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The spin-1/2 Heisenberg model is formulated in terms of a mean-field approximation (MFA) by using the matrix
forms of spin operators 𝑆𝑥 , 𝑆𝑦 and 𝑆𝑧 in three-dimensions. The considered Hamiltonian consists of bilinear
exchange interaction parameters (𝐽𝑥 , 𝐽𝑦, 𝐽𝑧), Dzyaloshinskii-Moriya interactions (Δ𝑥 ,Δ𝑦,Δ𝑧) and external
magnetic field components (𝐻𝑥 , 𝐻𝑦, 𝐻𝑧). The magnetization and its components are obtained in the MFA with
the general anisotropic case with 𝐽𝑥 ≠ 𝐽𝑦 ≠ 𝐽𝑧 for various values of coordination numbers 𝑞. Then, the thermal
variations ofmagnetizations are investigated in detail to obtain the phase diagrams of themodel for the isotropic
case with 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧 > 0. It is found that the model exhibits ferromagnetic, paramagnetic, random phase
regions and an extra ferromagnetic phase at which the components of magnetizations present branching.
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1. Introduction

The Dzyaloshinskii-Moriya (DM) interaction [1, 2] is an antisymmetric exchange interaction with a
contribution to total magnetic exchange interaction between two neighboring magnetic spins as a source
of weak ferromagnetic (FM) behavior in an antiferromagnet [3]. The helical structure is induced by the
DM interaction which breaks the chiral symmetry, and thus, the two same helical structures with different
winding directions do not degenerate [4]. It is revealed theoretically that a chiral magnetic soliton lattice is
formed with a finite magnetic field perpendicular to the axis of the helical structure, and a continuous phase
transition to a forced ferromagnetic phase occurs with increasing magnetic field [5]. These topologically
protected magnetic structures are called skyrmions and their existence was proven experimentally [6–
13]. Due to its potential applications in spintronics devices, they have drawn much attention. Note also
that the competition between DM and exchange interactions is important for skyrmion-lattice phases.
Even though the DM interaction has been well studied in crystalline magnets, there are also numerous
experimental [14, 15] and theoretical [16, 17] studies demonstrating its importance in spin glasses.

The DM interaction may be rather difficult to deal with analytically and thus it may require numerical
investigations. Because of the nature of DM interaction, it is necessary to study it with the spins at least in
two-dimensions in contrast to the Ising spins. The quantum phase transitions (QPT) in a bond-alternative
antiferromagnetic (AFM) Ising chain were considered including the DM interaction [18] by using the
fidelity based on the infinite matrix product states algorithm. It was found that antiferromagnetic and
disordered phases exist in the ground state and the transition between them is continuous. The low-energy
excitation spectrum and the ground-state magnetic phase diagram of the spin-1/2 ferromagnetic Ising
chain with the DM interaction were considered where a first-order metamagnetic phase transition between
FM and a spiral phases were reported [19].

The spin-1/2 models with the inclusion of the DM interaction (DMI) were also established in some
works. The Ising–Heisenberg model on the triangulated kagome lattice was exactly solved by establishing
a precise mapping correspondence to the simple spin-1/2 Ising model [20]. The quantum anisotropic
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Heisenberg antiferromagnet model in the presence of a DMI and a uniform longitudinal magnetic field
was considered by using the effective-field theory with a finite cluster 𝑁 = 2 spin [21]. The QPTs and
ground-state phase diagram of the Heisenberg–Ising alternating chain with uniform DM interaction were
investigated by a matrix-product-state method [22]. The pair XYZ Heisenberg interaction and quartic
Ising interactions were exactly solved by establishing a precise mapping relationship with the corre-
sponding zero-field eight-vertex model [23]. The anisotropic Heisenberg model with antiferromagnetic
exchange interactions in the presence of a longitudinal external magnetic field and a DMI was studied
by employing the usual mean-field approximation [24]. The ground-state magnetic phase diagram of
an antiferromagnetic two-leg ladder with period two lattice units modulated DMI along the legs was
considered [25]. The results of a combined analytical and density matrix renormalized group study
of the AFM XXZ Heisenberg chain subject to a uniform DMI and a transverse magnetic field were
reported [26]. The linked cluster expansion techniques was applied to study the polarized high-field
phase of an antiferromagnet on the kagome lattice with Heisenberg and DMI [27]. The phase diagram
in the 𝐻-𝑇 plane of the potassium jarosite compound KFe3(OH)6(SO4)2 for the antiferromagnetic XY
model with DMI was investigated by using the mean-field theory for different values of DM [28]. On the
two-dimensional non-linear Σ-model describing a ferromagnet with DMI, three families of exact static
solutions depending on a single Cartesian variable were obtained [29]. The roles of spatial anisotropy,
DM interactions and quantum fluctuations on the magnetization process of a triangular antiferromagnet
were considered [30]. The ground-state phase diagram of a one-dimensional XXZ chain with a spatially
modulated DMI in the presence of an alternating magnetic field was calculated [31]. The steady-state
phase diagram of the dissipative XYZ model on a two-dimensional triangular lattice by means of cluster
mean-field approximation was constructed [32]. The last work that we can mention is the study of the
quantum spin liquid material herbertsmithite described by an AFM Heisenberg model on the kagome
lattice [33].

In addition to the above theoretical works, we can also mention some experimental works such
as: magnetization of triangular-lattice antiferromagnets Ba3CoSb2O9 and CsCuCl3 with a 120o spin
structure in the 𝑎𝑏 plane [34], the nature of possible magnetic phases in the frustrated hyperkagome
iridate, Na4Ir3O8, based on the Kitaev-Heisenberg model with DM interactions [35]; the results of
magnetic measurements performed on geometrically frustrated Ni3V2O8 and Ni3(1−𝑥 )Co3𝑥V2O8 single
crystals with 𝑥 = 0.03 were presented [36].

In this work, the magnetization components (𝑀𝑥 , 𝑀𝑦, 𝑀𝑧) and thus magnetization (𝑀𝑇 ) are obtained
in terms of the MFA for the general values of the (𝐽𝑥 , 𝐽𝑦, 𝐽𝑧), (Δ𝑥 ,Δ𝑦,Δ𝑧) and (𝐻𝑥 , 𝐻𝑦, 𝐻𝑧) and 𝑞. Then,
thermal variations of magnetizations are studied for ferromagnetic interactions between the nearest-
neighbor spins, i.e., 𝐽 = 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧 > 0, with equal DM interactions and external magnetic field
components. In addition, the phase diagrams are obtained on the planes of (Δ𝑚/𝐽, 𝑇/𝐽) for 𝑞 = 3, 4 and
6 when 𝐻 is set equal to zero. Even though our equations are obtained for the anisotropic case, the results
are only presented for the isotropic case for simplicity. The reason of this study is that our literature
search did not even reveal any results for the three-dimensional isotropic case.

The rest of the work is set up as follows: the formulation for the MFA in terms of the spin operators
is presented in section 2, thermal variations of magnetizations are demonstrated in section 3, phase
diagrams are illustrated in section 4 and the last section includes a brief summary and conclusions.

2. The formulation

The anisotropic spin-1/2 XYZ Heisenberg Hamiltonian in terms of the bilinear exchange interaction
parameters and the DM interactions between the nearest-neighbor (NN) spins and the external magnetic
field components acting on each spin site is given as

H = −𝐽𝑥
∑︁
⟨𝑖, 𝑗 ⟩

𝑆𝑥𝑖 𝑆
𝑥
𝑗 − 𝐽𝑦

∑︁
⟨𝑖, 𝑗 ⟩

𝑆
𝑦

𝑖
𝑆
𝑦

𝑗
− 𝐽𝑧

∑︁
⟨𝑖, 𝑗 ⟩

𝑆𝑧
𝑖
𝑆𝑧
𝑗
− Δ𝑥

∑︁
⟨𝑖, 𝑗 ⟩

(𝑆𝑦
𝑖
𝑆𝑧
𝑗
− 𝑆𝑧

𝑖
𝑆
𝑦

𝑗
) − Δ𝑦

∑︁
⟨𝑖, 𝑗 ⟩

(𝑆𝑧
𝑖
𝑆𝑥𝑗 − 𝑆𝑥𝑖 𝑆

𝑧
𝑗
)

− Δ𝑧

∑︁
⟨𝑖, 𝑗 ⟩

(𝑆𝑥𝑖 𝑆
𝑦

𝑗
− 𝑆

𝑦

𝑖
𝑆𝑥𝑗 ) − 𝐻𝑥

∑︁
𝑖

𝑆𝑥𝑖 − 𝐻𝑦

∑︁
𝑖

𝑆
𝑦

𝑖
− 𝐻𝑧

∑︁
𝑖

𝑆𝑧
𝑖
, (2.1)

33701-2



Ferromagnetic Heisenberg model

where ⟨𝑖, 𝑗⟩ refers to the summation over the NN spins. 𝑆𝑥
𝑖
, 𝑆

𝑦

𝑖
and 𝑆𝑧

𝑖
are the components of spin-1/2

operator at site 𝑖 which are given in the matrix forms as

𝑆𝑥𝑖 =
1
2

(
0 1
1 0

)
, 𝑆

𝑦

𝑖
=

1
2

(
0 −𝑖
𝑖 0

)
, 𝑆𝑧

𝑖
=

1
2

(
1 0
0 −1

)
. (2.2)

In the MFA, the Hamiltonian H in equation (2.1) can be written in the MF form as

−𝛽HMFA = −𝛽
∑︁
𝑖

H (𝑖)
MFA, (2.3)

in which

−𝛽H (𝑖)
MFA = 𝛽𝑞(𝐽𝑥𝑀𝑥𝑆

𝑥
𝑖 + 𝐽𝑦𝑀𝑦𝑆

𝑦

𝑖
+ 𝐽𝑧𝑀𝑧𝑆

𝑧
𝑖
) + 𝛽(𝐻𝑥𝑆

𝑥
𝑖 + 𝐻𝑦𝑆

𝑦

𝑖
+ 𝐻𝑧𝑆

𝑧
𝑖
)

+ Δ𝑥 (𝑆𝑦𝑖 𝑀𝑧 − 𝑆𝑧
𝑖
𝑀𝑦) + 𝛽Δ𝑦(𝑆𝑧𝑖 𝑀𝑥 − 𝑆𝑥𝑖 𝑀𝑧) + 𝛽Δ𝑧 (𝑆𝑥𝑖 𝑀𝑦 − 𝑆

𝑦

𝑖
𝑀𝑥), (2.4)

where 𝑀𝜇 = ⟨𝑆𝜇
𝑗
⟩ are the magnetization components with 𝜇 = 𝑥, 𝑦, 𝑧 and 𝛽 = 1/(k𝑇) with k being the

Boltzmann constant set equal to 1 for convenience.
The matrix representation of −𝛽H (𝑖)

MFA is obtained by using the spin operators, i.e., equation (2.2),
and is found as

−𝛽H (𝑖)
MFA =

(
𝐻11 𝐻12
𝐻21 𝐻22

)
, (2.5)

where the matix elements are given as

𝐻11 = 𝛽/2[𝑞(Δ𝑦𝑀𝑥 − Δ𝑥𝑀𝑦 + 𝐽𝑧𝑀𝑧) + 𝐻𝑧],
𝐻12 = 𝛽/2[𝑞(𝐽𝑥𝑀𝑥 + Δ𝑧 (i𝑀𝑥 + 𝑀𝑦) − i𝐽𝑦𝑀𝑦 − iΔ𝑥𝑀𝑧 − Δ𝑦𝑀𝑧) + (𝐻𝑥 − i𝐻𝑦)],
𝐻21 = 𝛽/2[𝑞(𝐽𝑥𝑀𝑥 + Δ𝑧 (−i𝑀𝑥 + 𝑀𝑦) + i𝐽𝑦𝑀𝑦 + iΔ𝑥𝑀𝑧 − Δ𝑦𝑀𝑧) + (𝐻𝑥 + i𝐻𝑦),
𝐻22 = 𝛽/2[𝑞(−Δ𝑦𝑀𝑥 + Δ𝑥𝑀𝑦 − 𝐽𝑧𝑀𝑧) − 𝐻𝑧] .

It is clear that 𝐻12 = 𝐻∗
21, which ensures that the eigenvalues of this matrix are real. Thus, the eigenvalues

are given as

Λ1,2 = ±𝛽/2
[(
𝐻2

𝑥 + 𝐻2
𝑦 + 𝐻2

𝑧

)
+ 2𝑞

(
−Δ𝑧𝐻𝑦𝑀𝑥 + Δ𝑦𝐻𝑧𝑀𝑥 + 𝐻𝑥𝐽𝑥𝑀𝑥 + Δ𝑧𝐻𝑥𝑀𝑦

− Δ𝑥𝐻𝑧𝑀𝑦 + 𝐻𝑦𝐽𝑦𝑀𝑦 − Δ𝑦𝐻𝑥𝑀𝑧 + Δ𝑥𝐻𝑦𝑀𝑧 + 𝐻𝑧𝐽𝑧𝑀𝑧

)
+ 𝑞2

(
Δ2
𝑦𝑀

2
𝑥 + Δ2

𝑧𝑀
2
𝑥

+ 𝐽2
𝑥𝑀

2
𝑥 − 2Δ𝑥Δ𝑦𝑀𝑥𝑀𝑦 + 2Δ𝑧𝐽𝑥𝑀𝑥𝑀𝑦 − 2Δ𝑧𝐽𝑦𝑀𝑥𝑀𝑦 + Δ2

𝑥𝑀
2
𝑦 + Δ2

𝑧𝑀
2
𝑦 + 𝐽2

𝑦𝑀
2
𝑦

− 2Δ𝑥Δ𝑧𝑀𝑥𝑀𝑧 − 2Δ𝑦𝐽𝑥𝑀𝑥𝑀𝑧 + 2Δ𝑦𝐽𝑧𝑀𝑥𝑀𝑧 − 2Δ𝑦Δ𝑧𝑀𝑦𝑀𝑧 + 2Δ𝑥𝐽𝑦𝑀𝑦𝑀𝑧

− 2Δ𝑥𝐽𝑧𝑀𝑦𝑀𝑧 + Δ2
𝑥𝑀

2
𝑧 + Δ2

𝑦𝑀
2
𝑧 + 𝐽2

𝑧𝑀
2
𝑧

)]1/2
.

Having obtained the eigenvalues (Λ1,Λ2), we are now ready to obtain the partition function which is
given as

𝑍𝑖 = (𝑇𝑟) (𝑖) exp[−𝛽H (𝑖)
MFA]

=

2∑︁
𝑛=1

eΛ𝑛 = eΛ1 + eΛ2 = 2 cosh(Λ). (2.6)

since Λ = Λ1 = −Λ2. The free energy of the model is found from the well-known definition by using the
partition function as

𝑓 = − 1
𝛽

ln 𝑍𝑖 (2.7)
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which will be utilized to find the formulations of the order-parameters. The dipolar moments or magne-
tization components, 𝑀𝜇 = ⟨𝑆𝜇

𝑗
⟩ with 𝜇 = 𝑥, 𝑦, 𝑧 are found from

𝑀𝜇 = ⟨𝑆𝜇
𝑖
⟩ = − 𝜕 𝑓

𝜕𝐻𝜇

=
1
𝛽

𝜕 ln 𝑍𝑖

𝜕𝐻𝜇

=

(𝑇𝑟) (𝑖)
{
𝑆
𝜇

𝑖
exp

[
−𝛽H (𝑖)

MFA

]}
𝑍𝑖

=
1
𝛽

[
(𝜕Λ1/𝜕𝐻𝜇)eΛ1 + (𝜕Λ2/𝜕𝐻𝜇)eΛ2

eΛ1 + eΛ2

]
=

1
𝛽′

[
(𝜕Λ1/𝜕ℎ𝜇)eΛ1 + (𝜕Λ2/𝜕ℎ𝜇)eΛ2

eΛ1 + eΛ2

]
, (2.8)

where 𝛽′ = 𝛽𝐽𝑧 and ℎ𝜇 = 𝐻𝜇/𝐽𝑧 which are the reduced temperature and external magnetic field
components. The explicit forms of the magnetization components are too long to be given explicitly. The
magnitude of the magnetization vector, ®𝑀𝑇= 𝑀𝑥𝑖 + 𝑀𝑦 𝑗 + 𝑀𝑧 𝑘̂ , is obtained by using the magnetization
components given in equation (2.8) as

𝑀𝑇 =

√︄ ∑︁
𝜇=𝑥,𝑦,𝑧

𝑀2
𝜇 =

√︃
𝑀2

𝑥 + 𝑀2
𝑦 + 𝑀2

𝑧 . (2.9)

Having obtained the formulations for the magnetization components and magnetization in the MFA for
the general case, we are now ready to study their thermal variations for the given values of Δ𝜇, 𝐽𝜇, 𝐻𝜇

and the coordination number 𝑞 = 3, 4 and 6 corresponding to the honeycomb, square and simple cubic
lattices. An iterative procedure is followed for the calculation of our order-parameters with the given
values of the system parameters under temperature variations. The obtained results are only presented for
the FM case with 𝐽 = 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧 > 0 corresponding to the isotropic case, as seen in the next section.

3. Thermal variations of magnetizations

In this section, the characteristic thermal variations of magnetizations are illustrated when the external
magnetic field 𝐻 is turned off and on. They are presented for 𝑞 = 6 only, because of the qualitative
similarities with the 𝑞 = 3 and 4. There is only quantitative difference between them, i.e., the critical
temperatures are observed at higher values for higher 𝑞 which is expected.

First, we perform a numerical calculation test for the simplified case of Δ𝑥 = Δ𝑦 = Δ𝑧 = 0 and
𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧 when the Hamiltonian (2.1) reduces to the isotropic Heisenberg model in which the MFA
method is well-established and can be used as reference. Figure 1 a shows the case with zero external
magnetic field with all the magnetizations tending to zero at the same 𝑇𝑐 and the inset is obtained for
𝐻 = 1 shows that magnetizations do not tend to zero. These are the well-known results of the isotropic
Heisenberg model. It should be noted that the behavior of magnetizations changes for the values of
Δ𝑚 = Δ𝑥 = Δ𝑦 = Δ𝑧 being large (I), greater than 1 but close to it (II), equal to one (III) and less
than 1 (IV) in some characteristic forms for 𝐻 = 0 as we shall see later. Figure 1 b is obtained for
the case (I) with Δ𝑚 = 1.3 and shows that magnetizations are less than 0.5 at zero temperature, and
they decrease as the temperature decreases and eventually terminate at the second-order phase transition
temperature (𝑇𝑐) separating the FM and PM phases. It is also clear that 𝑀𝑇 > 𝑀𝑥 = 𝑀𝑧 = −𝑀𝑦. Case (II)
is presented in figure 1 c for Δ𝑚 = 1.2 and shows that magnetizations first exhibit some random behaviors
moving up and down which terminates at the critical temperature called 𝑇𝑅, then their behaviors become
similar to the case (I) with all the lines terminating at the 𝑇𝑐. When Δ𝑚 is set equal to 1 for the case (III)
as shown in figure 1 d, the magnetizations show only random behaviors from the beginning to the end.
Now, 𝑇𝑅 separates the random phase region from the PM phase. Figure 1 e shows some branching of
magnetizations calculated for Δ𝑚 = 0.94. The lines start with random behaviors in the interval of some
values corresponding to 𝑀𝑇 > 𝑀𝑥 = 𝑀𝑧 > 𝑀𝑦 with branching. The random behavior terminates at
the 𝑇𝑅, then the lines become regular curves but branching continues which terminates at a temperature
called 𝑇𝐵. At 𝑇𝐵, we see that 𝑀𝑥 = 𝑀𝑦 = 𝑀𝑧 . Then, they follow each other terminating at the 𝑇𝑐 as 𝑀𝑇 .
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Figure 1. (Colour online) The thermal variations of magnetization components and magnetization when
𝐻 = 0 and 𝑞 = 6 for the given values of Δ𝑚 as (a) Δ𝑥 = Δ𝑦 = Δ𝑧 = 0 and 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧 case with 𝐻 = 0
and in the inset 𝐻 = 1, (b) 1.3, (c) 1.2, (d) 1, (e) 0.94, (f) 0.9 and (g) 0.6.
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Figure 2. (Colour online) Thermal variations of magnetization components and magnetization when
𝐻 = 1 and 𝑞 = 6 for the given values of Δ𝑚 as (a) 1.125 and (b) 0.75.

The branching is still seen for Δ𝑚 = 0.9 as shown in figure 1 f with no random behaviors anymore.
Again, the branching terminates at 𝑇𝐵, then the rest is as in figure 1 e. Finally, for Δ𝑚 = 0.6, all the
components of magnetizations follow the same curve, i.e., 𝑀𝑇 > 𝑀𝑥 = 𝑀𝑦 = 𝑀𝑧 and terminates at
the 𝑇𝑐. It is interesting to note that when the random behavior or branching appears, 𝑀𝑇 may be a little
larger than 0.5, otherwise it is either smaller or equal to 0.5. It may be interesting to further search the
reason of these fluctuations, and it is obvious that it has quantum mechanical origin. It should also be
mentioned that these random behaviors in magnetizations must be caused by the existence of the DM
interactions leading to the skyrmions which will not be examined in this work.

Thermal behaviors of magnetizations when 𝐻 is turned on shows two characteristic forms. When
Δ𝑚 > 1 and 𝐻 = 1, we see that branching continues as 𝑀𝑥 = 𝑀𝑧 > 𝑀𝑦 which terminates at 𝑇𝐵 where
𝑀𝑥 = 𝑀𝑦 = 𝑀𝑧 (see figure 2 a). Afterwards, they follow each other, never tending to the zero which is
expected when 𝐻 is on. It is also clear that 𝑀𝑇 is a little larger than 0.5. When Δ𝑚 ⩽ 1 and 𝐻 = 1, we
always see 𝑀𝑇 > 𝑀𝑥 = 𝑀𝑦 = 𝑀𝑧 as shown in figure 2 b. Again, they do not tend to zero with increasing
temperature.

In the next section, we combine all these critical temperatures to construct the phase diagrams on the
(Δ𝑚/𝐽, 𝑇/𝐽) planes when 𝐻 is turned off. The combinations of these points make up the possible phase
lines and their combinations lead to some critical points.

4. The phase diagrams

Now, we construct the phase diagrams on the (Δ𝑚/𝐽, 𝑇/𝐽) planes for the given values of the coordi-
nation numbers 𝑞 = 3, 4 and 6. In the phase diagrams we identify five different phase regions:

• The FM phase with constant 𝑇𝑐-line corresponding to the values of Δ𝑚 ⩽ 1 where 𝑀𝑥 = 𝑀𝑦 = 𝑀𝑧

as seen in figure 1 f (see the part after 𝑇𝐵) and in figure 1 g.

• The FM phase with linearly increasing 𝑇𝑐-line corresponding to the values of Δ𝑚 > 1 where
𝑀𝑥 = 𝑀𝑧 = −𝑀𝑦 as seen in figure 1 b and c after 𝑇𝑅 with the slopes of about 1.5, 2.0 and 3.0
for 𝑞 = 3, 4 and 6, respectively. It should be noted that these values are also the same values in
the Ising model where the FM phase finishes and the PM phase starts, i.e., order-disorder phase
transition temperatures, for 𝑞 = 3, 4 and 6, respectively.

• The random phase regions indicated with (R) where magnetizations behave randomly going up and
down as seen in figure 1 c–e before 𝑇𝑅. It is also interseting to see the branching of magnetization
components in this phase.

• The FM phase region with branching indicated with (B) corresponding to 𝑀𝑥 = 𝑀𝑧 ≠ 𝑀𝑦 as
indicated in figure 1 e and f.
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• The PM phase region with zero magnetizations caused by the thermal agitations.
The border lines between these phase regions, i.e., phase transition lines, are indicated with solid,
dotted-dashed and dashed lines indicating the 𝑇𝑐, 𝑇𝑅 and 𝑇𝐵-lines, respectively.

As seen in figure 3, the phase diagrams are similar for all values of the coordination numbers. The 𝑇𝑐-
lines consist of a straight part and a linearly increasing part. The straight parts are found at temperatures
𝑇𝑐 = 0.7675, 1.02 and 1.52 for 𝑞 = 3, 4 and 6, respectively. The 𝑇𝑅- and 𝑇𝐵-lines originate from 1 and
are located around it. The two portions of the 𝑇𝑅-lines starting from 1 terminate at zero temperature for
about Δ𝑚 = 0.97 and Δ𝑚 = 1.27 making a closed loop enclosing the R phase for all 𝑞, but with higher
temperatures for higher 𝑞. The 𝑇𝐵-lines terminate at the same value of Δ𝑚 being about 0.83 for all 𝑞. The
𝑇𝐵-lines separate FM and R phases when Δ𝑚 < 1. The 𝑇𝑅-line when Δ𝑚 > 1 separates the FM phase
from the R phase. It is clear that the model does not produce any first-order phase transition lines as in
the well-known Ising model. It should also be noted that the Δ𝑚 = 1 is a special critical point from where
two 𝑇𝑐-, two 𝑇𝑅- and one 𝑇𝐵-lines emerge.

Figure 3. The phase diagrams on the (Δ𝑚/𝐽, 𝑇/𝐽) planes for the isotropic FM phase when 𝐻 is turned
off for (a) 𝑞 = 3.0, (b) 𝑞 = 4.0 and (c) 𝑞 = 6.0.

5. Summary and conclusions

The spin-1/2 Heisenberg Hamiltonian for the FM case with 𝐽 = 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧 > 0 is considered
to study the effects of DM interactions with Δ𝑚 = Δ𝑥 = Δ𝑦 = Δ𝑧 on the thermal variations of the
magnetization components and magnetization when the external magnetic field components 𝐻 = 𝐻𝑥 =

𝐻𝑦 = 𝐻𝑧 are turned off and on. The phase diagrams of the model are calculated on the (Δ𝑚/𝐽, 𝑇/𝐽) planes
for 𝑞 = 3, 4 and 6. Three different FM phase regions are observed with 𝑀𝑥 = 𝑀𝑦 = 𝑀𝑧 , 𝑀𝑥 = 𝑀𝑧 = −𝑀𝑦

and the one with 𝑀𝑥 = 𝑀𝑧 ≠ 𝑀𝑦 exhibits branching in addition to the PM and random phase regions. It
should be noted that this model has not been studied before, so the comparison is not possible. As a last
word, the anisotropic case of this model is going to be considered as a continuation of this work.
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Феромагнiтна модель Гайзенберга зi взаємодiєю
Дзялошинського-Морiя

E. Албайрак
Фiзичний факультет, Унiверситет Ерчиєс, 38039 Кайсерi, Туреччина

Спiн-1/2 модель Гайзенберга сформульовано в наближеннi середнього поля з використанням матри-
чної форми спiнових операторiв 𝑆𝑥 , 𝑆𝑦 i 𝑆𝑧 у тривимiрному просторi. У гамiльтонiан, що розглядає-
ться, входять параметри бiлiйнiйної обмiнної взаємодiї (𝐽𝑥 , 𝐽𝑦, 𝐽𝑧), взаємодiї Дзялошинського-Морiя
(Δ𝑥 ,Δ𝑦,Δ𝑧), а також компоненти зовнiшнього магнiтного поля (𝐻𝑥 , 𝐻𝑦, 𝐻𝑧). Компоненти намагнiче-
ностi отриманi у наближеннi середнього поля для загального анiзотропного випадку, коли 𝐽𝑥 ≠ 𝐽𝑦 ≠ 𝐽𝑧 ,
для рiзних координацiйних чисел 𝑞. Температурнi залежностi намагнiченостей дослiджено детально з ме-
тою побудови фазових дiаграм моделi для iзотропного випадку 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧 > 0. Виявлено, що для
моделi iснують феромагнiтна, парамагнiтна, випадкова фазовi областi, а також додаткова феромагнiтна
фаза, в якiй у компонент намагнiченостей спостерiгається галуження.

Ключовi слова: спiн 1/2, феромагнетики, взаємодiя Дзялошинського-Морiя, 𝑋𝑌𝑍 модель,
намагнiченiсть, фазовi дiаграми
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