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We use a density functional approach to calculate the contact angle of the water model on a heterogeneous,
graphite-like surface. The surface heterogeneity results from the pre-adsorption of a layer of spherical species.
The pre-adsorbedmolecules can also be amixture of molecules of different sizes. The presence of pre-adsorbed
layer causes geometrical and energetical heterogeneity of the surfaces. Two cases are considered. The pre-
adsorbed molecules can either behave like hard-sphere obstacles, or they can also attract the molecules of
water. In the first case, an increase of the amount of pre-adsorbed species leads to an increase of the wetting
temperature, but this increase does not depend linearly on the amount of obstacles. In the case of obstacles
exerting attractive forces on water molecules, the curves describing the dependence between the amount of
pre-adsorbed species and the contact angle can exhibit a maximum. In addition, we have also studied how the
pre-adsorbed species influence the local densities of gaseous and liquid phases in contact with a modified solid
surface.
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1. Introduction

The problem of the influence of surface heterogeneity of solid surfaces on thermodynamic properties
of fluid-solid systems has been the subject of intensive research for a long time [1–8]. Usual models of
heterogeneous surfaces have been based on distinguishing several kinds of surface active sites. The sites
differ by their interaction energy with fluid molecules. The function describing the distribution of sites
with the energy is termed “the energy distribution function” and is commonly treated as a characteristic
property of a given heterogeneous solid [4].

Different models describing the systems with heterogeneous surfaces have been considered. They
can be classified according to the way in which the surface active sites are defined and distributed over
a surface. According to the so-called patchwise model, the sites of the same kind are grouped into
patches. The patches are geometrically flat, energetically homogeneous and independent of each other.
Consequently, thermodynamic properties of a fluid in contact with a patchy heterogeneous solid (e.g.,
adsorption isotherms) are computed as weighted averages of the relevant properties for homogeneous
surfaces with statistical weights resulting from the energy distribution function [2, 4]. However, for several
solid surfaces, such as silica gels, aluminum oxides, or active carbons, the patchwise heterogeneous
model is unrealistic [6] and considering such systems, the models of random heterogeneous surfaces
were introduced [9, 10].

One of the possible statistical-thermodynamic methods of describing the random heterogeneous
systems comes from the theory of quenched-annealed systems [11–13]. Although the latter approach
is mainly applied in the studies of fluids confined by microporous solids, it can be equally well used
for modelling a rough solid surface, or capillaries filled with random matrices [14–16]. The initial flat
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surface is covered with a layer of randomly distributed particles, which remain frozen at fixed positions
when the fluid enters the system.

The models intermediate between patchwise and random surfaces are patterned surface models. The
sites of particular kinds occupy small regions of simple geometrical shape (e.g., stripes, squares, or
triangles). These geometrical constructs are ordered into crystalline-like lattices. In contrast to patchwise
models, the processes occurring over particular structures are not independent of each other. The ther-
modynamic properties of fluids in contact with patterned surfaces were studied in several publications,
see e.g. [17–21].

The heterogeneity of solid surfaces plays an important role in the adsorption of fluids on solids
and in chromatographic processes [22, 23]. Indeed, the presence and specific distribution of adsorption
sites on the surfaces can decide about the effectiveness of the separation of fluid mixtures. Furthermore,
the surface heterogeneity can strongly influence the surface phase transitions. The studies of the latter
problems mainly concern patterned and random surfaces [24–27].

Wetting is an important phenomenon that is common in nature [28]. It is also an essential issue for
the design and development of novel substances with desirable surface properties that can be applied in
many areas of engineering, chemistry, and biology. One of the most significant ingredients that appear
in several processes is water. In particular, the wetting behavior of water on graphite-like substrates was
the subject of our recent detailed study [29].

Experimental method for investigating the wetting is usually based on the measurement of the static
contact angle, \. A crossover from non-wetting to wetting state takes place if the contact angle changes
from a nonzero value to zero [30]. The temperature at which this transition occurs is called the wetting
temperature, 𝑇𝑤. Other experiments rely on the measurements of adsorption isotherms for gas densities
up to the saturated vapor density. In the case of first-order wetting transitions, characteristic changes in the
course of adsorption isotherms with temperature take place. Namely, at temperatures below 𝑇𝑤, upon the
bulk density approaching the liquid-vapor coexistence, the thickness of the adsorbed film remains finite
and small, whereas at higher temperatures, it diverges to infinity [31–33]. Thus, the study of changes of
adsorption isotherms allows the determination of 𝑇𝑤. Note that the adsorption method for the first time
permitted to capture the wetting temperature for 4He on cesium [34].

Of course, the value of the static contact angle, \, depends on the surface heterogeneity. However,
there is no general approach that would describe \ in terms of parameters characterizing the surface
heterogeneity. Although several attempts to elucidate the effects of surface heterogeneity on the values of
\ were undertaken, but they concerned specific surface models. For patchy heterogeneous surfaces, Cassie
and Baxter [35] proposed an expression relating the contact angle to the energy distribution function.
Another attempt was proposed by Wenzel [36] for macroscopically rough surfaces. Both Cassie-Baxter
and Wenzel approaches were next applied and verified for numerous systems, cf. reference [37] and the
references quoted therein. The Cassie-Baxter and Wenzel equations can be used if the patches are big
enough, i.e., if their size is much larger than the range of capillary forces. We would like to stress that
the Cassie-Baxter equation for the contact angle is familiar [38] to the so-called integral equation for the
adsorption isotherm, [4]. Recent studies, however, concentrated on the description of patterned surfaces
composed of alternately arranged hydrophilic and hydrophobic regions [39–45].

One of the methods [46, 47] for modifying the surface properties of solids relies on pre-adsorption
of some selected species on bare surfaces, e.g., chain molecules (oligomers and polymers). This method
has found particularly important applications in developing novel chromatographic column packing with
the required properties [48, 49]. The grafted chains have also a significant impact on the surface phase
transitions, such as wetting, layering, and capillary condensation in confined fluids [50–52]. As our recent
study indicated, the grafted chains are capable not only of quantitatively but also qualititavely influencing
the topology of the surface phase diagrams [53].

Theoretical methods for the description of surface phase transitions are mainly based on the density
functional approaches [54]. Density functional theories can be also employed to the systems with surfaces
modified by chemically bonded spherical molecules. Therefore, in this work, we propose a density
functional method to study the changes of static contact angle with the changes of the adsorbing surface
amount and size of pre-adsorbed spherical molecules.

The fluid-fluid interaction is selected to mimic the interaction between a pair of water molecules.
Water belongs to the class of associating fluids and the formation of intermolecular hydrogen (associative)
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bonds should be taken into account in the model. However, the application of contemporary force fields
for water with site-site electrostatic forces [55] would be computationally prohibitive within the density
functional approaches. Therefore, we use the potential resulting from the statistical association fluid
theory (SAFT), [56, 57] with the parameters proposed by Clark et al. [58]. This model is not only one of
the most accurate in terms of evaluating the liquid-vapor phase diagram, but it also correctly predicts the
temperature dependence of the surface tension [58, 59].

Water molecules are in contact with a modified surface of graphite. Similarly to our previous work [29],
the Lennard-Jones 10-4-3 function [60] is used to describe the interaction of a water particle with a bare
graphite surface. The surface of graphite is covered with a layer of pre-adsorbed spherical molecules. The
pre-adsorbed layer can be either one- or many-component and we consider the cases of purely repulsive
and repulsive and attractive interactions with water molecules. The values of the equilibrium contact
angle are then calculated from the density functional theory. The theory used for us is a modification
of the approach for grafted chain molecules [15, 16]. The pre-adsorbed layer creates both geometrical
and energetic heterogeneity of an adsorbing surface. However, we should also mention here that there
exist alternative density functional approaches proposed by Aslymov and co-workers [61, 62] and by
Zhou [63], based on the development of an appropriate expression for the “effective” fluid-solid that
takes into accounts the surface roughness. This effective potential is then used as an external potential
field in the classical density functional treatment. Our approach, however, leads to modifications of the
expressions for the system free energy.

The paper is arranged as follows. In the next section we briefly outline the details of the model and
the interaction potentials. Then, we describe the basic points of the density functional theory and the
method for the evaluation of the values of the contact angle. Section 3 presents the results obtained for the
pre-adsorbed layer formed by one-component layer of hard spheres (obstacles), built of a binary mixture
of obstacles, and, finally, we consider the case of pre-adsorbed particles interacting via repulsive and
attractive forces. The last section concludes the obtained theoretical data.

2. Model and theory

2.1. Interaction potentials

According to the model developed by Chapman, Gubbins, and Jackson [64, 65], each water molecule
possesses four associative sites Γ = {𝐴, 𝐵, 𝐶, 𝐷}, located at the vertices of tetrahedron inscribed into a
spherical core. The interaction energy between the molecules 𝑖 = 1, 2 depends on the center-to-center
distance, 𝑟12 = |r12 | , and on orientations of both molecules, 𝝎𝑖 ,

𝑢(12) = 𝑢 𝑓 𝑓 (𝑟12) +
∑︁
𝛼∈Γ

∑︁
𝛽∈Γ

𝑢𝛼𝛽 (r𝛼𝛽). (2.1)

The site-site vectors, r𝛼𝛽 , are r𝛼𝛽 = r12 + d𝛼 (𝝎1) − d𝛽 (𝝎2), where d ] (𝝎𝑖) is the vector connecting the
site ] on molecule 𝑖 with its center (see also figure 1 of reference [64]). Only the site-site association AC,
BC, AD, and BD is allowed, and all association energies are equal. The associative interaction between
the sites is

𝑢𝛼𝛽 (r𝛼𝛽) =
{
−Yas, 0 < |r𝛼𝛽 | ⩽ 𝑟𝑐,
0, |r𝛼𝛽 | > 𝑟𝑐,

(2.2)

where Yas is the depth and 𝑟𝑐 is the cut-off range of the associative interaction.
The non-associative part of the pair potential, 𝑢 𝑓 𝑓 (𝑟), is described by a square-well potential

𝑢 𝑓 𝑓 (𝑟) = 𝑢hs, 𝑓 𝑓 (𝑟) + 𝑢att, 𝑓 𝑓 (𝑟), (2.3)

where 𝑢hs, 𝑓 𝑓 (𝑟) and 𝑢att, 𝑓 𝑓 (𝑟) are, respectively, the hard-sphere (hs) and attractive (att) parts of the
potential,

𝑢hs, 𝑓 𝑓 (𝑟) =
{
∞, 𝑟 < 𝜎,

0, 𝑟 ⩾ 𝜎,
(2.4)
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and

𝑢att, 𝑓 𝑓 (𝑟) =


0, 𝑟 < 𝜎,

Y, 𝜎 ⩽ 𝑟 < _ 𝑓 𝑓𝜎,

0, 𝑟 ⩾ _ 𝑓 𝑓𝜎.

(2.5)

In the above, 𝜎, Y and _ 𝑓 𝑓 are the diameter, the depth and the range of the non-associative water-water
potential, respectively.

The parameters for the W1 model of Clark et al. [58] are collected in table 1.

Table 1. The parameters of the W1 water-water model potential from reference [58].
Model 𝜎 (nm) Y/𝑘 (𝐾) _ 𝑟𝑐 (nm) Yas/𝑘 (𝐾) |d ] |/𝜎

W1 0.303420 250.000 1.78890 0.210822 1400.00 0.25

Water molecules are in contact with a modified surface. The initial, non-modified surface is assumed
to be graphite-like. The adsorbing potential, 𝑣(𝑧), exerted on a fluid particle is then given by the potential
developed by Steele [60].

𝑣(𝑧) = Y 𝑓 𝑤

[
2
5

(
𝜎 𝑓 𝑤

𝑧

)10
−
(
𝜎 𝑓 𝑤

𝑧

)4
−

𝜎4
𝑓 𝑤

3Δ(𝑧 + 0.61Δ)3

]
, (2.6)

where Y 𝑓 𝑤 and 𝜎 𝑓 𝑤 are the energy and the size parameters, respectively. The interlayer spacing of the
graphite planes equals Δ = 0.335 nm. The values of 𝜎 𝑓 𝑤 and Y 𝑓 𝑤 follow from Lorentz-Berthelot mixing
rules. Thus, [29], 𝜎 𝑓 𝑤/𝜎 = 1.06028 and Y 𝑓 𝑤/Y = 8.311. Our calculations were also carried out for
Y 𝑓 𝑤/Y = 7 and 9.5. The potential of Steele was widely used with success in the theory of adsorption
of fluids on graphite [29, 66]. A comprehensive discussion of this potential was provided by Zhao and
Johnson [67].

The inhomogeneity of the surface results from its chemical modification. According to our model,
the modification means the “sticking” (tethering) of spherical particles of diameters 𝜎𝑖 at the distance
𝜎𝑖/2 from the surface. For the surface at 𝑧 = 0, the potential that leads to the tethering of molecules reads

exp[−𝑣 (1)
𝑖

(𝑧)/𝑘𝑇] = 𝛿(𝑧 − 𝜎𝑖/2), (2.7)

where 𝛿 denotes the Dirac function.
The amount of tethered species 𝑖 is controlled by the parameter 𝑅𝑐𝑖 that gives the total surface density

of pre-adsorbed species. (In the case of one-component pre-adsorbed layer, we drop the subscript 𝑖 and
use the symbol 𝑅𝑐.)

Similarly to the case of non-associative water-water interaction, the interaction of water molecules
with pre-adsorbed species, 𝑢 𝑓 𝑖 (𝑟) = 𝑢hs, 𝑓 𝑖 (𝑟) + 𝑢att, 𝑓 𝑖 (𝑟), is described by the square well potential

𝑢hs, 𝑓 𝑖 (𝑟) =
{
∞, 𝑟 < 𝜎 𝑓 𝑖 ,

0, 𝑟 ⩾ 𝜎 𝑓 𝑖 ,
(2.8)

and

𝑢att, 𝑓 𝑖 (𝑟) =


0, 𝑟 < 𝜎 𝑓 𝑖 ,

Y 𝑓 𝑖 , 𝜎 𝑓 𝑖 ⩽ 𝑟 < _ 𝑓 𝑖𝜎 𝑓 𝑖 ,

0, 𝑟 ⩾ _ 𝑓 𝑖𝜎 𝑓 𝑖 .

(2.9)

The interactions between pre-adsorbed species, however, are assumed to be of hard-sphere type with the
cross size parameters equal to (𝜎𝑖 + 𝜎𝑗 )/2.

2.2. Density functional theory

The system is studied using a version of the density functional theory (DF), described already in
detail in references [15, 16]. To avoid unnecessary repetitions, we recall only basic equations.
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The symbols 𝜌(r) and 𝜌𝑖 (r) denote the local density of water-like molecules and of tethered particles
of the kind 𝑖. As usual, we start with defining the excess surface free energy (the grand canonical potential)
as a functional of the local densities

Ω = 𝐹 [𝜌(r), {𝜌𝑖 (r)}] +
∑︁
{𝑖}

∫
dr𝜌𝑖𝑣𝑖 (𝑧) +

∫
dr𝜌(r) [𝑣(𝑧) − `], (2.10)

where ` is the chemical potential of water and 𝐹 [𝜌(r), {𝜌𝑖 (r)}]. At fixed values of temperature and the
amount of pre-adsorbed species of all kinds, Ω is a function of `, or, alternatively, the bulk density of
water, 𝜌𝑏, Ω = Ω(𝜌𝑏).

The free energy functional is considered as the sum of an ideal term, 𝐹id [𝜌(r), {𝜌𝑖 (r)}], the
hard-sphere functional 𝐹hs [𝜌(r), {𝜌𝑖 (r)}], the functional arising from attractive interparticle forces,
𝐹att [𝜌(r), {𝜌𝑖 (r)}] and the part due to the formation of associative bonds, 𝐹as [𝜌(r), {𝜌𝑖 (r)}].

𝐹 [𝜌(r), {𝜌𝑖 (r)}] = 𝐹id [𝜌(r)]𝐹hs [𝜌(r), {𝜌𝑖 (r)}]
+ 𝐹att [𝜌(r), {𝜌𝑖 (r)}] + 𝐹as [𝜌(r), {𝜌𝑖 (r)}] . (2.11)

The ideal term is known exactly

𝐹id/𝑘𝑇 =

∫
dr𝜌(r) [ln 𝜌(r) − 1] . (2.12)

The hard-sphere functional is evaluated according to the theory originally developed by Rosenfeld and
modified in [68]. It requires the knowledge of four scalar [𝑛(𝐼 ) (r), 𝐼 = 0, 1, 2, 3] and two vector [𝑛(𝑉𝐼 ) (r),
𝐼 = 1, 2] averaged densities

𝑛(𝐿) (r) =
∫

dr′𝜌(r′)𝑤 (𝐿) ( |r − r′ |) +
∑︁
{𝑖}

∫
dr′𝜌𝑖 (𝒓′)𝑤 (𝐿)

𝑖
( |r − r′ |), (2.13)

where 𝐿 = 0, 1, 2, 3, 𝑉1, 𝑉2 and 𝑤 (𝐿) ( |r − r′ |) are the weight functions, see equations (11)–(14) of
reference [68]. However, the explicit equations for the hard-sphere free energy is given by equation (11)
of [15].

The attractive forces contribution results from the mean-field approximation. According to the intro-
duced model, the pre-adsorbed molecules do not interact with each other by attractive forces. Thus,

𝐹att [𝜌(r), {𝜌𝑖 (r)}] =
1
2

∫ ∫
drdr′𝜌(r′)𝜌(r)𝑢att, 𝑓 𝑓 ( |r′ − r|)

+
∑︁
{𝑖}

∫ ∫
drdr′𝜌(r′)𝜌𝑖 (r)𝑢att, 𝑓 𝑖 ( |r′ − r|). (2.14)

Finally, the contribution arising from the formation of associative bonds between water molecules follows
from the application of the first-order thermodynamic theory of Wertheim (TPT1). The TPT1 contribution
to the free energy is expressed in terms of the fraction of molecules not bonded at a given site 𝜒(r),
which represents the statistical mechanical analogue of the mass action law. The expression used by us
for 𝐹as [𝜌(r), {𝜌𝑖 (r)}] reads [52]

𝐹as [𝜌] = 4
∫

dr 𝑛0(r)Z (r)
{
ln 𝜒(r) − 1

2
[𝜒(r) − 1]

}
. (2.15)

All the details and the definition of the functions Z (r) and 𝜒(r) are given in previous works [52, 69]. We
omit here their explicit expressions to avoid unnecessary repetitions.

The density profile 𝜌(r) results from the Euler-Lagrange equation,

𝛿Ω/𝛿𝜌(r) = 0. (2.16)
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The density profiles of pre-adsorbed species, however, are fixed by the external potential, equation (2.7),
and the assumption about constancy of pre-adsorbed particles of the kind 𝑖. This means that∫

d𝑧𝜌𝑖 (𝑧) = 𝑅𝑐𝑖 , (2.17)

i.e., 𝜌𝑖 (𝑧) = 𝑅𝑐𝑖𝛿(𝑧 − 𝜎𝑖/2).
If the external field depends on the distance perpendicular to the solid surface only, as in equation (2.6),

then the local density is one-dimensional as well, i.e. 𝜌(r) ≡ 𝜌(𝑧). The Euler-Lagrange equation for the
density profile can be solved using different numerical procedures, see e.g., [70] and references therein.
In our calculations, we used the classical Picard iteration method.

2.3. Contact angle

The criterion for wetting the surface by a liquid is usually derived from the classical Young’s equation
that expresses the force balance at a three-phase contact between a liquid drop (𝑙), a solid surface (𝑠) and
a gas phase (𝑔), in terms of the contact angle, \ [30, 31] as

𝛾𝑔 − 𝛾𝑙 = 𝛾 cos \, (2.18)

where 𝛾^ = ΔΩ^/𝐴 is the interfacial tension at gas-solid (^ = 𝑔) and at liquid-solid (^ = 𝑙) interface, 𝐴
is the interfacial surface area, ΔΩ𝑔 = Ω(𝜌𝑏𝑔) − Ω𝑏 (𝜌𝑏𝑔) and ΔΩ𝑙 = Ω(𝜌𝑏𝑙) − Ω𝑏 (𝜌𝑏𝑙) are the excess
grand thermodynamic potentials for the gas-solid and for the liquid-solid interfaces calculated for the
bulk densities 𝜌𝑏𝑔 and 𝜌𝑏𝑙 corresponding to the densities of coexisting gaseous and liquid bulk phases.
Next, Ω𝑏 is the bulk grand thermodynamic potential at the bulk liquid-vapor coexistence and 𝛾 is the
gas-liquid interfacial tension (the surface tension).

The Young equation is an approximation to reality [71] as it neglects the effect of the line tension at
a three-phase contact. The wetting temperature, 𝑇𝑤, is determined as the highest temperature at which
the ratio (𝛾𝑔 − 𝛾𝑙)/𝛾 becomes zero for the first time. At temperatures 𝑇 ⩾ 𝑇𝑤, the liquid drop completely
spreads across the surface.

The applications of equation (2.18) requires the knowledge of the values of the surface tension, 𝛾.
In order to evaluate them, one needs to calculate the changes of the local density across the interface
between semi-infinite slab of a liquid and a semi-infinite slab of a gas. This is done by removing the solid
wall and setting the boundary conditions to 𝜌(𝑧 = −∞) = 𝜌𝑙 and 𝜌(𝑧 = ∞) = 𝜌𝑔, using the procedure
described in detail in reference [72].

0 0.2 0.4 0.6 0.8 1

ρ
*

b

1.5

2

2.5

T
*

Figure 1. Bulk liquid-vapor phase diagram in the temperature-density plane for the model W1 of water.
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3. Results and discussion

All variables below are expressed in reduced units. The reduced temperature, reduced distance,
reduced diameter and a reduced amount of pre-adsorbed particles, as well as a reduced local and bulk
density are 𝑇∗ = 𝑘𝑇/Y, 𝑧∗ = 𝑧/𝜎, 𝜎∗

𝑖
= 𝜎𝑖/𝜎, 𝑅∗

𝑐 = 𝑅𝑐𝜎
2 and 𝜌∗(𝑧) = 𝜌(𝑧)𝜎3, and 𝜌∗

𝑏
= 𝜌𝑏𝜎

3,
respectively.

Evaluation of the contact angles requires the knowledge of two bulk densities at the gas-liquid
coexistence. The calculation of the bulk phase diagram was self-consistently carried out using the bulk
version of the density functional theory [29], and the obtained phase diagram is given in figure 1. Similarly,
the values of the liquid-vapor surface tension were obtained using the density functional method and all
the details of these calculations are outlined in [29].

We have already noted that similarly to our previous works [29, 53], the calculations were carried
out for the W1 model of Clark et al. [58]. The parameters of this model were selected so as to reproduce
the experimental bulk liquid-gas phase diagram. Therefore, the agreement between theoretical and
experimental bulk dew and bubble densities is quite good, in general. However, the data fitting of Clark
was at temperatures lower than the bulk critical temperature. Thus, some deviations can appear between
bulk theoretical and experimental data within the temperatures range in the vicinity of the critical
temperature. When assessing the results presented below, we should remember that a lower accuracy of
the bulk system description for temperatures close to the critical temperature may have an impact on the
predictions of the applied theory. Note that the bulk critical temperature resulting from our approach
[29, 73], 𝑇∗

𝑐 ≈ 2.715, is in a reasonable agreement with experiment.
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Figure 2. (Colour online) The dependencies of the static contact angle \ on temperature and the amount of
pre-adsorbed particles of the diameter 𝜎1 = 0.8 (part a), 𝜎1 = 1 (part b), 𝜎1 = 1.2 (part c) and 𝜎1 = 1.4
(part d). The calculations are for Y∗

𝑓 𝑤
= 8.311.

The first series of calculations were carried out for the surface covered by a one-component layer
of hard-sphere obstacles, i.e., the interaction of a pre-adsorbed molecule with water molecules was of
hard-sphere type. Four sizes of pre-adsorbed particles were studied: 𝜎∗

1 = 0.8, 1, 1.2, and 1.4.
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The pre-adsorbed molecules block the access to the surface of the adsorbate molecules. As a conse-
quence, the effective (i.e., averaged over the entire surface) surface-water interactions become weaker.
Since the wetting of a solid surface results from a balance of solid-fluid and fluid-fluid interactions, one
can expect an increase of the wetting temperature with the surface density 𝑅∗

𝑐 of pre-adsorbed species.
In figure 2 we show three dimensional plots illustrating the dependence of the contact angle on

temperature and on 𝑅∗
𝑐. The calculations are for Y∗

𝑓 𝑤
= 8.311.

For 𝜎∗
1 = 1.4 (figure 2 d), the wetting occurs only for surface densities 𝑅∗

𝑐 ≲ 0.25 (or, for 𝑅𝑐𝜎
2
1 ≲

0.49). The close-packed hexagonal surface coverage corresponds to the surface density 𝑅∗
𝑐𝑝𝜎

2
1 = 2/

√
3.

Therefore, the covering of approximately 40% of the surface by hard obstacles of the diameter 𝜎∗
1 = 1.4

suffices to prohibit the wetting at all temperatures 𝑇∗ < 𝑇∗
𝑐 . In the case of the particles of diameter 𝜎∗

1 = 1
(figure 2 b), the covering of the surface that inhibits the wetting is higher and equals approximately
𝑅𝑐𝜎

2
1 ≈ 0.82, which corresponds to 71% of the close-packed coverage. Of course, the higher efficiency

of larger hard particles in retarding the wetting is connected with stronger lowering of the effective
water-surface interactions by obstacles of larger size.

At low temperatures, the plots of \ (𝑇) exhibit a plateau. This type of behavior is more evident for
larger obstacles and at higher values of 𝑅∗

𝑐. In other words, with an increasing 𝑅∗
𝑐, the surface becomes

more hydrophobic for a wider range of temperatures. We checked that at 𝑇∗ = 1.5, the contact angle for
the surface covered with the close-packed hexagonal layer of particles of 𝜎∗ = 1 is \ ≈ 110◦, while for
𝜎∗

1 = 1.4 it equals ≈ 130◦.
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Figure 3. (Colour online) Parts a and b. Local density profiles at different temperatures for bulk density
marginally lower than bulk dew density (part a) and marginally higher than the bubble density (part b).
The temperatures are given in part b. Part c. Adsorption isotherm from gaseous phase at 𝑇∗ = 2.2 (red
lines), 2.4 (blue lines), and 2.55 (black lines). Vertical dashed lines mark the bulk dew densities. Part d.
Local densities for coexisting thin (black) and thick (red) adsorbed films at 𝑇∗ = 2.55 and for the bulk
density 𝜌∗

𝑏
= 0.1220 (the bulk dew density equals ≈ 0.1256). All calculations are for 𝜎∗ = 1, 𝑅∗𝑐 = 0.28

and for Y∗
𝑓 𝑤

= 8.311.

Calculations of the contact angles from equation (2.18) require the knowledge of the local densities of
the systems for bulk densities equal to the densities of coexisting liquid and gaseous phases. Figures 3 a
and 3 b show the density profiles of water at bulk densities marginally lower (part a) and marginally higher
(part b) than the densities at the bulk coexistence. The calculations are for 𝜎∗

1 = 1 and 𝑅∗
𝑐 = 0.28. Up to

the temperature 𝑇∗
𝑐 = 2.44 only a thin film formation is observed for adsorption from the gaseous phase.

At𝑇∗
𝑐 = 2.5, however, a thick film is formed and its thickness diverges as the bulk density approaches 𝜌∗

𝑏𝑔
.

The crossover between thin and thick film behavior is at 𝑇∗
𝑤 = 2.445. At the same temperature, the value

of the contact angle becomes zero. This indicates a consistency of the values of the wetting temperature
obtained from the Young equation and from the adsorption study.

In figures 3 c and 3 d we plot the adsorption isotherms at 𝑇∗ = 2.2, 2.4 and 𝑇∗ = 2.55 (part c),
as well as the density profiles (part d) at 𝑇∗ = 2.55. Vertical dashed lines in part c indicate the bulk
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Figure 4. (Colour online) The dependencies of the static contact angle \ on temperature and the amount
of pre-adsorbed particles of the diameter 𝜎∗

1 = 1 and for Y∗
𝑓 𝑤

= 7 (part a) and Y∗
𝑓 𝑤

= 9.5 (part b).

densities of gas coexisting with a liquid. At two lower temperatures, the isotherm remains small up to the
bulk liquid-vapor coexistence. At 𝑇∗ = 2.55, however, the prewetting jump on the adsorption isotherm
appears at 𝜌∗

𝑏
= 0.1220. The local densities in part d show the profiles just before and after the prewetting

jump. According to our estimation, for the system under study, the prewetting jump ends at the critical
prewetting temperature, 𝑇∗

𝑐𝑝 ≈ 2.61. Although we did not conduct detailed studies of the prewetting
phase transition, the obtained results indicate that for all systems under study, if the prewetting exists, it
is a first-order phase transition [29, 31, 33].

In the case of non-modified surfaces, the wetting temperature depends on the depth of the water-surface
potential [equation (2.6)], Y∗

𝑓 𝑤
. If Y∗

𝑓 𝑤
increases, the wetting temperature decreases. A similar behavior

was found for surfaces modified with hard obstacles, which is illustrated in figure 4. The calculations
were carried out for 𝜎∗

1 = 1. Part a shows the dependence of \ on temperature and 𝑅∗
𝑐 for Y∗

𝑓 𝑤
= 7, and

part b — for Y∗
𝑓 𝑤

= 9.5. Note that according to the results of our previous work for non-modified surfaces
[29], the wetting temperature was 𝑇𝑐

𝑤 = 2.29 for Y∗
𝑓 𝑤

= 7 and 𝑇𝑐
𝑤 = 1.76 for Y∗

𝑓 𝑤
= 9.5.
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Figure 5. (Colour online) The dependence of 𝑇∗𝑤 (part a) and 𝑇∗90 (part b) on the amount of pre-adsorbed
particles for different values of 𝜎∗

1 = 1 and Y∗
𝑓 𝑤

, given in the figure. The dotted line in part a denotes the
bulk critical temperature.The meaning of arrows is explained in the text. We stress that the scale of the
abscissa in part a is 𝑅𝑐𝜎2

1 , while in part b we use the reduced values of 𝑅∗𝑐 .
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The presence of hard obstacles leads to the effect of a further lowering of the effective adsorbing
potential and thus to an increase of the wetting temperature. For a weakly adsorbing surface, Y∗

𝑓 𝑤
= 7,

and for high surface density of pre-adsorbed particles, 𝑅∗
𝑐 ⪆ 0.7, the wetting transition disappears for all

temperatures 𝑇∗ < 𝑇∗
𝑐 . By contrast, for Y∗

𝑓 𝑤
= 9.5, the wetting transition was observed for all investigated

values of 𝑅∗
𝑐.

Summary of our calculations for the surfaces covered with hard-sphere obstacles is given in figure 5.
Part a presents the dependence of the wetting temperature on 𝑅∗

𝑐 for different sizes of obstacles and
for three values of Y∗

𝑓 𝑤
. In the experimental studies of wetting, the temperature at which the contact

angle becomes equal to 90◦ is important since experimental works usually classify the surfaces with the
contact angle \ > 90◦ as hydrophobic and the surfaces with \ < 90◦ — as hydrophilic. The temperature
abbreviated as 𝑇∗

90, separates these two regimes. We emphasize that in the case of capillaries with
hydrophobic walls, the meniscus of fluid inside the pores is concave, while it is convex for hydrophilic
walls. The relationship of 𝑇∗

90 on the surface coverage and the size of obstacles is presented in figure 5 b.
Two groups of the curves can be distinguished in figure 5 a. The first group is at a constant value of

Y∗
𝑓 𝑤

= 8.311 and illustrates the effect of the size of obstacles on the wetting temperature. All three these
curves originate at (𝑅∗

𝑐 = 0, 𝑇∗
𝑐 = 2.02), i.e., at the wetting temperature for a non-modified surface. The

second group of the curves is for the fixed value of 𝜎∗
1 = 1 and for three values of Y∗

𝑓 𝑤
= 7, 8.311 and

9.5. Of course, in this case, the wetting temperature for different non-modified surfaces is different.
All the curves in figure 5 exhibit non-linear behavior. Thus their shape contradicts the predictions

by Cassie and Baxter [35] theory. In the case of four curves (marked by the arrows in figure 5 a), there
exist the values of the surface coverage 𝑅𝑤𝜎

2
1 at which the wetting temperature becomes equal to the

bulk critical temperature. For the coverages 𝑅𝑐𝜎
2
1 > 𝑅𝑤𝜎

2
1 , the wetting transition is suppressed for all

temperatures up to the bulk critical temperature. The value of 𝑅𝑤𝜎
2
1 is lower for higher 𝜎∗

1 and for lower
Y∗𝑔𝑠. For 𝜎∗

1 = 0.8 and Y∗
𝑓 𝑤

= 8.311, as well as for 𝜎∗
1 = 1 and Y∗

𝑓 𝑤
= 9.5, the wetting transition occurs for

all surface coverages 𝑅∗
𝑐.
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Figure 6. (Colour online) The dependencies of 𝑇∗𝑤 on the composition 𝑥 = 𝑅∗
𝑐1/(𝑅

∗
𝑐1 + 𝑅∗

𝑐2) of a binary
pre-adsorbed phase of hard-particles of the diameter 𝜎∗

1 = 0.8 and 𝜎∗
2 = 1.4. The calculations are for

fixed values of 𝑅∗𝑐 = 𝑅∗
𝑐1 + 𝑅

∗
𝑐2 given in the figure.

We also performed the calculation of the contact angles for two-component pre-adsorbed layers
consisting of hard-sphere obstacles of the diameters 𝜎∗

1 = 0.8 and 𝜎∗
2 = 1.4. Figure 6 shows the

dependence of the wetting temperature on the composition of the obstacles, 𝑥 = 𝑅∗
𝑐1/(𝑅

∗
𝑐1 + 𝑅

∗
𝑐2). The

displayed results were obtained at three selected constant values of the total two-dimensional density
𝑅∗
𝑐 = 𝑅∗

𝑐1 + 𝑅∗
𝑐2. Of course, for 𝑥 = 0 the and for 𝑥 = 1, the wetting temperatures are equal to those

of one-component layers consisting of spheres of the diameter 𝜎∗
1 = 1.4 and 0.8, respectively. Again,
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contrary to the Cassie and Baxter [35] theory, the curves in figure 6 are non-linear.
The second series of calculations were for a layer of pre-adsorbed molecules interacting with water

molecules via attractive forces. The interactions between pre-adsorbed particles were still of hard-sphere
type. We assumed the diameter of pre-adsorbed species to be the same as the diameter of water species,
𝜎∗

1 = 1. The energy parameter of the potential of equation (2.9) was treated as a free parameter,
Y∗
𝑓 1 = Y 𝑓 1/Y.
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Figure 7. (Colour online) The dependence of \ on 𝑇∗ and 𝑅∗𝑐 for the system with attractive interactions
between water and pre-adsorbed species. Calculations are for 𝜎∗

1 = 1 and Y∗
𝑓 1 = 0.4.

The presence of species attracting the water molecules leads to two opposite effects. The first one
results from blocking the access of water molecules to the surface. Consequently, the effective water-
surface interactions are lower, and the wetting temperature would increase. However, the pre-adsorbed
molecules also exert attractive forces on water molecules. If the second effect prevails, the wetting
temperature would decrease. Competition between these two factors can lead to a dependence of the
wetting temperature on 𝑅∗

𝑐 that could exhibit an extreme.
Figure 7 shows a three-dimensional plot of the dependence of \ on temperature and 𝑅∗

𝑐. The presented
results are for Y∗

𝑓 1 = 0.4. At very low values of 𝑅∗
𝑐, a small decrease of the wetting temperature compared

to the bare substrate occurs. It means that for small 𝑅∗
𝑐, the increase of effective attraction between fluid

molecules and the modified solid is more important than the effect due to the blocking of the surface.
At still higher values of 𝑅∗

𝑐 the wetting temperature starts to increase and attains its maximum value for
𝑅∗
𝑐 ≈ 0.51. Within this region of surface coverages, the blocking effect plays a dominant role. A further

increase of 𝑅∗
𝑐 leads to the lowering of the wetting temperature.

A comparison of the changes in the wetting temperature with the two-dimensional the density of pre-
adsorbed species and with the energy parameter Y∗

𝑓 1 is shown in figure 8. We also included here the curve
for the pre-adsorbed layer of hard obstacles as a reference. As expected, for a low value of Y∗

𝑓 1 = 0.05, the
evaluated curve 𝑇∗

𝑤(𝑅∗
𝑐) is close to that for hard obstacles. However, we observe an undulated course of

this function. The changes in the values of the contact angle result from the changes in the free energies
for gaseous and liquid phases contacting with a solid. According to perturbative treatment, the shape
of the function 𝑇∗

𝑐 (𝑅∗
𝑐) is to a great extent determined by a delicate balance between the hard-sphere

contribution to the free energy and the mean-field term due to water-pre-adsorbed molecule attraction. If
the latter contribution prevails, the wetting temperature decreases, but when the hard-sphere contribution
becomes dominant, the wetting temperature increases.

For Y∗
𝑓 1 = 0.7, the wetting temperature decreases and for all values of 𝑅∗

𝑐 and for 𝑅∗
𝑐 > 0.4 this

decrease is quite fast. We did not perform the calculations at temperatures lower than 𝑇∗
𝑐 < 1.5, because

the application of the considered version of the density functional at the temperatures lower than the
triple point temperature may be questioned.

Finally, in figure 9 we display the effect of the attractive forces on the structure of gaseous and liquid
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Figure 8. (Colour online) The dependence of the wetting temperatures on 𝑅∗𝑐 for the system with different
values of Y∗

𝑓 1 that are given in the figure. The red solid line denotes the results for pre-adsorbed hard-
spheres. Calculations are for 𝜎∗

1 = 1.

water on modified surfaces. Left-hand panels are at bulk densities marginally lower than the bulk dew
density, while right-hand panels are at the bulk liquid density marginally higher than the bulk bubble
density. The presence of sites attracting water molecules on the graphite surface greately influences the
structure of both gaseous and liquid adsorbed phases. In the case of adsorption from the gaseous phase,
the attraction between pre-adsorbed species and water molecules leads to the formation of a “knee” on
the density profile (part a). At higher values of 𝑅∗

𝑐, this knee transforms into the second maximum of
𝜌∗(𝑧). At the highest coverages of the surface with pre-adsorbed molecules, the local density maximum
at the value of 𝑧 corresponding to a minimum of the potential 𝑣(𝑧) vanishes and the pre-adsorbed layer
starts to play the role of the source of an external potential.
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Figure 9. (Colour online) Part a. The dependence of local densities of coexisting gaseous (left-hand panel)
and liquid (right-hand panel) phases. The calculations were carried out at constant 𝑅∗𝑐 = 0.4 and for
different values of Y∗

𝑓 1 given in the figure. Part b. The same as in part a, but for constant Y∗
𝑓 1 = 0.4 and

for different values of 𝑅∗𝑐 , given in the figure. In all cases 𝜎∗
1 = 1 and 𝑇∗ = 2.
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4. Summary

We have proposed an approach based on the density functional theory to describe the changes in the
contact angle with the surface heterogeneity. According to the proposed model, the surface heterogeneity
results from the formation of a layer of pre-adsorbed molecules on the original, bare solid surface.
Depending on the model of interactions between the pre-adsorbed molecules, on their size, and on their
amount (expressed in terms of the surface density, or surface coverage), different changes in the contact
angle and the wetting temperature were observed. In the case of hard-sphere fluid-pre-adsorbed layer
interactions, the presence of pre-adsorbed hard-sphere molecules leads to an increase of the values of the
contact angle and the wetting temperature. These effects were more pronounced for larger pre-adsorbed
particles.

In the case of pre-adsorbed molecules attracting fluid molecules, the changes in the wetting tem-
perature with the amount of pre-adsorbed species are more complex. For some selected values of the
parameter characterizing the attractive interaction and for the selected amount of pre-adsorbed molecules,
the wetting temperature can exhibit a maximum. Since the value of the wetting temperature depends on
the surface excess free energies of gaseous and liquid phases in contact with the modified solid, the
presence of a maximum is the result of an interplay between particular terms in the perturbational free
energy expansion, basically on the competitions between the hard-sphere and the contribution due to
attractive water-pre-adsorbed particles interaction.

The theory considered in this work indicates that the value of the wetting temperature does not depend
linearly on the surface density of different kinds of adsorbing sites, as predicted by the classical Cassie
approach [37]. Our treatment can also be considered as an alternative to the treatment by Aslyamov et
al. [61, 62]. The latter approach is based on the development of an effective, one-dimensional external
potential that, in turn, is next used in the classical density functional one-dimensional density functional
expressions for evaluating the excess free energy. Instead of evaluating the effective free energy, we
propose an appropriate modification of the free energy contributions. Our idea has its origin in an
approximate treatment of the quenched-annealed systems that was previously used to study adsorption
on heterogeneous surfaces [24–27]. Unfortunately, there exist no experimental or simulation data that
would be useful for verifying our theoretical predictions.

Basically, our calculations were carried out for one-component pre-adsorbed phase. However, the
theory was proposed for the case of a multicomponent pre-adsorbed layer. It can be also extended to the
case of a polydisperse mixture by proceeding along the lines described in [74–76]. Next, the theory can
be also extended by assuming a multilayer structure of pre-adsorbed molecules. The treatment of such a
system would be based on the approaches used for quenched-annealed systems [11]. All these problems
are under study in our laboratories.
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Кут змочування води на модельнiй гетерогеннiй поверхнi.
Метод функцiоналу густини

K. Домбровська1, O. Пiзiо2, С. Соколовський1
1 Факультет теоретичної хiмiї, Унiверситет iм. Марiї Склодовської-Кюрi, Люблiн 20-031, Польща,
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За допомогою методу функцiоналу густини розраховано кут змочування у моделi води на гетероген-
нiй графiтоподiбнiй поверхнi. Неоднорiднiсть поверхнi створена шаром преадсорбованих сферичних
частинок, або ж сумiшшю молекул рiзних розмiрiв. Наявнiсть преадсорбованого шару призводить до
виникнення геометричної та енергетичної гетерогенностi поверхонь. Розглянуто два випадки. Преадсор-
бованi молекули можуть або поводити себе як перешкоди у виглядi твердих сфер, або можуть також при-
тягувати до себе молекули води. У першому випадку збiльшення кiлькостi преадсорбованих складникiв
призводить до зростання температури змочування, яке, однак, не залежить лiнiйно вiд кiлькостi пере-
шкод. У тому випадку, коли перешкоди притягують молекули води, кривi, що описують залежнiсть кута
змочування вiд кiлькостi преадсорбованих частинок, можуть мати максимум. Крiм того, було дослiджено,
яким чином преадсорбованi складники сумiшi впливають на локальнi густини газоподiбних i рiдких фаз
при їх контактi з модифiкованою твердою поверхнею.

Ключовi слова: метод функцiоналу густини, кут змочування, неоднорiдна поверхня, модель води
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