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Path integral Monte Carlo (PIMC) simulations with very simple models were used in order to unveil the physics
behind the isotope effects in H-bonded ferroelectrics. First, we studied geometrical effects in the H-bonds caused
by deuteration with a general three-site model based on a back-to-back double Morse potential plus a Morse
potential between oxygens, fitted to explain different general features for a wide set of H-bonded compounds.
Our model results show the Ubbelohde or geometrical effect (GE), i.e., the expansion of the H-bond with deute-
ration, in agreement to what is observed in H-bonded ferroelectrics with short H-bonds. Moreover, adjusting the
potential parameters to ab initio results, we have developed a 1D model which considers the bilinear proton-
proton interaction in mean-field to study nuclear quantum effects that give rise to the GE in KDP crystals. PIMC
simulations reveal that protons tunnel more efficiently than deuterons along the 1D chain, giving rise to a strong
attraction center that pulls the oxygens together. This mechanism, which is based on the correlation between
tunneling and geometrial modifications of the H-bonds, leads to a strong GE in the ordered phase of the chain
at low temperature which is in good agreement with the experimental data.
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1. Introduction

KH2PO4 or KDP is the prototype of a wide family of H-bonded ferroelectric compounds which has
extensive applications as a key component in optoelectronic devices [1]. Besides the technological interest,
KDP has also attracted much attention due to its rich, complex and intriguing phenomenology, e.g., the
huge isotope effect that displays associated to its ferroelectric-paraelectric (FE-PE) phase transition. With
deuteration, the critical temperature 𝑇𝑐 changes from ≈ 122 K to ≈ 210 K. The saturated polarization 𝑃𝑠

at low 𝑇 also shows a large isotope effect, increasing from ≈ 5.0 µC/cm2 for KDP to ≈ 6.2 µC/cm2 for a
sample with 98% of deuteration [2].

The origin of these strong isotope effects is still controversial. The first explanation of the large
increase of 𝑇𝑐 upon deuteration was given by the quantum tunneling model [3], which focuses purely
on mass-dependent effects. However, increasing experimental evidence since the late nineteen eighties
showed that the large isotope effect is mainly driven by geometrical modifications of the H bonds [4, 5]
(Ubbelohde effect [6]). The recent observation of tunneling in the PE phase of KDP by neutron Compton
scattering experiments added even more controversy to the problem [7], although in deuterated KDP
(DKDP), tunneling could not be detected [8].

Ab initio calculations have recently shown that tunneling and geometric effects are complementary
aspects of the same phenomenon[9, 10]. With a simple selfconsistent model based on ab initio results, it
is demonstrated that the wave function solution of the nonlinear Schrödinger equation for deuteron/proton
clusters evolves from a double peak to a broad single peak located at the center of the H-bonds as the
cluster mass diminishes. This is explained by a strong nonlinear feedback between proton delocalization
(tunneling) and the effective proton potential barrier in the H-bonds, which changes concomitantly with
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the H-bond geometry. It is concluded that such a large mass dependence can explain the large isotope effect
found in KDP, via an amplified and selfconsistent geometric modification of the H bond in agreement
with experiments. On the other hand, these results are in striking contrast with the very weak dependence
obtained at fixed potential and geometry. Thus, the proton tunneling subunit and the host lattice are
strongly coupled and the host-and-tunneling system is not separable.

Many models were successfully developed in the past to shed light into the general phenomenology of
H-bonded ferroelectric materials [11–18]. In this paper, we address with very simple models the problem
of geometrical effects in KDP crystals by performing path integral Monte Carlo (PIMC) simulations.
First, we develop a three-site model for the H-bond to study local quantum geometric effects. This simple
model already serves us to gain knowledge about the interplay between proton tunneling and H-bond
geometric modifications such as the O–O distance variation. After this first insight, we develop a 1D
chain model of concatenated H-bonds to study in the ordered phase the geometrical effects caused by
deuteration. The model parameters are fitted using recent ab initio results [19]. We demonstrate that this
simple linear model can account for the geometrical effects observed in real H-bonded ferroelectrics,
which are at the root of the giant isotope effect in the critical temperature observed in the FE phase
transitions of these materials. The paper is organized as follows: in the next section we explain the models
used and describe details of the PIMC calculations. Section 3 describes and discusses the results obtained
for the three-site model and for the linear chain. Finally, we elaborate a summary and our conclussions
in section 4.

2. Models and calculation details

2.1. Three-site model

Figure 1. (Colour online) H-bond parameters in the three-site model. 𝑅 ≡ 𝑅OO is the distance between
oxygen nuclei. 𝑟OH is the proton-oxygen distance. The variable 𝛿 = 𝑅OO−2𝑟OH is defined as the distance
between the two possible equilibrium positions of the proton. Then, 𝑥 = 𝑅OO/2 − 𝑟OH is the proton
coordinate relative to the H-bond center. This parameter definition is also used in the linear chain model.

We developed a three-site (3S) model which represents a single O–H–O cluster embedded in the H-
bonded ferroelectric as it is sketched in figure 1. With the aim to model linear H-bonds, a Double Morse
(or back-to-back) potential (see e.g., [20–24]) is usually used, which is essentially the superposition of
two Morse potentials representing what the proton feels while interacting with both oxygens:
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where 𝑅 is the O–O distance, and 𝑥 represents the H position relative to the H-bridge center (see figure 1).
If we assume that 𝑅 is fixed, there is a critical value 𝑅𝑐 = 2(𝑎−1 ln 2+𝑟0) such that for 𝑅 < 𝑅𝑐 the potential
profile is a single well with a minimum at 𝑥 = 0. On the contrary, for 𝑅 > 𝑅𝑐 we have a symmetric double-
well potential, with a local maximum at 𝑥 = 0 and minima at 𝑥 = ±𝑎−1 cosh−1{1/2 exp[𝑎(𝑅/2 − 𝑟0)]}.
Notice that the energy barrier for the proton jump from one side to the other of the H-bond diminishes
concomitantly with the O–O distance 𝑅, vanishing for 𝑅 < 𝑅𝑐. Actually, we are interested in the
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proton/deuteron tunneling regime, thus we would need that the equilibrium distance 𝑅 remains in the
region where the proton barrier exists, that is 𝑅 > 𝑅𝑐. However, simulations at low temperature with the
potential described in equation 2.1, relaxing both variables 𝑥 and 𝑅, yield to a collapse of the potential
barrier and the equilibrium energy profile displays one minimum only. Therefore, it is mandatory to
introduce a new interaction which preserves the system from the O–O distance collapse. This O–O
potential will represent the interaction between both oxygens and the lattice. The following Morse
potential between oxygens is chosen [19]:

𝑉OO (𝑅) = 𝐷OO

[
1 − e−𝑎OO (𝑅−𝑅0 )

]2
− 𝐷OO. (2.2)

We adopted a Morse potential to describe the O–O interaction with the lattice because this kind of
anharmonic potential enables the system to explore with sufficient probability O–O distances larger
than 𝑅0, in such a way that the collapse tendency to a single well is drastically diminished. This is in
contrast to the case of a harmonic potential for the O–O interaction, where in this case the O–O collapse
is inevitable. The complete potential for the 3S model is as follows:

𝑉3𝑆 (𝑥, 𝑅) = 𝑉OH (𝑥, 𝑅) +𝑉OO (𝑅) = 𝐷

{
1 − e−𝑎[ (𝑅/2)+𝑥−𝑟0 ]

}2
+ 𝐷

{
1 − e−𝑎[ (𝑅/2)−𝑥−𝑟0 ]

}2

− 2𝐷 + 𝐷OO

{
1 − e−𝑎OO (𝑅−𝑅0 )

}2
− 𝐷OO. (2.3)

The correlation between the H displacement 𝑥 and the O–O distance 𝑅 observed in experiments and ab
initio calculations is reflected by the anharmonic potential of equation (2.3): when the H approaches one
of the O’s in the covalent bond O–H (increasing 𝑥), the hydrogen-bond with the other O weakens and
the O–O distance (𝑅) increases. Moreover, 𝑅 diminishes with decreasing 𝑥, which is the inverse situation.
This correlation is precisely the important ingredient necessary for the existence of the Ubbelohde or the
geometrical effect observed in compounds with strong H-bonds.

2.2. 1D model of concatenated H-bonds

Going a step beyond the simple three-site model, we have developed a one dimensional chain model
of concatenated H-bonds to study the GE in a more realistic way in the ordered phase. This 1D linear
model consists of a chain ...O–H...O–H...O–H...O–H..., which is built as a supercell containing 𝑁 = 200
unit cells of linear dimension 𝑅, the O–O distance, as shown schematically in figure 2. There are two
atoms, one oxygen and one hydrogen in each unit cell (O–H...). The supercell of dimension 𝐿 = 200𝑅 is
subjected to periodic boundary conditions. In the simulation, 𝐿 is allowed to relax at zero stress, as well
as each coordinate 𝑥𝑖 and 𝑅𝑖 of each unit cell 𝑖. For instance, this chain represents a model approximation
to the 1D H-bonded ferroelectric CsH2PO4 (CDP) if the model chain oxygen is interpreted as a PO4 unit
plus an ordered hydrogen covalently bonded to the phosphate at any temperature, and the model hydrogen
is the one that is disordered at high temperature in CDP [25]. Then, the global motion of hydrogens in our
linear model in the ordered phase, from one minimum to the other along the H-bonds of the chain, could
be related to the FE mode that accounts for the spontaneous polarization arising along the 𝑏 direction at
low 𝑇 in CDP [25]. Alternatively, the chain model may also represent an approximation to the study of
the GE in KH2PO4 (KDP) if the model effective oxygen now represents a KDP cluster of two phosphate
units including seven protons moving coordinately as a local FE mode [9, 10]. In all these cases, we must
adopt a convenient effective mass for the effective model hydrogen/deuteron considering that the real
displacements of H(D) are accompanied with the heavier atom motions [9, 10, 19].

The total potential energy for the linear chain (1D) model is defined as:

𝑉1𝐷 (𝑅) =
∑︁
𝑖

𝑉3𝑠 (𝑥𝑖 , 𝑅𝑖) −
1
2

∑︁
⟨𝑖 𝑗 ⟩

𝐽𝑥𝑖𝑥 𝑗 , (2.4)

where 𝑉3𝑠 is the unit cell local potential defined exactly in the same way for the 3S model, as is shown
in equation (2.3), and the last term is the short-range interaction energy between protons/deuterons
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Figure 2. (Colour online) Schematic representation of the 1D chain model in the ordered phase. Each
unit cell is formed with one oxygen (red sphere) and one hydrogen (white sphere). Our model consists of
a supercell subjected to periodic boundary conditions containing 200 unit cells (for better visualization
only 8 unit cells are shown).

stemming from the ice rules restrictions, i.e., in this 1D model, only one proton is attached to each
oxygen. The last sum in equation 2.4 is restricted to nearest neighbours for each index ⟨𝑖 𝑗⟩. There is no
long-range part in this model, which precludes a phase transition in one dimension. However, the last
bilinear term is treated in mean-field, which enables the system to have a second order phase transition
at finite temperature [26]. Therefore, the 1D model total potential, is written in the following way [27]:

𝑉1𝐷 (𝑅) =
∑︁
𝑖

𝑉3𝑠 (𝑥𝑖 , 𝑅𝑖) − 𝐽⟨𝑥⟩
∑︁
𝑖

𝑥𝑖 +
1
2
𝑁𝐽⟨𝑥⟩2, (2.5)

where ⟨𝑥⟩ ≡ 1/𝑁 ∑
𝑖 𝑥𝑖 is the time and lattice average of the 𝑥𝑖 positions for each unit cell 𝑖 taken at each

MC step in the simulation.

2.3. Path integral Monte Carlo simulations

In the PIMC simulations [28], the effective short-time propagator for two adjacent points in the dis-
cretized imaginary-time path describing each quantum particle was evaluated to fourth-order accuracy
with the Takahashi-Imada approximation [28–30]. The effective action in this case allows us to signifi-
cantly reduce the Trotter number 𝑀 required for convergence. In all the simulations performed we have
used 𝑀 = 128 beads for the quantum polymer associated with each atom in the O–H...O bonds, which
yielded well-converged results [19, 25, 28]. Additionally, a normal-mode representation of the quantum
polymers was used in order to ensure ergodicity in the MC sampling [28, 30]. The PIMC simulations were
performed at low 𝑇 = 50 K such that the quantum nuclear effects were predominant compared to entropic
contributions in the 3S model and also with the aim to obtain GE in the ordered phase for the 1D model
(the classical version of this model has a transition to a disordered paraelectric phase at ≈ 350 K). The
simulations for the 3S model consisted of 1× 106 MC steps preceded by 5× 105 steps of thermalization.
In the 1D chain model simulations, we took 3 × 104 steps of thermalization plus 1 × 105 MC steps for
computing averages. In this case, each calculation performed was an average of 20 runs with different
random number generator seeds.

To characterize the degree of particle delocalization in the PIMC simulations, we studied the centroid
and radius of gyration (RG) distributions for the quantum polymers [31]. The centroid is defined as the
center of mass (CM) of the polymer and represents the average position of the quantum particle. The
radius of gyration represents the variance of the quantum path and is a quantitative measure of how
far away are the beads or monomers from the polymer center, and therefore, provides a measure of the
quantum delocalization of the particle [31].

3. Results and discussion

3.1. Geometrical effect study using the three-site model

The six potential parameters of equation (2.3) have been fitted in order to perform the GE study
with the 3S model. First, we fixed the values of 𝑎 = 2.89 Å−1 [20, 21] and 𝐷 = 3.12 eV of the model
parameters for the proton potential defined in equation 2.1, such that the stretching frequency for the O–H
bond in the limit 𝑅 → ∞ coincides with the experimental average value 𝜔∞ ≈ 3750 cm−1 [20, 21, 32] for
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(a) Proton (b) Deuteron

Figure 3. (Colour online) Proton/Deuteron probability distribution contours for the three-site PIMC
simulations at 𝑇 = 50 K.

different H-bonded compounds. There is a strong correlation between the OH and OO distances for the
family of H-bonded compounds. The equilibrium distance 𝑟OH diminishes systematically with increasing
𝑅 for 𝑅 > 𝑅𝑐 [33, 34], reaching a saturated value around 𝑟∞OH ≈ 0.95 Å for very large 𝑅. Therefore, we
took the parameter value 𝑟0 = 0.93 Å so that the values 𝑥 that minimize 𝑉OH (𝑥, 𝑅) in equation (2.1) for
different values of 𝑅 give a curve 𝑟min

OH = 𝑅OO/2 − 𝑥min as a function of 𝑅 that is a lower bound for the
set of experimental points spread in the OH–OO correlation [20, 21, 33, 34]. With this choice, when the
nuclear quantum effects are included in the PIMC calculations, we observe a very good agreement with
the experimental correlation curve using the model of equation (2.1) with the OO distance 𝑅 fixed [35].

On the other hand, the parameter values for the OO interaction 𝑉OO (𝑅) [see equation (2.2)], were
initially taken from reference [23]. They were further adjusted, especially the value of 𝐷OO, due to the
important correlation between 𝑟OH and 𝑅OO, such that the classic potential profile has the minimum at
𝑅cl

OO ≈ 2.55 Å. We considered this condition because the most important geometrical effects are observed
in H-bonded crystals with strong H-bonds which have distances 𝑅 in a range between 2.5 and 2.6 Å [36],
with 𝑅cl

OO lying precisely in the middle of that window. The final parameter values for the 3S model are
shown in table 1.

Table 1. Potential parameters used in the 3S model.

𝐷 [eV] 𝑎 [ Å−1] 𝑟0 [ Å] 𝐷OO [eV] 𝑎OO [ Å−1] 𝑅0 [ Å]
3.12 2.89 0.93 0.55 2.28 2.76

We have verified that the 3S-model PIMC simulations performed at 𝑇 = 50 K with 𝑀 = 128
beads for the quantum polymer representing each atom yielded probability distributions for the H-bond
parameters (𝑥 and 𝑅) and energies well converged. The low temperature of 50 K for the simulation was
chosen because we are interested in the nuclear quantum effects for the H-bonds and the geometrical
changes with deuteration without most of the influence of entropic contributions in the particle dynamics.
The 3S model results for the probability density contours to find the system in a given (𝑥, 𝑅) configuration
are shown in figure 3 for the proton and deuteron cases. The curves are qualitatively different but both
cases are found to have symmetric distributions around 𝑥 = 0 in the 𝑥 coordinate with two prominent
peaks with maximum probability, which are clearly shifted in the deuterated case. The OO distance for the
peak positions are in each case: 𝑅peak

OO (𝐻) = 2.527 Å and 𝑅
peak
OO (𝐷) = 2.543 Å, which represents a distance

enlargement for the OO bond of Δ𝑅OO = 0.016 Å, evidencing the geometrical or Ubbelohde effect of
the H-bond expansion with deuteration. Moreover, the corresponding average values also increase with
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Figure 4. (Colour online) Distribution of the radius of gyration 𝑟𝐺 vs. centroid coordinate 𝑥𝐶𝑀 for the
three-site simulations at 𝑇 = 50 K.

deuteration: ⟨𝑅OO(𝐻)⟩ = 2.525 Å and ⟨𝑅OO(𝐷)⟩ = 2.540 Å.
The PIMC simulations also show a change in the variable 𝛿 with deuteration for the peaks observed

in figure 3. The variation is: Δ𝛿 = 𝛿𝐷 − 𝛿𝐻 = 0.079 Å, where 𝛿𝐻 = 0.417 Å and 𝛿𝐷 = 0.496 Å. This
is also reflected in a shrinking of the O–H bonds: Δ𝑟 = 𝑟OH − 𝑟OD = 0.032 Å. The overall changes in
the variables 𝛿 and 𝑅 with deuteration in the simulations are in agreement with what is observed in the
experimental data for different H-bonded compounds with strong H-bonds [36, 37]. Thus, our simple 3S
model satisfactorily reproduces the isotopic geometrical effects for these systems.

It is worth to notice that if the OO distance is not allowed to relax, then the GE is smaller. For
instance, we have fixed the value 𝑅OO = 2.527 Å, which corresponds to the peak in the probability
distribution for the protonic system (see figure 3), and the simulations gave a change with deuteration in
the OH bond of only Δ𝑟 = 0.021 Å. Comparing this result with that considering the oxygen dynamics
(Δ𝑟 = 𝑟OH − 𝑟OD = 0.032 Å), we observe an increment of ≈ 50% in the isotopic geometrical effect in the
case where the oxygens are allowed to relax. This can be understood in the following way: first, when
the oxygens are fixed, protons, being more delocalized than deuterons, have more probability to stay
closer to the middle of the O–O bond. Second, when the oxygen dynamics is included, the protons act
as a strong attraction center that pulls the two bridge oxygens together, more effectively than deuterons
which are more localized near the oxygen. This proton-mediated O–O contraction lowers the potential
barrier, which delocalizes even more the proton, and so on, giving rise to a nonlinear selfconsistent
mechanism [9, 10]. For the deuteron, being less delocalized than the proton, the selfconsistent effect is
weaker. This mechanism leads to an isotopic geometrical effect which is stronger than that generated by
the proton/deuteron quantum delocalization at fixed potential (fixed oxygens) [9, 10].

To further illustrate the microscopic mechanism that rules the GE, we have analyzed the behavior
of the quantum polymers for the proton/deuteron in the simulation via an analysis of the center of mass
of the quantum polymer or centroid position 𝑥𝐶𝑀 and the radius of gyration 𝑟𝐺 representing a measure
of the quantum delocalization of the particle (i.e., the extension of the quantum polymer) [31]. We plot
in figure 4 the instantaneous values of 𝑟𝐺 as a function of the proton/deuteron centroids 𝑥𝐶𝑀 , taken
every 100 MC steps in the PIMC simulation. As can be seen in the figure, the density of points reveals
that the deuteron prefers to be localized at both sides and far from the bond middle with small values
of 𝑟𝐺 , indicating a more classical behavior in these cases. When the deuteron centroid takes the values
of 𝑥𝐶𝑀 closer to 0 (the bond middle), it is observed an increase of 𝑟𝐺 indicating that the quantum polymer
is delocalized and is spread through both sides of the potential barrier, signaling the presence of tunneling
in this case. Notice that the largest values of 𝑟𝐺 are found at 𝑥𝐶𝑀 ≈ 0 where delocalization is maximum.
On the other hand, in the proton case, tunneling is much more frequent because the region with larger
density of points appears near 𝑥𝐶𝑀 ≈ 0 with large values of 𝑟𝐺 , as shown in figure 4. This is precisely
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an important ingredient for the GE: the proton spends much more time delocalized with the quantum
polymer center of mass near the middle of the O–O bond, which finally produces a strong contraction
of the O–O distance. On the contrary, the deuteron is much more localized at both sides and far from
the bond middle which leads to a weakening of the O–O bond and to an increase of the O–O distance.
This yields the isotopic geometrical effect, which is observed in the calculated probability distribution of
figure 3.

3.2. Isotope effects obtained with the 1D model simulations

The previous analysis of the 3S model results, which has clearly shown the isotopic GE, was carried
out based on the parametrization of the model which reproduces the universal OH–OO correlation
observed for a family of diverse H-bonded compounds. In this sense, this model is quite simple and
general, accounting for the geometrical effects with deuteration of a set of H-bonded ferroelectrics with
strong H-bonds. Now, we focus on the development of a 1D chain model, described in section 2.2 [see
equation (2.5)], which was specifically designed to explain the isotope effects in the phase transition of
KDP and was fitted to ab initio results [19]. This more realistic 1D model has, in the classical nuclei
version, a ferroelectric-paraelectric transition at 𝑇 ≈ 350 K [35]. In this paper, we have used it in the
ordered phase of KDP at 𝑇 = 50 K to analyze the isotopic GE which is at the root of the microscopic
mechanism that leads to the giant isotope effect in the critical temperature.

We start from equation 2.5 for the 1D model, which has seven parameters to be adjusted for the
KDP case. The six model parameters of the local proton potential 𝑉3𝑆 for each unit cell in the chain,
which is just the same that was used in the 3S model (see equation 2.3), have been adjusted to reproduce
six magnitudes obtained from ab initio calculations for KDP. These magnitudes were the global energy
barrier between the PE and FE states, the O–O and 𝛿 distances in the FE phase, the O–O distance in
the PE phase, the ab initio vibrational frequency of the PO4 rotation mode, which is equivalent to the
stretching mode in the 3S model, and the energy barrier between the energy minimum and the transition
state in the FE phase keeping the O–O distance fixed (see reference [19]). We adopted the model fit to the
ab initio calculations that includes dispersion corrections at the vdW-DF level, which exhibit, compared
to other methods, the best agreement with the experimental geometry for both KDP and deuterated KDP
(DKDP) [19].

Finally, we have fitted the remaining parameter 𝐽 that corresponds to the proton-proton interaction
term in equations (2.4) and (2.5). To this end, 𝐽 was adjusted to 0.55 eV/Å2 so that the critical temperature
𝑇𝑐 for the FE-PE transition obtained by the 1D model simulation with classical nuclei reaches the value
of ≈ 350 K, similar to the value obtained by ab initio molecular dynamics calculations with dispersion
corrections at the vdW-DF level for DKDP [38].

The final values for the parameters used in the 1D model are listed in table 2.

Table 2. Potential parameters used in the 1D model.

𝐷 [eV] 𝑎 [Å−1] 𝑟0 [Å] 𝐷OO [eV] 𝑎OO [Å−1] 𝑅0 [Å] 𝐽 [ eV/Å2]
8.838 3.027 0.966 10.542 0.831 2.917 0.55

The motion of the proton/deuteron is strongly correlated with that of the heavy ions, and its mass is
dressed accordingly as discussed in reference [10]. Therefore, instead of using the bare proton (deuteron)
masses 𝑚𝑝 (2𝑚𝑝), we have used in the PIMC simulations the effective masses for H and D: `𝐻 = 2.3𝑚𝑝

and `𝐷 = 3𝑚𝑝, respectively, with 𝑚𝑝 the proton mass [9, 10, 19].
We plot in figure 5 the probability distribution contours for the PIMC simulation with the 1D model,

obtained in the ordered phase at 𝑇 = 50 K. Due to the ordered phase, only one peak is observed in the
proton and deuteron distributions, which is in contrast to the symmetrical double peaks around 𝑥 = 0 found
in the 3S model distribution results (see figure 3). The calculated distribution for the chain of protons
in figure 5 is asymmetric around the peak position due to the potential anharmonicity and quantum
delocalization, which is in qualitative agreement with the experimental diffraction pattern measured near
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(a) Proton (b) Deuteron

Figure 5. (Colour online) Proton/Deuteron probability distribution contours in the H-bonds for the linear-
chain PIMC simulation at 𝑇 = 50 K.

𝑇𝑐 in the FE phase of KDP [39]. The asymmetry around the peak is less pronounced in the deuterated
case as shown in figure 5, because the deuteron is less delocalized than the proton.

The prominent single peak found in the distribution results for the 1D simulation is clearly shifted
in the deuterated case towards larger 𝑥 and 𝑅, revealing the existence of the isotopic geometrical effect,
i.e., the expansion of the H-bonds in the chain with deuteration. The O–O distance for the peak positions
are in each case: 𝑅peak

OO (𝐻) = 2.515 Å and 𝑅
peak
OO (𝐷) = 2.542 Å, which represents a distance enlargement

for the O–O bond of Δ𝑅OO ≡ 𝑅OO(𝐷) − 𝑅OO(𝐻) = 0.027 Å. The 𝑥 coordinate of the peak position also
expands with deuteration, from 𝑥

peak
𝐻

= 0.188 Å to 𝑥
peak
𝐷

= 0.218 Å, with a net increase of Δ𝑥 = 0.030 Å
or similarly Δ𝛿 ≡ 𝛿𝐷 − 𝛿𝐻 = 0.060 Å. These results are summarized in table 3 and compared with the
available experimental data for KDP and DKDP [40]. We observe a good agreement between theory
and experiment, although the GE is a little bit underestimated, with difference values under deuteration
≈ 25% lower than the experimental data.

Table 3. Nuclear quantum calculations of the H-bond geometries for KDP and DKDP using the 1D
linear model. The results, which correspond to the peak positions of figure 5, are contrasted with the
experimental data of reference [40]. Distances are in Å.

PIMC KDP (`𝐻 = 2.3𝑚𝑝) DKDP (`𝐷 = 3.0𝑚𝑝) Δ𝑅OO Δ𝛿

results 𝑅OO 𝛿 𝑅OO 𝛿

1D model 2.515 0.376 2.542 0.436 0.027 0.060
Expt. [40] 2.497 0.385 2.533 0.472 0.036 0.087

To get a deeper insight into the microscopic mechanism of the geometrical effect in the linear chain
model, we plot in figure 6 the distribution of the instantaneous radius of gyration 𝑟𝐺 as a function of the
centroid positions 𝑥𝐶𝑀 for all H-bonds in the chain, where the points are taken every 100 MC steps along
the PIMC simulation. The region with largest density of points in figure 6 coincides with the position of
the peaks in both proton and deuteron cases (see figure 5). We again observe an asymmetric distribution
centered in one of the sides of the H-bond consistent with the (𝑥, 𝑅) distribution pattern of figure 5. The
asymmetry observed in figure 6 is more pronounced in the proton case, indicating that protons jump more
often than deuterons to the other side of the O–H–O bond. The mechanism to pass through the potential
barrier is to increase the radius of gyration near 𝑥𝐶𝑀 ≈ 0 which means that the particle tunnels through
the barrier. This is helped by a strong contraction of the 𝑅 distance, which diminishes concomitantly with
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(a) Proton (b) Deuteron

Figure 6. Distribution of the radius of gyration 𝑟𝐺 vs. centroid coordinate 𝑥𝐶𝑀 of the quantum polymer
representing the protons (a) and deuterons (b) relative to the center of the H-bonds, for the linear-chain
PIMC simulation at 𝑇 = 50 K.

the potential barrier, to a lower bound of 𝑅min ≈ 2.3 Å near 𝑥 = 0 as shown in figure 5. Thus, we conclude
that tunneling is assisted by the 𝑅 distance modulation. However, in this ordered phase at 𝑇 = 50 K,
the proton spends more time in one of the sides of the O–H–O bond where the behavior is more classic
(low value of 𝑟𝐺). On the other hand, in the deuteron case, the particle remains localized practically all
the time, with a general classical behavior with low values of 𝑟𝐺 . In other words, the tunneling for the
deuteron is very scarce. These results are consistent with the general assumption in the tunneling model:
protons are capable of tunelling while deuterons are not [3]. However, there is an essential difference:
protons tunnel being assisted by the strong correlation with the O–O distance, which is the behavior that
originates the geometrical effect [9, 10]. Therefore, the proton has a larger probability than the deuteron
to spend more time tunneling through the barrier near the middle of the O–H–O bond, and this generates
a strong attraction center that pulls the two oxygens together, much more efficiently than deuterons. This
“tunneling – geometrical effect” interrelation gives rise to the final geometrical effect observed in KDP
crystals, that is, the H-bond expansion with deuteration, which is crucial for the isotope effects in the
FE-PE phase transitions [9, 35].

4. Summary and conclusions

We have carried out PIMC simulations with simple models to account for the geometrical effects (GE)
with deuteration in H-bonded ferroelectrics such as KDP crystals. Firstly, we have developed a general
three-site (3S) model consisting in a back-to-back double Morse potential for the O–H interaction and
a Morse potential which represents the interaction between the oxygens and the lattice. The model was
fitted to reproduce general features for a large set of different H-bonded compounds. The computed
probability distribution contours in the (𝑅, 𝑥) configuration space, with 𝑅 the O–O distance and 𝑥 the
proton/deuteron distance to the middle of the O–O bond, reveal a symmetric distribution around 𝑥 = 0
with two peaks on either side, for both proton and deuteron cases. The results show an increase with
deuteration of 𝑅 and 𝑥 for the observed peaks, i.e., a GE, which is in agreement with that observed in
H-bonded compounds with strong H-bonds. Moreover, if the oxygens are not allowed to relax during the
simulation, the GE in the 𝑥 coordinate is much smaller, which means that there is a strong correlation
between 𝑅 and 𝑥 that is important for the GE. During the PIMC simulations we have also plotted the
instantaneous radius of gyration 𝑟𝐺 vs. the centroid position 𝑥𝐶𝑀 of the quantum polymer representing
the proton/deuteron. The results show that the proton tunnels more frequently than the deuteron (that is,
it spends more time with the center of mass near 𝑥𝐶𝑀 = 0 with large values of 𝑟𝐺), while the deuteron is
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more localized in both sides and far from the O–H–O bond center, with small values of 𝑟𝐺 (i.e., a more
classsical behavior). These features yield a more effective contraction of the O–O bond in the proton
case, explaining the GE observed.

Secondly, we have developed a more realistic 1D model, with the same local potential for the H-bonds
as that used in the 3S model, but adding also a bilinear proton-proton interaction treated in mean-field.
The parameters of the 1D model were fitted to ab initio results for KDP. The bilinear interaction parameter
of the model was adjusted such that the classical nuclei version of the model has a second order FE-PE
phase transition at 𝑇 = 350 K in agreement with ab initio molecular dynamics simulations for DKDP.
In this paper, by means of PIMC simulations of the 1D model, we have studied the GE caused by
deuteration in the ordered phase at 𝑇 = 50 K. The calculated probability distribution contours show
only one peak in the (𝑅, 𝑥) configuration space for both proton/deuteron cases. The distribution is more
asymmetric in the proton case due to the anharmonicity of the potential and the quantum delocalization.
The distribution pattern is in qualitative agreement with the experimental distribution determined by high-
resolution neutron diffraction studies [39]. The probability distribution contours show a peak which shifts
substantially with deuteration. The changes in H-bond geomentry caused by the GE observed in the 1D
model simulations are in good agreement with the corresponding experimental data. The distribution of
the radius of gyration vs. the quantum path centroids shows that the protons tunnel through the potential
barrier frequently while the deuterons are much more localized in one of the sides of the O–H–O bond
and practically do not tunnel, in agreement with the well-known tunneling model [3], and also with
recent neutron Compton scattering experiments [7, 8]. We have shown that proton tunneling is assisted
by a strong contraction of the O–O distance in the 1D model. Thus, there is a strong correlation between
instantaneous tunneling and geometrical effects of the H-bond that is much more efficient in the proton
case than in the deuterated system, which gives in average a strong GE for the whole simulation. This
mechanism is expected to be at the root of the huge isotope effect observed in H-bonded ferroelectrics of
the KDP type [9, 10].
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Метод iнтегралiв за траєкторiями у моделюваннi
Монте-Карло геометричних ефектiв у кристалах KDP

Ф. Торрезi, Х. Ласаве, С. Коваль
Iнститут фiзики Росарiо, Нацiональний унiверситет Росарiо та Нацiональна рада з науково-технiчних
дослiджень, вул. 27 лютого, 210 Bis, 2000 Росарiо, Аргентина

Метод iнтегралiв за траєкторiями у моделюваннi Монте-Карло (IТМК) для дуже простих моделей застосо-
вано для з’ясування фiзичних механiзмiв, що лежать в основi iзотопiчного ефекту в сегнетоелектриках з
водневими зв’язками. Зумовленi дейтеруванням геометричнi ефекти у водневих зв’язках було дослiдже-
но за допомогою загальної тривузлової моделi, в якiй використовуються подвiйний потенцiал Морзе та
потенцiал Морзе мiж киснями; параметри моделi вибрано так, щоб пояснити рiзноманiтнi загальнi влас-
тивостi низки сполук з водневими зв’язками. З розрахункiв у рамках цiєї моделi випливає виникнення
геометричного ефекту (ефекту Уббелоде): видовження водневого зв’язка при дейтеруваннi, i це узгоджу-
ється з тим, що спостерiгається в сегнетоелектриках з короткими водневими зв’язками. Використовуючи
для параметрiв потенцiалiв результати першопринципних розрахункiв, розвинено одновимiрну модель,
в якiй бiлiнiйнi протон-протоннi взаємодiї розглядаються в наближеннi середнього поля. Ця модель вико-
ристовується для дослiдження квантових ефектiв у ядрах, якi призводять до виникнення геометричного
ефекту в кристалах KDP. Пiдхiд IТМК дає змогу виявити, що протони тунелюють бiльш ефективно вздовж
одновимiрного ланцюжка, нiж дейтрони; це спричиняє появу сильного притягувального центра, який
зменшує вiдстань мiж атомами киснiв. Цей механiзм, який ґрунтується на кореляцiї мiж тунелюванням i
геометричними змiнами водневих зв’язкiв, призводить до виникнення сильного геометричного ефекту
в ланцюжку у впорядкованiй фазi при низьких температурах, що добре узгоджується з експерименталь-
ними даними.

Ключовi слова: сегнетоелектричний фазовий перехiд, сегнетоелектрики з водневими зв’язками, метод
iнтегралiв за траєкторiями у моделюваннi Монте-Карло
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