energy, 2.2±0.4, and the error
is statistically significant. Based on these observations, we conclude that the use of the proper sampling
algorithm is essential for the studied system.

The free energy of the transverse state appears to be lower than that of the longitudinal state. This could
be a genuine physical effect stemming from conformational preferences of different lattice configurations.
Alternatively, the difference could be a by-product of the small size of the simulation cell. Simulations
designed to extract free energy difference as a function of 𝑁 could help to resolve this ambiguity. Linear
segments in 𝛽Δ𝐹 (𝑁) at large 𝑁 would indicate genuine free energy difference between the two lattice
states. Any other dependence would signal finite-size artifacts. Which of these two scenarios takes place
needs to be answered in careful finite-size scaling studies.

5. Conclusions

We introduced an algorithm to perform MC simulations of crystalline systems in boxes with fixed
volume but variable shape. Tests performed for the system of hard-core ellipses showed that the perfor-
mance of the algorithm depends on the range in which the geometrical parameter characterizing the shape
varies. If the range is narrow, which is probably the case for the majority of crystalline simulations, the
use of the algorithm does not make much difference in comparison with other ad hoc sampling schemes.
For wide ranges of the parameters, however, the use of the algorithm may be crucial. In the example of
structural transition between transverse and longitudinal lattices, we find that the error in the free energy
difference due to the inadequate sampling method reaches 40%. How large it may become, and how wide
the corresponding variation range should be, will depend on the system of interest. However, as a general
rule, the error due to the incorrect sampling should not be simply neglected.

At the same time, we note that the magnitude of the error declines when the range of the sampled
parameter becomes narrower. This will happen, among other reasons, when the number of particles 𝑁
increases. Thus, proper finite-size analysis, in addition to yielding important information about the scaling
properties of the studied system, will also help to combat the errors associated with the inadequate methods
of sampling simulation box shapes.
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Appendix

A.1. Algorithm for the three-dimensional space

It is possible to conduct constant-volume simulations with the changing shape in the three-dimensional
space. Let us assume that the geometry of the box is defined by six variables, three lengths 𝐿𝑥 , 𝐿𝑦 and 𝐿𝑧 ,
and three angles 𝛼, 𝛽 and 𝛾, as shown in figure A.1. Let us further assume for now that the box is
rectangular, 𝛼 = 𝛽 = 𝛾 = π/2. The analogue of the constant-pressure distribution (2.3) in 3D will be a
function of the lengths of the box:

𝑃
(
𝐿𝑥 , 𝐿𝑦, 𝐿𝑧

)
∼ e−𝛽P𝐿𝑥𝐿𝑦𝐿𝑧 𝑄(𝑁,𝑇, 𝐿𝑥𝐿𝑦𝐿𝑧; 𝜏). (A.1)

Figure A.1. Simulation box in 3D is defined by three variables: three box lengths 𝐿𝑥 , 𝐿𝑦 and 𝐿𝑧 , and
three angles 𝛼, 𝛽 and 𝛾.

Aspect ratios can be computed for all three sides of the box lying in 𝑥𝑦, 𝑥𝑧 and 𝑧𝑦 planes. We will try
to change only one 𝜏 at a time. The corresponding distribution function, for instance for 𝜏 = 𝐿𝑥/𝐿𝑦, can
be computed as follows:

𝑃𝑉 (𝜏) ∼
∫

d𝐿𝑥d𝐿𝑦d𝐿𝑧𝛿
(
𝑉 − 𝐿𝑥𝐿𝑦𝐿𝑧

)
𝛿(𝜏 − 𝐿𝑥/𝐿𝑦)e−𝛽P𝐿𝑥𝐿𝑦𝐿𝑧 𝑄(𝑁,𝑇, 𝐿𝑥𝐿𝑦𝐿𝑧; 𝐿𝑥/𝐿𝑦). (A.2)

By making the substitution 𝑦 = 𝐿𝑥𝐿𝑦𝐿𝑧 one can eliminate the integral over 𝐿𝑧 obtaining:

𝑃𝑉 (𝜏) ∼
∫

d𝐿𝑥d𝐿𝑦
1

𝐿𝑥𝐿𝑦
𝛿(𝜏 − 𝐿𝑥/𝐿𝑦)e−𝛽P𝑉 𝑄(𝑁,𝑇,𝑉 ; 𝐿𝑥/𝐿𝑦).

After the second substitution 𝑦 = 𝐿𝑥/𝐿𝑦 and elimination of 𝐿𝑥 , one arrives at:

𝑃𝑉 (𝜏) ∼ e−𝛽P𝑉
∫

d𝐿𝑦
1
𝐿𝑦

1
𝜏
𝑄(𝑁,𝑇,𝑉 ; 𝜏) ∼ 1

𝜏
𝑄(𝑁,𝑇,𝑉 ; 𝜏).

This result does not depend on the integration order. Therefore, we find that the sampling law in three-
dimensional space is the same as in the two-dimensional space.
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Since there is no difference with respect to the dimensionality, it is convenient to use the algorithms
developed for 2D and apply them to 3D boxes. In particular, the idea of sampling one side of the box and
then updating alternatively either another side or the angle between the sides can be reused. The volume
of the box with variable angles is

𝑉 = 𝐿𝑥𝐿𝑦𝐿𝑧

√︃
1 − cos2 𝛼 − cos2 𝛽 − cos2 𝛾 + 2 cos𝛼 cos 𝛽 cos 𝛾.

In MC sampling, one should take alternatively pairs of a side and a second side or a side and an angle
until all such combinations are exhausted. If the length 𝐿𝑥 is updated to 𝐿′𝑥 then companion steps should
be updating 𝐿𝑦 or cos𝛼. The second possible combination is (𝐿𝑥 , 𝐿𝑧) or (𝐿𝑥 , cos 𝛽). The third and final
combination is (𝐿𝑦, 𝐿𝑧) or (𝐿𝑦, cos 𝛾). Specific formulas for how to update the lengths and angles can
be obtained from the condition that the volume of the cell remains constant. If for instance 𝐿𝑥 is sampled
and a trial value is 𝐿′𝑥 , then the trial value for the length in the 𝑦-direction should be 𝐿′𝑦 = 𝑉/𝐿′𝑥 and the
trial angle in the 𝑥𝑦 plane

cos𝛼′ =
√︂

cos 𝛽 cos 𝛾 +
√︃

cos2 𝛽cos2 𝛾 + 1 − cos2 𝛽 − cos2 𝛾 −𝑉2/𝐿′2𝑥 𝐿2
𝑦𝐿

2
𝑧 .

Similar formulas can be obtained for (𝐿𝑥 , 𝐿𝑧 , cos 𝛽) and (𝐿𝑦, 𝐿𝑧 , cos 𝛾) combinations by permutations.

A.1.1. Einstein crystal method in skew coordinates

There are certain caveats associated with the use of EC method in conjunction with the skew
coordinates, which we explain below. To evaluate the Hamiltonian, we need momenta in addition to the
coordinates. These can be obtained using a general formula 𝑃𝑥 = d𝐾/d ¤𝑥, where 𝑥 is the coordinate, ¤𝑥 is
the time derivative of the coordinate and 𝐾 is the kinetic energy. For Cartesian coordinates, the kinetic
energy is known: 𝐾 = 𝑚

2 ( ¤𝑥
′2 + ¤𝑦′2), where 𝑚 is the mass of the particle. It yields the familiar momenta

𝑃′
𝑥 = 𝑚 ¤𝑥′ and 𝑃′

𝑦 = 𝑚 ¤𝑦′. Assuming that skew and Cartesian coordinates are related by expression (3.1)
it follows that

𝐾 =
𝑚

2
( ¤𝑥2 + ¤𝑦2 + 2 ¤𝑥 ¤𝑦 cos𝛼), (A.3)

thus, one can find the skew momenta: 𝑃𝑥 = d𝐾/d ¤𝑥 = 𝑚( ¤𝑥 + ¤𝑦 cos𝛼) = 𝑃′
𝑥 and 𝑃𝑦 = 𝑚( ¤𝑦 + ¤𝑥 cos𝛼) =

𝑃′
𝑥 cos𝛼 + 𝑃′

𝑦 sin𝛼. The reverse transformation 𝑃′
𝑥 = 𝑃𝑥 and 𝑃′

𝑦 = 1
sin 𝛼 (𝑃𝑦 − 𝑃𝑥 cos𝛼) allows one

to compute the Jacobian: 𝜕 (𝑃′
𝑥 , 𝑃

′
𝑦)/𝜕𝑃𝑥 , 𝑃𝑦 = 1/sin𝛼 leading to the volume element d𝑃′

𝑥d𝑃′
𝑦 =

1
sin 𝛼d𝑃𝑥d𝑃𝑦. The kinetic energy

𝐾 =
1

2𝑚
1

sin2 𝛼
(𝑃2
𝑥 + 𝑃2

𝑦 − 2𝑃𝑥𝑃𝑦 cos𝛼)

can be found by expressing time derivatives of the coordinates in terms of the momenta and then
substituting the results into equation (A.3).

Now, let us compute the partition function for one particle:

𝑄(𝑁,𝑉,𝑇) = 1
1!ℎ2

∫
e−𝛽𝐻d𝑃′

𝑥d𝑃′
𝑦d𝑥′d𝑦′ =

𝑉

1!ℎ2

∫
e−𝛽𝐾d𝑃′

𝑥d𝑃′
𝑦

1
𝑉

∫
e−𝛽𝑈d𝑥′d𝑦′ = 𝑄id ×𝑄ex,

where we used the property that coordinates and momenta can be partitioned and U is the potential
energy of the system. The two integrals in this expression correspond to ideal 𝑄id and excess 𝑄ex
partition functions giving rise to ideal and excess free energy, correspondingly. Let us evaluate the ideal
part in the skew reference frame:

𝑄id =
𝑉

1!ℎ2

∫
e−𝛽𝐾

1
sin𝛼

d𝑃𝑥d𝑃𝑦

=
𝑉

ℎ2

∫
exp

{
−𝛽 1

2𝑚
1

sin2 𝛼

[
𝑃2
𝑥 + 𝑃2

𝑦 − 2𝑃𝑥𝑃𝑦 cos𝛼
]} 1

sin𝛼
d𝑃𝑥d𝑃𝑦 =

𝑉

ℎ2

(
2π𝑚
𝛽

)
,
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which turns out to be exactly the same as the equivalent expression in the Cartesian coordinates. Extending
these calculations to 𝑁 particles will produce 𝑄id = (1/𝑁!) (𝑉𝑁/ℎ2𝑁 ) (2π𝑚/𝛽)𝑁 , which for sufficiently
large 𝑁 will give the familiar expression of the free energy of ideal gas: 𝛽𝐹id = 𝑁 [log(𝜌)−log(1/_2)−1],
where _ =

√︁
𝛽ℎ2/2π𝑚. Note that this expression does not depend on 𝛼, so the ideal part of the free

energy can be neglected when working in the skew reference frame if relative free energy is of interest.
Moving on to the excess partition function, one finds for one particle:

𝑄ex =
1
𝑉

∫
e−𝛽𝑈d𝑥′d𝑦′ =

sin𝛼
𝑉

∫
e−𝛽𝑈d𝑥d𝑦.

Generalization to 𝑁 particles

𝑄ex =
sin𝑁 𝛼
𝑉𝑁

∫
e−𝛽𝑈

∏
𝑖

d𝑥𝑖d𝑦𝑖 (A.4)

gives rise to the excess free energy 𝛽𝐹ex(𝑁,𝑉,𝑇) = − log𝑄ex, which is fully defined by the interaction
energy𝑈 (𝑥1, 𝑦1, ..., 𝑥𝑁 , 𝑦𝑁 ).

Let us focus on the system of hard disks for now, and introduce a scaling constant _ that will transform
the hard-sphere potential𝑈HS into the harmonic potential𝑈H =

∑𝑁
𝑖=1(𝛾𝑇/2)

[
(𝑥𝑖 − 𝑥0

𝑖
)2 + (𝑦𝑖 − 𝑦0

𝑖
)2] :

𝑈 (_) = 𝑈H(1 − _) + _𝑈HS = 𝑈H + _(𝑈HS −𝑈H) = 𝑈H + _Δ𝑈, Δ𝑈 = 𝑈HS −𝑈H. (A.5)

Here, 𝑥0
𝑖
, 𝑦0
𝑖
, 𝑖 = 1, 𝑁 are the positions of the ideal lattice with respect to which the free energy is

evaluated. At _ = 0, the system is described by the harmonic potential. It constitutes a set of independent
harmonic oscillators with frequency controlled by the spring constant 𝛾𝑇 . At _ = 1, we obtain the
system of our interest — hard spheres. The “hybrid” potential 𝑈 (_) defines some fictitious system
which physically makes sense only at the extreme points of _. The free energy of that fictitious system
𝛽𝐹ex(_) = − log𝑄ex can be used to compute the free energy difference between the end points: Δ𝐹 =

𝐹ex(_ = 1) − 𝐹ex(_ = 0) = 𝐹HS − 𝐹H. Since 𝐹H is known analytically, this formula allows us to compute
𝐹HS as a sum 𝐹HS = 𝐹𝐻 + Δ𝐹, making the evaluation of Δ𝐹 a key task. This task can be accomplished
by taking the derivative of 𝐹ex(_) with respect to _:

d𝛽𝐹ex(_)
d_

= − 1
𝑄ex(_)

d𝑄ex(_)
d_

= − 1
𝑄ex(_)

sin𝑁 𝛼
𝑉𝑁

∫
e−𝛽𝑈 (_) 𝛽Δ𝑈

∏
d𝑥𝑖d𝑦𝑖 = 𝛽⟨Δ𝑈⟩_, (A.6)

where symbol ⟨...⟩_ denotes average in ensemble generated by𝑈 (_). After the integration of the deriva-
tive, one obtains:

Δ𝐹 =

1∫
0

d𝐹ex(_)
d_

d_ =

1∫
0

⟨Δ𝑈⟩_d_.

This is the key formula which relates the free energy of the system of interest 𝐹HS to the integral obtained
in simulations of the hybrid system:

𝐹HS = 𝐹H +
1∫

0

⟨Δ𝑈⟩_d_. (A.7)

Provided that 𝛾𝑇 is taken sufficiently large, the partition function in harmonic approximation can be
evaluated analytically as:

𝑄𝐻ex =
sin𝑁 𝛼
𝑉𝑁

∫
exp

{
−𝛽

∑︁ 𝛾𝑇

2
[
(𝑥𝑖 − 𝑥0

𝑖 )2 + (𝑦𝑖 − 𝑦0
𝑖 )2]}∏ d𝑥𝑖d𝑦𝑖 =

sin𝑁 𝛼
𝑉𝑁

(
2π
𝛽𝛾𝑇

)𝑁
.

The corresponding free energy then is:

𝐹𝐻 = −𝑘𝑇𝑁 log
(
sin𝛼
𝑉

2π
𝛽𝛾𝑇

)
= −𝑘𝑇𝑁 log

(
2π

𝑉𝛽𝛾𝑇

)
− 𝑘𝑇𝑁 log(sin𝛼),
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where 𝑘 is the Boltzmann constant. In this expression, we singled out the second term that depends on 𝛼.
The first term will vanish in calculations of free energy differences using the same 𝛾𝑇 but different 𝛼.
Thus, the harmonic free energy relevant for our calculations is just −𝑘𝑇𝑁 log(sin𝛼). The final formula
for the free energy becomes:

Δ𝐹 = −𝑘𝑇𝑁 log(sin𝛼) +
1∫

0

⟨Δ𝑈⟩_d_. (A.8)

For ellipses, the methodology remains the same except that now we need to add 𝑁 new degrees of
freedom — particle angles. The ideal part of the free energy will get new terms arising from new
variables (comprising the inertia tensor of the ellipses) but these are independent of 𝛼, so they can
be neglected. In the excess part, we will get additional integration over the angles with normalization
constant (2π)𝑁 . The harmonic potential will now also apply to the angles:

𝑈H =

𝑁∑︁
𝑖=1

{𝛾𝑇
2

[
(𝑥𝑖 − 𝑥0

𝑖 )2 + (𝑦𝑖 − 𝑦0
𝑖 )2] + 𝛾𝑅

2
(𝜙𝑖 − 𝜙0

𝑖 )2
}
,

where 𝛾𝑅 is an additional spring constant and 𝜙0
𝑖

are the set of initial particle angles. The new partition
function changes into:

𝑄𝐻ex =
sin𝑁 𝛼

𝑉𝑁 (2π)𝑁

(
2π
𝛽𝛾𝑇

)𝑁 (
2π
𝛽𝛾𝑅

)𝑁/2

but the free energy part that depends on 𝛼 remains the same: −𝑘𝑇𝑁 log(sin𝛼).
In the course of simulations, we discovered that the integrand ⟨Δ𝑈⟩_ in formula (A.8) converges

very inefficiently for _ = 1, which corresponds to the system driven by the hard-core potential while
its potential energy is evaluated with the help of the harmonic potential. The potential energy in this
case experiences strong fluctuations that decay very slowly over time. After some research, the slow
convergence was tracked down to the movements of the simulation cell as a whole. Since the random
displacements of the particles during MC steps are uncorrelated, the center of mass of the system
experiences displacements from its initial position as well. These displacements average out over time
because of the law of large numbers but it may take a long simulation time in order to see that. For non-zero
_’s, the collective movements of all particles are not an issue because the harmonic potential suppresses
large-scale deviations from the initial coordinates. At the same time, the displacements of all particles
as a whole do not create a physically distinct state and thus should not affect the relative free energy.
It, therefore, makes sense to transition to the reference frame associated with the center of mass of the
system. The description then includes the coordinates of the center of mass 𝑥𝑐, 𝑦𝑐 and 𝑁 − 1 coordinates
of the particles which characterize their mutual arrangement (conformations) (the coordinates of the
remaining particle are expressed in terms of these new variables). Under periodic boundary conditions,
the center of mass samples from the volume 𝑉/𝑁 , where 𝑉 is the total volume of the system. This is the
quantity that will appear in front of the integral (A.4) when the integration is carried out over 𝑥𝑐 and 𝑦𝑐.
Importantly, this volume per particle is the same for all 𝛼, so the associated term of free energy will drop
when the difference is taken. Integration over the remaining 𝑁 − 1 coordinates yields:

𝑄𝐻ex =
sin𝑁−1 𝛼

𝑉𝑁−1(2π)𝑁

(
2π
𝛽𝛾𝑇

)𝑁−1 ( 2π
𝛽𝛾𝑅

)𝑁/2

with the relevant 𝛼-dependent term of free energy −𝑘𝑇 (𝑁 − 1) log(sin𝛼). This leads to the final ex-
pression (3.5) for the free energy given in the section 3. The function ⟨Δ𝑈⟩_ is evaluated in simulations
carried out in the reference frame of the center of mass. In practice, this was achieved by aligning the
coordinates of the center of mass at each MC step. We found that this can be accomplished by keeping
track of two sets of coordinates: one containing real coordinates and the other storing coordinates that are
periodically imaged. This prevented discontinuous jumps of the center of mass position when particles
were put back into the simulation cell by the boundary conditions. We found that formula (3.5) produces
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the same free energy difference as formula (A.8) but at a much lower computational cost. For systems
with 𝑁 > 100, formula (A.8) could not be converged at all. We emphasize that formula (3.5) applies
only when 𝛾𝑇 and 𝛾𝑅 are taken to be the same for different 𝛼’s. Additionally, they should be sufficiently
large, so that analytical integration in the partition function applies. In practice, this can be achieved
by gradually increasing 𝛾𝑇 and 𝛾𝑅 while monitoring ⟨Δ𝑈⟩_ at _ = 0. The point at which this function
becomes equal to the energy of the harmonic approximation 1

2 𝑘𝑇𝑁𝐹 indicates that the spring constants
are strong enough. Here, 𝑁𝐹 is the number of degrees of freedom in the system. For the model where
all particles are allowed to rotate 𝑁𝐹 = 2𝑁 − 2 + 𝑁 = 3𝑁 − 2 and for the model with coupled rotations
𝑁𝐹 = 2𝑁 − 2 + 1 = 2𝑁 − 1.

Integration of ⟨Δ𝑈⟩_ was carried out numerically. To counter a very strong decline of ⟨Δ𝑈⟩_ in the
limit of _ → 1, the following change of variables was performed:{

Z =
𝑎𝑡
𝑏𝑡−1

1
(1+𝛼𝑡−_)𝑏𝑡 −1 ,

_ = 1 + 𝛼𝑡 − ( 𝑎𝑡
𝑏𝑡−1

1
Z
)1/(𝑏𝑡−1) .

(A.9)

The integral in equation (3.5) was transformed accordingly:

1∫
0

⟨Δ𝑈⟩_d_ =

Z (1)∫
Z (0)

⟨Δ𝑈⟩Z
1
𝑎𝑡

(
𝑎𝑡

𝑏𝑡 − 1
1
Z

)𝑏𝑡/(𝑏𝑡−1)
dZ =

Z (1)∫
Z (0)

𝐹 (Z)dZ, (A.10)

where parameters 𝑎𝑡 = 1287.4 and 𝑏𝑡 = 0.44708 were determined by fitting. The constant 𝛼𝑡 was set
equal 10−6.

Both ⟨Δ𝑈⟩Z and the derivative of this function d⟨Δ𝑈⟩Z
dZ were used to compute the integral. The latter

can be extracted directly from simulations through the following relationship:

d⟨Δ𝑈⟩Z
dZ

= −𝛽(⟨Δ𝑈2⟩Z − ⟨Δ𝑈⟩2
Z ).

The derivative of the integrand in equation (A.10) can be found as

𝐹′ (Z) =
d⟨Δ𝑈⟩Z

dZ
1
𝑎𝑡

(
𝑎𝑡

𝑏𝑡 − 1
1
Z

)𝑏𝑡/(𝑏𝑡−1)
− 𝑏𝑡

𝑎2
𝑡

(
𝑎𝑡

𝑏𝑡 − 1
1
Z

) (2𝑏𝑡−1)/(𝑏𝑡−1)
⟨Δ𝑈⟩Z .

Numerical integration was carried out by the Euler–Maclaurin method [22]. Initially, there were
15 non-overlapping segments considered with widths adjusted iteratively to achieve ΔZ𝑖 = Z𝑖+1 − Z𝑖 ∼
1/|𝐹 (Z𝑖) |, 𝑖 = 0, 14. This allowed us to make the numerical error almost uniform across the integration
range. Each segment was integrated using the 2-point formula 𝑃2 = ℎ( 𝑓1/2 + 𝑓2/2) + ℎ2(𝑝1 − 𝑝2)/12,
where ℎ = Z2 − Z1, 𝑓1 and 𝑝1 are the values of the integrand and its first derivative at the first point of
the segment and 𝑓2 and 𝑝2 are the corresponding quantities at the second point of the segment. Each
segment was then split evenly in two, yielding an intermediate point Z ′ = 1

2 (Z1 + Z2), and integration was
repeated using the 3-point formula 𝑃3 = ℎ( 𝑓1/2 + 𝑓 ′ + 𝑓2/2) + ℎ2(𝑝1 − 𝑝2)/12, where 𝑓 ′ is the value
of the function at Z ′ and ℎ = 1

2 (Z2 − Z1). Since the Euler–Maclaurin formula is accurate up to 𝑂 (ℎ4),
the two estimates, 𝐼 = 𝑃2 + 𝛼′ℎ4 and 𝐼 = 𝑃3 + 1

16𝛼
′ℎ4 can be combined in a Romberg-style procedure to

yield a better approximation for the integral 𝐼 = (16𝑃3 − 𝑃2)/15, which is accurate up to terms 𝑂 (ℎ6).
The error contained in this estimate can be approximated by (𝑃3 − 𝑃2)/15, which is the error of the
3-point integration formula. If the error estimated in this way turned out to be higher than a pre-set target
value, we continued to split the concerned segments until a desired accuracy was reached. A total of 33
integration points were generated in this manner. The grid was much denser for Z points corresponding to
_ ∼ 1. The estimated integration error is less than 0.1% in relative terms. For the free energy difference,
this translates into a 3% numerical error, which is about twice as low as the statistical error resulting
from incomplete sampling.
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До алгоритму проведення Монте Карло симуляцiй в
комiрках моделювання з постiйним об’ємом та змiнною
формою

А. Баумкетнер
Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, 79011, Львiв, Україна

В симуляцiях кристалiв певнi властивостi дослiджуваної системи можуть залежати не тiльки вiд об’єму
комiрки моделювання але й вiд її форми. В таких випадках бажано змiнювати форму комiрки в процесi
симуляцiй, оскiльки наперед вона може бути невiдомою. У цiй роботi описано алгоритм який дозволяє це
робити з тої умови, щоб вiдтворити ключовi параметри форми комiрки, якi спостерiгаються в ансамблi
при постiйному тиску. Алгоритм протестовано в симуляцiях системи твердих елiпсiв, яка може утворюва-
ти гратки рiзного типу. Показано, що використання запропонованого алгоритму призводить до доброго
узгодження вiдносної вiльної енергiї рiзних типiв граток з результатами отриманими незалежними мето-
дами.

Ключовi слова: твердий елiпс, Монте Карло, ансамбль при постiйному об’ємi
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