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To investigate the caloric effects in the CsH2PO4 ferroelectric, a modified pseudospin model of this crystal is
used, which takes into account the dependence of the parameters of interaction between pseudospins on lattice
strains. The model also takes into account the dependence of the effective dipole moment of a pseudospin on
the order parameter. In the two-particle cluster approximation, the influence of the longitudinal electric field
and hydrostatic pressure on the molar entropy of the crystal was studied. The electrocaloric and barocaloric
effects were studied. The calculated electrocaloric temperature change is about 1 K; it can change its sign under
the influence of hydrostatic pressure. Barocaloric temperature change is about −0.5 K; lattice anharmonicities
were not taken into account in its calculations.
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1. Introduction

Currently, the greatest electrocaloric (EC) effect, as the change in temperature of dielectric with an
adiabatic change of electric field, is observed in thin films of perovskite ferroelectrics and relaxors. In
particular, there was achieved a change in temperature Δ𝑇ec = 12 K in the presence of strong electric
field (𝐸 = 480 kV/cm) in crystal PbZr0.95Ti0.05O3 [1], 45.3 K at field strength 𝐸 = 598 kV/cm in
Pb0.8Ba0.2ZrO3 [2], −42.5 K at 𝐸 = 1632 kV/cm in 0.5(Ba0.8Ca0.2)TiO3–0.5Bi(Mg0.5Ti0.5)O3 [3], 40 K
at 𝐸 = 1200 kV/cm in Pb0.88La0.08Zr0.65Ti0.35O3 [4].

In bulk samples, the EC effect is an order of magnitude weaker due to a less dielectric strength. In par-
ticular, there was achieved a temperature change Δ𝑇ec = 4.5 K at 𝐸 = 90 kV/cm in
Pb0.88La0.12(Zr0.65Ti0.35)0.97O3 [5], 3.5 K at 𝐸 = 197 kV/cm in lead scandium tantalate [6], 11 K
at 𝐸 = 29.7 kV/cm in [(CH3)2CHCH2NH3]2PbCl4 [7].

In cheaper and more accessible KH2PO4 (KDP) type ferroelectrics with hydrogen bonds, the EC
effect has been investigated in relatively weak fields or not at all. In particular, in the KDP crystal there
was achieved Δ𝑇ec ≈ 0.04 K at the field strength 𝐸 ≈ 4 kV/cm [8], Δ𝑇ec ≈ 1K at 𝐸 ≈ 12 kV/cm [9] and
Δ𝑇 ≈ 0.25 K at temperature 𝑇𝑐 at 𝐸 ≈ 1.2 kV/cm [10]. Calculations carried out in [11] based on the
pseudospin model of a deformed KDP crystal show that the Δ𝑇ec in this crystal can exceed 5 K.

Ferroelectrics, in which Δ𝑇ec is smaller than those mentioned above, are also promising for elec-
trocaloric cooling since, in order to obtaine a given Δ𝑇ec, electrocaloric devices can be combined into a
cascade of several links, in which the heater for the previous link is at the same time the cooler for the
next link [12].

In ferroelectric materials, the phase transition temperature depends on the pressure. Therefore, they
also exhibit a significant barocaloric (BC) effect, which is a change in the crystal temperature during an

∗Corresponding author: vas@icmp.lviv.ua.

This work is licensed under a Creative Commons Attribution 4.0 International License. Further distribution
of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

43711-1

https://doi.org/10.5488/CMP.25.43711
http://www.icmp.lviv.ua/journal
https://orcid.org/0000-0002-1888-8664
https://creativecommons.org/licenses/by/4.0/


A. S. Vdovych, R. R. Levitskii , I. R. Zachek

1

2

1

2

A Ba

b

c

I

II

a

c

a b

Figure 1. (Colour online) Primitive cell of CDP crystal in the ferroelectric phase [15].

adiabatic change in hydrostatic pressure. The strongest BC effect was achieved in crystals with hydrogen
bonds NH4HSO4 [13] (Δ𝑇bc = −10 K at pressure 𝑝 = 0.15 GPa) and (NH4)2SO4 [14] (Δ𝑇bc = −8 K at
pressure 𝑝 = 0.1 GPa).

Crystal CsH2PO4 (CDP) is another example of a hydrogen-bonded ferroelectric of the KDP family.
Neither EC nor BC effects in this crystal have been studied at all. In the CDP crystal, there are two
structurally non-equivalent types of hydrogen bonds of different lengths (figure 1b). Longer bonds have
one equilibrium position for protons, while shorter bonds have two equilibrium positions. They connect
PO4 groups in chains along the 𝑏-axis (figure 1a); therefore, the crystal is quasi-one-dimensional.

At room temperature in the absence of pressure, the crystal is in the paraelectric phase and has
monoclinic symmetry (space group P21/m) [16, 17]. At the same time, protons on short bonds are
in two equilibrium positions with the same probability. Below 𝑇𝑐 = 153 K, the crystal passes to the
ferroelectric phase (space group P21) [18, 19] with spontaneous polarization along the crystallographic
𝑏-axis, and protons with a higher probability occupy the upper position (figure 1a). On the basis of
dielectric studies [20, 21] it was established that at pressures 𝑝 = 𝑝𝑐 = 0.33 GPa and 𝑇cr

𝑐 = 124.6 K,
double hysteresis loops appear, that is, a transition to the antiferroelectric phase occurs. With the help
of neutron diffraction studies [22], it was established that in the antiferroelectric phase, the unit cell of
the CDP crystal doubles along the a-axis, as two sublattices in the form of bc planes arise, which are
polarized antiparallel along 𝑏-axis and alternate along the a-axis. The symmetry remains monoclinic
(space group P21). Protons on hydrogen bonds are arranged in neighboring sublattices in an antiparallel
manner. At very high pressures, an antiferroelectric phase of the second type (AF2) occurs, in which two
sublattices have the form of chains along the b-axis, and they are polarized antiparallel along the 𝑏-axis
and alternate in a checkerboard pattern. The AF2 phase was predicted on the basis of NMR studies [23]
and confirmed in [24] on the basis of X-ray diffraction measurements and dielectric measurements [25].

The effect of hydrostatic pressure on the phase transition temperature and dielectric properties of
Cs(H1−𝑥D𝑥)2PO4 ferroelectrics was studied in [20, 21, 24–28]. The molar heat capacity of CDP was
measured in [29], and was also calculated based on the lattice dynamics simulations in [30, 31]. Later,
based on the ab-initio calculations [32] and using calculations based on the quasi-one-dimensional model
[33], the important role of proton tunneling on the bonds was established. Piezoelectric coefficients, elastic
constants, and molar heat capacity of CDP [34, 35] were also calculated on the basis of first-principle
calculations.

A theoretical description of the dielectric properties of CDP at different values of hydrostatic pressure
was carried out in [36, 37] based on the pseudospin model. However, in these works, the interaction
parameters do not depend on the lattice strains. As a result, it is impossible to obtain piezoelectric and
elastic characteristics of the crystal, and the critical pressure does not depend on temperature.

In [38], temperature dependences of lattice strains 𝑢1, 𝑢2, 𝑢3, 𝑢5 were measured. A quasi-one-
dimensional Ising model for the CDP crystal is also proposed there, in which the interaction parameters
are linear functions of these strains. Based on this model, the temperature behavior of 𝑢 𝑗 (𝑇) was explained.
However, this model does not consider the crystal as two sublattices and does not allow describing the
ferro-antiferroelectric transition at high pressures.
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In the papers [15, 39–41], a two-sublattice pseudospin model of a deformed CDP crystal is proposed,
in which the interactions between the nearest pseudospins in the chain are taken into account in the
two-particle cluster approximation, and the long-range (including interchain) interactions are taken
into account in the mean field approximation. At the same time, the interaction parameters are linear
functions of 𝑢 𝑗 strains. As a result, the temperature dependences of spontaneous polarization, dielectric
constant, piezoelectric coefficients and elastic constants were calculated, and the influence of hydrostatic
and uniaxial pressures and longitudinal electric field on these characteristics was studied. In [41], the
behavior of the thermodynamic characteristics of the CDP crystal under the action of hydrostatic and
uniaxial pressures and a longitudinal electric field, as well as under the simultaneous action of pressures
and the electric field, was investigated.

In the present paper, the electrocaloric and barocaloric effects in CDP crystal are calculated based on
the model proposed in [15].

2. Model of CDP crystal

The [15] model was used to calculate the thermodynamic characteristics of CDP, which considers
the system of protons on O-H...O bonds with a two-minimum potential as a system of pseudospins.
The primitive cell contains one chain, marked in figure 1 as “A”. To describe the transition to the
antiferroelectric phase at high pressures, in [15] an extended primitive cell formed by two chains (“A”
and “B”) is considered. All “A” chains form the “A” sublattice, and all “B” chains form the “B” sublattice.
Each chain in the primitive cell contains two neighboring PO4 tetrahedra (of type “I” and “II”) together
with two short hydrogen bonds (“1” and “2”, respectively). The dipole moments ®𝑑𝐴

𝑞1, ®𝑑𝐴
𝑞2, ®𝑑𝐵

𝑞1, ®𝑑𝐵
𝑞2

are attributed to the protons on the bonds. Pseudospin variables 𝜎𝐴
𝑞1/2, 𝜎𝐴

𝑞2/2, 𝜎𝐵
𝑞1/2, 𝜎𝐵

𝑞2/2 describe
changes associated with the rearrangement of the corresponding dipole moments of structural units:
®𝑑𝐴,𝐵
𝑞1,2 = ®̀𝐴,𝐵

𝑞1,2
𝜎

𝐴,𝐵

𝑞1,2
2 .

Further, we use the notation “2” instead of “y” for the components of vectors and tensors, for
convenience. In the presence of mechanical stresses that do not change the symmetry of the crystal
𝜎1 = 𝜎𝑥𝑥 , 𝜎2 = 𝜎𝑦𝑦, 𝜎3 = 𝜎𝑧𝑧 , 𝜎5 = 𝜎𝑥𝑧 (X ⊥ (b,c), Y ∥ b, Z ∥ c), as well as of the electric field 𝐸2 = 𝐸𝑦,
the Hamiltonian of the CDP model has the form [15]:

�̂� = 𝑁𝑈seed + �̂�short + �̂�long + �̂�𝐸 + �̂�′
𝐸 , (2.1)

where 𝑁 is the total number of extended primitive cells.
The first term in (2.1) is the “seed” energy, which corresponds to the lattice of heavy ions and does

not explicitly depend on the configuration of the proton subsystem. It includes elastic, piezoelectric and
dielectric parts expressed through electric field 𝐸2 and strains that do not change the lattice symmetry,
𝑢1 = 𝑢𝑥𝑥 , 𝑢2 = 𝑢𝑦𝑦, 𝑢3 = 𝑢𝑧𝑧 , 𝑢5 = 2𝑢𝑥𝑧:

𝑈seed = 𝑣

{
1
2

∑︁
𝑗 , 𝑗′

𝑐𝐸0
𝑗 𝑗′𝑢 𝑗𝑢

′
𝑗 −

∑︁
𝑗

𝑒0
2 𝑗𝐸2𝑢 𝑗 −

1
2
Y0𝜒

𝑢0
22 𝐸

2
2

}
, 𝑗 , 𝑗 ′ = 1, 2, 3, 5, (2.2)

where Y0 = 8.8542·10−12 F/m is electric constant, 𝑐𝐸0
𝑗 𝑗′ , 𝑒

0
2 𝑗 , 𝜒

𝑢0
22 are “seed” elastic constants, piezoelectric

stress coefficients and dielectric susceptibility of a mechanically clamped crystal. 𝑣 is the volume of the
extended primitive cell. In the paraelectric phase, all coefficients 𝑒0

2 𝑗 ≡ 0.
The other terms in (2.1) describe the pseudospin part of the Hamiltonian. In particular, the second

term in (2.1) is the Hamiltonian of short-range interactions

�̂�short = −2𝑤
∑︁
𝑞𝑞′

(
𝜎𝐴
𝑞1

2
𝜎𝐴
𝑞′2

2
+
𝜎𝐵
𝑞1

2
𝜎𝐵
𝑞′2

2

) (
𝛿R𝑞R𝑞′ + 𝛿R𝑞+R𝑏 ,R𝑞′

)
. (2.3)

In (2.3), 𝜎𝐴,𝐵

𝑞1,2 are 𝑧-components of pseudospin operator, that describe the state of the bond “1” or “2” of
the chain “A” or “B”, in the 𝑞-th cell, ®𝑅𝑏 is the lattice vector along 𝑂𝑌 -axis. The first Kronecker delta
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corresponds to the interaction between neighboring pseudospins in the chains near the tetrahedra PO4
of type “I”, where the second Kronecker delta is near the tetrahedra PO4 of type “II”. Contributions to
the energy of interactions between pseudospins near tetrahedra of different types are identical. Parameter
𝑤, which describes the short-range interactions within the chains, is expanded linearly into a series with
respect to strains 𝑢 𝑗 :

𝑤 = 𝑤0 +
∑︁
𝑗

𝛿 𝑗𝑢 𝑗 , ( 𝑗 = 1, 2, 3, 5). (2.4)

The term �̂�long in (2.1) describes long-range dipole-dipole interactions and indirect (through the
lattice vibrations) interactions between pseudospins which are taken into account in the mean field
approximation:

�̂�long = 𝑁𝐻0 + �̂�2, (2.5)

where such notations are used:

�̂�0 = a1([2
1 + [

2
2) + 2a2[1[2, (2.6)

�̂�2 =
∑︁
𝑞

{
−(2a1[1 + 2a2[2)

(
𝜎𝐴
𝑞1

2
+
𝜎𝐴
𝑞2

2

)
− (2a2[1 + 2a1[2)

(
𝜎𝐵
𝑞1

2
+
𝜎𝐵
𝑞2

2

)}
. (2.7)

a1 = a0
1 +

∑︁
𝑗

𝜓 𝑗1𝑢 𝑗 , a2 = a0
2 +

∑︁
𝑗

𝜓 𝑗2𝑢 𝑗 , ⟨𝜎𝐴
𝑞1⟩ = ⟨𝜎𝐴

𝑞2⟩ = [1, ⟨𝜎𝐵
𝑞1⟩ = ⟨𝜎𝐵

𝑞2⟩ = [2. (2.8)

The parameter a1 describes the effective long-range interaction of the pseudospin with the pseudospins
within the same sublattice, and a2 — with the pseudospins of the other sublattice.

The fourth term in (2.1) describes the interactions of pseudospins with the external electric field:

�̂�𝐸 = −
∑︁
𝑞

`𝑦𝐸2

(
𝜎𝐴
𝑞1

2
+
𝜎𝐴
𝑞2

2
+
𝜎𝐵
𝑞1

2
+
𝜎𝐵
𝑞2

2

)
, (2.9)

where `𝑦 is y-component of effective dipole moments per one pseudospin.
The term �̂�′

𝐸
in Hamiltonian (2.1) takes into account the dependence of the effective dipole moment

on the mean value of pseudospin 𝑠 𝑓 :

�̂�′
𝐸 = −

∑︁
𝑞 𝑓

𝑠2𝑓 `
′𝐸2

𝜎𝑞 𝑓

2
= −

∑︁
𝑞 𝑓

(
1
𝑁

∑︁
𝑞′
𝜎𝑞′ 𝑓

)2

`′𝐸2
𝜎𝑞 𝑓

2
, (2.10)

where 𝜎𝑞 𝑓 (f =1, 2, 3, 4) are a brief notation of pseudospins 𝜎𝐴
𝑞1, 𝜎𝐴

𝑞2, 𝜎𝐵
𝑞1, 𝜎𝐵

𝑞2, respectively. Here, we
use corrections to dipole moments 𝑠2

𝑓
`′ instead of 𝑠 𝑓 `′ because of the symmetry considerations and the

energy should not change when the field and all pseudospins change their sign.
The term �̂�′

𝐸
, as well as long-range interactions, is taken into account in the mean field approximation:

�̂�′
𝐸 = −3

∑︁
𝑞

`′𝐸2

(
[2

1𝜎
𝐴
𝑞1

2
+
[2

1𝜎
𝐴
𝑞2

2
+
[2

2𝜎
𝐵
𝑞1

2
+
[2

2𝜎
𝐵
𝑞2

2

)
+ 2𝑁 ([3

1 + [
3
2)`

′𝐸2. (2.11)

In the two-particle cluster approximation for short-range interactions, the thermodynamic potential
per one extended primitive cell is as follows:

𝑔 = 𝑈seed + 𝐻0 + 2([3
1 + [

3
2)`

′𝐸2 + 2𝑘B𝑇 ln 2 − 2𝑤 − 𝑣
∑︁
𝑗

𝜎𝑗𝑢 𝑗

− 𝑘B𝑇 ln(1 − [2
1) − 𝑘B𝑇 ln(1 − [2

2) − 2𝑘B𝑇 ln𝐷. (2.12)
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Here, the following notations are used:

𝐷 = cosh(𝑦1 + 𝑦2) + cosh(𝑦1 − 𝑦2) + 2𝑎 cosh 𝑦1 + 2𝑎 cosh 𝑦2 + 2𝑎2, 𝑎 = e−𝛽𝑤.

𝑦1 =
1
2

ln
1 + [1
1 − [1

+ 𝛽a1[1 + 𝛽a2[2 +
1
2
𝛽(`𝑦𝐸2 + 3[2

1`
′𝐸2),

𝑦2 =
1
2

ln
1 + [2
1 − [2

+ 𝛽a2[1 + 𝛽a1[2 +
1
2
𝛽(`𝑦𝐸2 + 3[2

2`
′𝐸2),

where 𝛽 = 1
𝑘B𝑇

, 𝑘B is Boltzmann constant.
Minimizing the thermodynamic potential with respect to the order parameters [ 𝑓 and strains 𝑢 𝑗

in [15], we obtain a system of equations for [ 𝑓 and 𝑢 𝑗 :

[1 =
1
𝐷

[sinh(𝑦1 + 𝑦2) + sinh(𝑦1 − 𝑦2) + 2𝑎 sinh 𝑦1] , (2.13)

[2 =
1
𝐷

[sinh(𝑦1 + 𝑦2) − sinh(𝑦1 − 𝑦2) + 2𝑎 sinh 𝑦2] ,

𝜎𝑗 = 𝑐
𝐸0
𝑗1 𝑢1 + 𝑐𝐸0

𝑗2 𝑢2 + 𝑐𝐸0
𝑗3 𝑢3 + 𝑐𝐸0

𝑗5 𝑢5 − 𝑒0
2 𝑗𝐸2 −

2𝛿 𝑗
𝑣

+
4𝛿 𝑗
𝑣𝐷

𝑀 − 1
𝑣
𝜓 𝑗1([2

1 + [
2
2) −

2
𝑣
𝜓 𝑗2[1[2,

where
𝑀 =

[
𝑎 cosh 𝑦1 + 𝑎 cosh 𝑦2 + 2𝑎2] .

In the presence of hydrostatic pressure 𝜎1 = 𝜎2 = 𝜎3 = −𝑝, 𝜎4 = 𝜎5 = 𝜎6 = 0.
In [15], the expression for the longitudinal component of polarization 𝑃2 was also obtained:

𝑃2 = −
(
𝜕𝑔

𝜕𝐸2

)
𝜎 𝑗

=
∑︁
𝑗

𝑒0
2 𝑗𝑢 𝑗 + 𝜒𝑢0

22 𝐸2 +
`𝑦

𝑣

(
[1 + [2

)
+ `

′

𝑣

(
[3

1 + [
3
2
)
. (2.14)

Based on the thermodynamic potential (2.12), we obtain an expression for the entropy of the pseu-
dospin subsystem:

𝑆 = − 𝑁𝐴

𝑁𝑚

(
𝜕𝑔

𝜕𝑇

)
[,Y𝑖

=
𝑅

𝑁𝑚

−2 ln 2 +
2∑︁
𝑓 =1

ln
(
1 − [2

𝑓

)
+ 2 ln𝐷

− 2[1𝛽

[
a1[1 + a2[2 +

1
2

(
`𝑦𝐸2 + 3[2

1`
′𝐸2

)]
− 2[2𝛽

[
a2[1 + a1[2 +

1
2

(
`𝑦𝐸2 + 3[2

2`
′𝐸2

)]
+ 4𝑀𝛽𝑤

𝐷

}
. (2.15)

Here, 𝑁A is Avogadro constant, 𝑅 is the universal gas constant, 𝑁𝑚 = 4 is the number of CsH2PO4
molecules in the extended primitive cell.

The molar heat capacity of the pseudospin subsystem of the CDP crystal:

𝐶 = 𝑇

(
d𝑆
d𝑇

)
𝐸2 ,𝜎 𝑗

= 𝑇
©«𝑆′𝑇 +

2∑︁
𝑓 =1

𝑆′[ 𝑓
[′𝑇 𝑓 +

∑︁
𝑗=1,2,3,5

𝑆′𝑢 𝑗
𝑢′𝑇 𝑗

ª®¬ . (2.16)

The explicit expressions for derivatives 𝑆′
𝑇

, 𝑆′[ 𝑓
, 𝑆′𝑢 𝑗

, [′
𝑇 𝑓

, 𝑢′
𝑇 𝑗

are given in the appendix.
We consider the total heat capacity to be the sum of the pseudospin and lattice components:

𝐶total = 𝐶 + 𝐶lattice. (2.17)

The heat capacity of the lattice subsystem is considered to be the CDP heat capacity, calculated on the
basis of first-principle calculations [34]. Its temperature dependence in the range of 80–350 K, in which
the calculations were carried out, is well approximated by a polynomial

𝐶lattice =

4∑︁
𝑙=0

𝑘𝑙𝑇
𝑙 , (2.18)
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where the coefficients 𝑘𝑙: 𝑘0 = 17.62 J/(mol K), 𝑘1 = 0.5955 J/(mol K2), 𝑘2 = −0.001885 J/(mol K3),
𝑘3 = 4.376· 10−6 J/(mol K4), 𝑘4 = −4.034· 10−9 J/(mol K5). The entropy of the lattice subsystem near
𝑇𝑐:

𝑆lattice =

∫
𝐶lattice
𝑇

d𝑇 = 𝑘0 ln(𝑇) +
4∑︁
𝑙=1

𝑘𝑙𝑇
𝑙

𝑙
+ const. (2.19)

Total entropy as a function of temperature, field component 𝐸2 and hydrostatic pressure 𝑝:

𝑆total(𝑇, 𝐸2, 𝑝) = 𝑆 + 𝑆lattice. (2.20)

Solving (2.20) with respect to the temperature at 𝑆total(𝑇, 𝐸2, 𝑝) = const and two magnitudes of the field,
it is possible to calculate the electrocaloric temperature change (as shown in figure 3b):

Δ𝑇ec = 𝑇 [𝑆total, 𝐸2(2), 𝑝] − 𝑇 [𝑆total, 𝐸2(1), 𝑝] . (2.21)

The change in temperature during the adiabatic change in the field 𝐸2 can also be calculated by the
well-known formula

Δ𝑇ec = −
𝐸2∫
0

𝑇𝑉

𝐶total

(
𝜕𝑃2
𝜕𝑇

)
𝐸2

d𝐸2, (2.22)

where pyroelectric coefficient(
𝜕𝑃2
𝜕𝑇

)
𝐸2

=
∑︁
𝑗

𝑒0
2 𝑗𝑢

′
𝑗𝑇 +

`𝑦

𝑣

(
[′1𝑇 + [′2𝑇

)
+ 3`′

𝑣

(
[2

1[
′
1𝑇 + [2

2[
′
2𝑇

)
, (2.23)

and 𝑉 = 𝑣𝑁𝐴/𝑁𝑚 is molar volume.
Similarly, solving (2.20) with respect to temperature at 𝑆total(𝑇, 𝐸2, 𝑝) = const and two pressure

values, it is possible to calculate the barocaloric temperature change (as shown in figure 3b):

Δ𝑇bc = 𝑇 [𝑆total, 𝐸2, 𝑝(2)] − 𝑇 [𝑆total, 𝐸2, 𝑝(1)] . (2.24)

The change in temperature under the adiabatic change in pressure 𝑝 can also be calculated by the
known formula

Δ𝑇bc =

𝑝∫
0

𝑇

𝐶total

(
𝜕𝑉

𝜕𝑇

)
𝑝

d𝑝 =

𝑝∫
0

𝑁𝐴𝑇

𝑁𝑚𝐶total
(𝑢′1𝑇 + 𝑢′2𝑇 + 𝑢′3𝑇 )d𝑝. (2.25)

3. Discussion of the obtained results

The theory parameters are determined in [15] from the condition of agreement of calculated char-
acteristics with experimental data for temperature dependences of spontaneous polarization 𝑃2(𝑇) and
dielectric permittivity Y22(𝑇) at different values of hydrostatic pressure [21], spontaneous strains 𝑢 𝑗 [38],
molar heat capacity [29] and elastic constants [42]; as well as agreement with ab-initio calculations of the
lattice contributions into molar heat capacity [34] and dielectric permittivity at zero temperature [35].

It should be noted that the temperature dependences of the dielectric constant Y22 at different values of
hydrostatic pressure were also measured in [25]. However, they do not agree with experimental data [21].
It is possible that another crystal sample was used there, which was grown under different conditions.
In addition, in [25] there are no data for the temperature dependences of spontaneous polarization at
different pressures, as well as no data for dielectric characteristics at zero pressure. Therefore, we used
experimental data [21] to determine the model parameters.

Parameters of short-range interactions 𝑤0 and long-range interactions a0
1 (“intra-sublattice”), a0

2
(“inter-sublattice”) mainly fix the phase transition temperature from paraelectric to ferroelectric phase at
the absence of external pressure and field, the order of phase transition and the shape of curve 𝑃2(𝑇).
Their optimal values are: 𝑤0/𝑘B = 650 K, a0

1/𝑘B = 1.50 K, a0
2/𝑘B = 0.23 K.
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In order to determine the deformational potentials 𝛿 𝑗 [see (2.4)] and 𝜓 𝑗1, 𝜓 𝑗2 [see (2.8)], it is
necessary to use experimental data for the shift of the phase transition temperature under hydrostatic and
uniaxial pressures as well as the data for temperature dependences of spontaneous strains 𝑢 𝑗 , piezoelectric
coefficients and elastic constants. Unfortunately, only the data for the spontaneous strains and hydrostatic
pressure effect on the dielectric characteristics are available. As a result, the experimental data for strains
and dielectric characteristics can be described using a great number of combinations of parameters 𝜓 𝑗1,
𝜓 𝑗2. Therefore, for the sake of simplicity, we chose 𝜓 𝑗2 to be proportional to 𝜓 𝑗1. Optimal values of
deformational potentials are: 𝛿1/𝑘B = 1214 K, 𝛿2/𝑘B = 454 K, 𝛿3/𝑘B = 1728 K, 𝛿5/𝑘B = −131 K;
𝜓11/𝑘B = 92.2 K, 𝜓21/𝑘B = 23.2 K, 𝜓31/𝑘B = 139.7 K, 𝜓51/𝑘B = 5.5 K; 𝜓 𝑗2 = 1

3𝜓 𝑗1.
The effective dipole moment in the paraelectric phase is found from the condition of agreement of

the calculated curve Y22(𝑇) with experimental data. We consider it to be dependent on the value of
hydrostatic pressure 𝑝, that is `𝑦 = `0

𝑦(1 − 𝑘 𝑝𝑝), where `0
𝑦 = 8.77 · 10−30 C·m, 𝑘 𝑝 = 0.4 · 10−9 Pa−1.

The correction to the effective dipole moment `′ = −1.43 · 10−30 C·m is found from the condition of
agreement of the calculated saturation polarization with experimental data.

The “seed” dielectric susceptibility 𝜒𝑢0
22 , coefficients of piezoelectric stress 𝑒0

2 𝑗 and elastic constants
𝑐𝐸0
𝑖 𝑗

are found from the condition of agreement of theory with experimental data in the temperature
regions far from the phase transition temperature 𝑇𝑐. Their values are obtained as follows: 𝜒𝑢0

22 = 5.57;
𝑒0

2 𝑗 = 0 C/m2; 𝑐𝐸0
𝑗 𝑗′ (109N/m2): 𝑐𝐸0

11 = 28.83, 𝑐𝐸0
12 = 11.4, 𝑐𝐸0

13 = 42.87, 𝑐𝐸0
22 = 26.67, 𝑐𝐸0

23 = 14.5,
𝑐𝐸0

33 = 65.45, 𝑐𝐸0
15 = 5.13, 𝑐𝐸0

25 = 8.4, 𝑐𝐸0
35 = 7.50, 𝑐𝐸0

55 = 5.20.
The volume of the extended primitive cell is 𝜐 = 0.467 · 10−27 m3 [22].
In the paper [15], a phase diagram (figure 2) was calculated, which explains the effect of hydrostatic

pressure and longitudinal electric field on the temperatures of phase transitions, in particular, the transition
to the antiferroelectric phase at pressures greater than the critical one.
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Figure 2.Dependence on the hydrostatic pressure of the temperature of the transition from the paraelectric
to the ferroelectric phase𝑇𝑐 , from the paraelectric to the antiferroelectric phase𝑇𝑁 , from the ferroelectric
to the antiferroelectric phase 𝑇𝐴𝐹 at different values of the electric field 𝐸2 (MV/m): 0.0 –1 , 0.1 – 2,
0.2 – 3, 0.3 – 4, 0.4 – 5, 0.5 – 6 for the CDP crystal. Symbols are experimental data [20], lines are
theoretical calculations [15]. Tricritical points 𝑇 tr

𝑁
(marked as *) separate the curves of the first-order

phase transitions (dashed lines) and of the second-order ones (solid lines).

As mentioned above, the EC effect is calculated as a change in the crystal temperature Δ𝑇ec during
adiabatic (at constant entropy) application of an electric field, as shown in figure 3. At the pressures less
than critical, longitudinal field 𝐸2 decreases the entropy of the crystal in the entire temperature range
(figure 3), because it puts the pseudospins in order in both sublattices, “A” and “B” (figure 1a). Therefore,
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Figure 3. (Colour online) Temperature dependences of the pseudospin contribution to the molar entropy (a)
and total entropy (b) of the CDP crystal at different values of the field 𝐸2 and of the hydrostatic pressure 𝑝.

the Δ𝑇ec is positive. As we can see, the effect of the field on the total entropy 𝑆total (figure 3b) is much
weaker than the effect on only the pseudospin contribution 𝑆 (figure 3a), because the lattice heat capacity
quite strongly stabilizes the temperature of the crystal.

The calculated field and temperature dependences of Δ𝑇ec are shown in figure 4. In the weak fields
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Figure 4. (Colour online) a) Field dependence of the electrocaloric temperature change Δ𝑇ec at different
values of temperature Δ𝑇 = 𝑇 − 𝑇𝑐 and at zero hydrostatic pressure 𝑝. b) Temperature dependence of
Δ𝑇ec at different values of the longitudinal electric field 𝐸2 (MV/m): 1.0 – 1; 2.0 – 2; 5.0 – 3; 10.0 – 4;
20.0 – 5; 30.0 – 6; 40.0 – 7; 50.0 – 8 and at zero hydrostatic pressure 𝑝.

(𝐸2 < 1 MV/m) at the initial temperature 𝑇 = 𝑇𝑐, the change in temperature Δ𝑇ec ∼ 𝐸
2/3
2 (green curve

in figure 4a); at 𝑇 < 𝑇𝑐, Δ𝑇ec ∼ 𝐸2 (blue dashed curves in figure 4); at T>𝑇𝑐, Δ𝑇ec ∼ 𝐸2
2 (red curves in

figure 4). At fields 𝐸2 > 1 MV/m, the dependences of Δ𝑇ec(𝐸2) significantly deviate from the mentioned
laws.

At high pressures, but less than the critical one, the field and temperature dependences of Δ𝑇ec are
qualitatively similar, as in the absence of pressure (figure 5).
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Figure 5. (Colour online) a) Field dependence of electrocaloric temperature change Δ𝑇ec at different
temperature values Δ𝑇 = 𝑇 − 𝑇𝑐 and at hydrostatic pressure 𝑝 = 0.3 GPa. b) Temperature dependence
of the electrocaloric temperature change Δ𝑇ec at different values of the longitudinal electric field 𝐸2
(MV/m): 1.0 – 1; 2.0 – 2; 5.0 – 3; 10.0 – 4; 20.0 – 5; 30.0 – 6; 40.0 – 7; 50.0 – 8 and at hydrostatic
pressure 𝑝 = 0.3 GPa.

At pressures greater than the critical one, at temperatures 𝑇 ⩾ 𝑇𝑁 , EC effect is qualitatively similar
to the case of subcritical pressures in the paraelectric phase: at weak fields Δ𝑇ec ∼ 𝐸2

2 (green and red
curves in figure 6a), at strong fields, the Δ𝑇ec(𝐸2) dependencies deviate from the quadratic law. At initial
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Figure 6. (Colour online) a) Field dependence of electrocaloric change of temperature Δ𝑇ec at different
values of initial temperature Δ𝑇 = 𝑇 − 𝑇𝑐 and at hydrostatic pressure 𝑝 = 0.45 GPa. b) Temperature
dependence of Δ𝑇ec at different values of the longitudinal electric field 𝐸2 (MV/m): 1.0 – 1; 2.0 – 2; 5.0
– 3; 10.0 – 4; 20.0 – 5; 30.0 – 6; 40.0 – 7; 50.0 – 8 and at hydrostatic pressure 𝑝 = 0.5 GPa.

temperatures 𝑇 < 𝑇𝑁 and weak fields 𝐸2, the temperature of the crystal decreases nonlinearly with the
field (blue curves in figure 6a). This is due to antiferroelectric ordering because the crystal passes into the
antiferroelectric phase at pressures higher than the critical one. The ordering of pseudospins in sublattice
“B” (which is oriented opposite to the field) under the action of the field is stronger than the ordering of
pseudospins in sublattice “A”, which leads to the isothermal increase of entropy and adiabatic (at constant
entropy) lowering of temperature. With the further strengthening of the field, the pseudospins in the “B”
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Figure 7. (Colour online) a) Pressure dependence of the barocaloric temperature change Δ𝑇bc at different
values of temperatureΔ𝑇 = 𝑇−𝑇0

𝑐 and in the absence of a field. b) Temperature dependence of barocaloric
temperature change Δ𝑇bc at different values of adiabatically applied pressure 𝑝 and in the absence of a
field.
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Figure 8. Temperature dependence of lattice strains 𝑢 𝑗 under zero pressure, calculated in [15].

sublattice are overturned and ordered in the direction of the field, which leads to the isothermal decrease
of entropy and to the isoentropic increase of temperature.

Hydrostatic pressure 𝑝 lowers the Curie temperature. This leads to the isothermal increase of entropy
and to the isentropic lowering of temperature, as shown in figure 3. Therefore Δ𝑇bc is negative and at
𝑇 ⩾ 𝑇0

𝑐 it lowers almost linearly with increasing pressure (figure 7a, green and red solid curves). At
𝑇 < 𝑇0

𝑐 (ferroelectric phase) at low pressures, the BC effect is stronger than in the paraelectric phase (in
figure 7a these are the blue dashed curves corresponding to 𝑇 − 𝑇0

𝑐 = −10𝐾, −20 K). At a certain value
of pressure, the crystal passes to the paraelectric phase (see figure 2), in which the rate of cooling with
pressure is less, and therefore a break appears in the Δ𝑇bc(𝑝) curve.

As can be seen from figure 2, at 𝑇 − 𝑇0
𝑐 = −40 K there are two phase transitions when increasing

pressure: from ferroelectric to antiferroelectric phase, and then from antiferroelectric to paraelectric
phase. Accordingly, in figure 7a two breaks appear on the curve Δ𝑇bc(𝑝).

It should be noted that in this work, only the pseudospin (proton) contribution to the BC effect was
calculated, and lattice anharmonicities were not taken into account. The interaction between pseudospins
leads to the occurrence of stretching strains due to the electrostrictive coupling of the pseudospin and
lattice subsystems, since after substitution of (2.4) into (2.3) and also (2.8) into (2.6), there appear terms
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of the type 𝛿 𝑗𝑢 𝑗

𝜎𝐴
𝑞1
2

𝜎𝐴
𝑞′2
2 and 𝜓 𝑗1𝑢 𝑗[

2
1. The mean values of pseudospins decrease with an increase of

temperature. As a result, the electrostrictive coupling becomes weaker and the diagonal strains 𝑢1, 𝑢2, 𝑢3
decrease (figure 8).

The volume of the crystal decreases along with strains, (𝜕𝑉/𝜕𝑇)𝑝 < 0. Therefore, Δ𝑇bc is negative,
according to the formula (2.25). We also note that it is possible to take a set of deformation potentials
𝛿 𝑗 [see (2.4)] and 𝜓 𝑗1, 𝜓 𝑗2 [see (2.8)], which leads to an increase of the volume of the crystal with an
increase of temperature. However, this simultaneously leads to an increase in the Curie temperature with
an increase in pressure, which contradicts the experimental data.

In contrast to electrostrictive coupling, lattice anharmonicities lead to thermal expansion of the
crystal and give a positive contribution to the BC effect. This contribution competes with the pseudospin
contribution, and, in a certain temperature range, it can be larger than the pseudospin contribution.

4. Conclusions

In the case of a weak longitudinal field 𝐸2, the electrocaloric change in temperature Δ𝑇ec increases
linearly with the field in the ferroelectric phase, quadratically in the paraelectric phase, and according
to the law Δ𝑇ec ∼ 𝐸

2/3
2 at the initial temperature 𝑇 = 𝑇𝑐. In the strong field, the dependences Δ𝑇ec(𝐸2)

deviate from the mentioned laws. Applying the hydrostatic pressure, the EC effect is qualitatively similar
to the one at zero pressure. At pressures greater than the critical one, the EC effect may be negative due
to the transition of the crystal into the antiferroelectric phase.

The barocaloric change in temperature Δ𝑇bc has a negative sign and decreases almost linearly with
pressure since the Curie temperature decreases with pressure. The nonlinearity is strongly manifested at
low initial temperatures. In our calculations, only the pseudospin contribution to the BC effect is taken
into account. The electrostrictive coupling of the pseudospin and lattice subsystem leads to a decrease
in the volume of the crystal with increasing temperature, and as a result the BC effect is negative. To
obtain Δ𝑇bc, which can be compared with experimental data, it is necessary to take into account the
thermal expansion associated with the lattice anharmonicities.

Appendix. Notations in the expression for molar heat capacity

The notations introduced in expression (2.16) are as follows:

𝑆′𝑇 =
𝑅

𝑁𝑚

(
4𝛽𝑤
𝐷

[
𝑦𝑇1 𝑎 sinh 𝑦1 + 𝑦𝑇2 𝑎 sinh 𝑦2 +

𝛽𝑤

𝑇
𝑎𝑀𝑎

]
− 4𝑀𝛽𝑤

𝐷

[
𝑦𝑇1 [1 + 𝑦𝑇2 [2 +

𝛽

𝑇

2𝑀𝑤
𝐷

] )
,

𝑆′[1 =
𝑅

𝑁𝑚

(
2𝑇𝑦𝑇1 + 4𝛽𝑤

𝐷

(
𝑦
[1
1 𝑎 sinh 𝑦1 + 𝛽a2𝑎 sinh 𝑦2

)
− 4𝑀𝛽𝑤

𝐷

[
[1𝑦

[1
1 + [2𝛽a2

] )
,

𝑆′[2 =
𝑅

𝑁𝑚

(
2𝑇𝑦𝑇2 + 4𝛽𝑤

𝐷

(
𝛽a2𝑎 sinh 𝑦1 + 𝑦[2

2 𝑎 sinh 𝑦2
)
− 4𝑀𝛽𝑤

𝐷

[
[2𝑦

[2
2 + [1𝛽a2

] )
,

𝑆′𝑢 𝑗
=

𝑅

𝑁𝑚

(
4𝛽𝑤
𝐷

[
𝑦
𝑢 𝑗

1 𝑎 sinh 𝑦1 + 𝑦
𝑢 𝑗

2 𝑎 sinh 𝑦2 − 𝛽𝛿 𝑗𝑎𝑀𝑎
]
− 4𝑀𝛽𝑤

𝐷

[
[1𝑦

𝑢 𝑗

1 + [2𝑦
𝑢 𝑗

2 −
2𝑀𝛽𝛿 𝑗
𝐷

] )
.(A.1)

Here are the notations:

𝑦𝑇1 = − 𝛽
𝑇

[
a1[1 + a2[2 +

1
2

(
`𝑦𝐸2 + 3[2

1`
′𝐸2

)]
, 𝑦𝑇2 = − 𝛽

𝑇

[
a2[1 + a1[2 +

1
2

(
`𝑦𝐸2 + 3[2

2`
′𝐸2

)]
.

𝑦
[1
1 =

1
1 − [2

1
+ 𝛽a1 + 3𝛽[1`

′𝐸2, 𝑦
[2
2 =

1
1 − [2

2
+ 𝛽a1 + 3𝛽[2`

′𝐸2,

𝑦
𝑢 𝑗

1 = 𝛽(𝜓 𝑗1[1 + 𝜓 𝑗2[2), 𝑦
𝑢 𝑗

2 = 𝛽(𝜓 𝑗2[1 + 𝜓 𝑗1[2),

𝑀𝑎 = cosh 𝑦1 + cosh 𝑦2 + 4𝑎.
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After differentiating the system of equations (2.13) with respect to the temperature, we obtain a system
of equations, from which we determine [′

𝑇 𝑓
and 𝑢′

𝑇 𝑗
:(

�̂�[ − 𝐼 �̂�𝑢

�̂�[ �̂�𝑢

) (
®[′
𝑇

®𝑢′
𝑇

)
+

(
®𝐴
𝑇

®𝐵𝑇

)
= ®0. ⇒

(
®[′
𝑇

®𝑢′
𝑇

)
= −

(
�̂�[ − 𝐼 �̂�𝑢

�̂�[ �̂�𝑢

)−1
(
®𝐴
𝑇

®𝐵𝑇

)
, (A.2)

where 𝐼 is a 2×2 identity matrix. Coefficients of the �̂�[ matrix are:

𝐴
[

11 = [
𝑦1
1 𝑦

[1
1 + [𝑦2

1 𝛽a2, 𝐴
[

12 = [
𝑦1
1 𝛽a2 + [𝑦2

1 𝑦
[2
2 ,

𝐴
[

21 = [
𝑦1
2 𝑦

[1
1 + [𝑦2

2 𝛽a2, 𝐴
[

22 = [
𝑦1
2 𝛽a2 + [𝑦2

2 𝑦
[2
2 ,

where the notations are entered:

[
𝑦1
1 =

1
𝐷

[
cosh(𝑦1 + 𝑦2) + cosh(𝑦1 − 𝑦2) + 2𝑎 cosh 𝑦1 − [2

1
]
,

[
𝑦2
1 = [

𝑦1
2 =

1
𝐷

[cosh(𝑦1 + 𝑦2) − cosh(𝑦1 − 𝑦2) − [1[2] ,

[
𝑦2
2 =

1
𝐷

[
cosh(𝑦1 + 𝑦2) + cosh(𝑦1 − 𝑦2) + 2𝑎 cosh 𝑦2 − [2

2
]
,

coefficients of matrix �̂�𝑢:

𝐴𝑢
1 𝑗 = [

𝑦1
1 𝑦

𝑢 𝑗

1 + [𝑦2
1 𝑦

𝑢 𝑗

2 −
𝛽𝛿 𝑗

𝐷
[2𝑎 sinh 𝑦1 − 2𝑀[1] ,

𝐴𝑢
2 𝑗 = [

𝑦1
2 𝑦

𝑢 𝑗

1 + [𝑦2
2 𝑦

𝑢 𝑗

2 −
𝛽𝛿 𝑗

𝐷
[2𝑎 sinh 𝑦2 − 2𝑀[2] ,

coefficients of matrix �̂�[ :

𝐵
[

𝑗1 = −2
𝑣
(𝜓 𝑗1[1 + 𝜓 𝑗2[2) +

4𝛿 𝑗
𝑣𝐷

(𝑎 sinh 𝑦1𝑦
[1
1 + 𝑎 sinh 𝑦2𝛽a2) −

4𝑀𝛿 𝑗
𝑣𝐷

(
[1𝑦

[1
1 + [2𝛽a2

)
,

𝐵
[

𝑗2 = −2
𝑣
(𝜓 𝑗1[2 + 𝜓 𝑗2[1) +

4𝛿 𝑗
𝑣𝐷

(
𝑎 sinh 𝑦1𝛽a2 + 𝑎 sinh 𝑦2𝑦

[2
2

)
−

4𝑀𝛿 𝑗
𝑣𝐷

([1𝛽a2 + [2𝑦
[2
2 ),

coefficients of matrix �̂�𝑢:

𝐵𝑢
𝑗 𝑗′ = 𝑐

𝐸0
𝑗 𝑗′ +

4𝛿 𝑗
𝑣𝐷

[
𝑦
𝑢 𝑗′

1 𝑎 sinh 𝑦1 + 𝑦
𝑢 𝑗′

2 𝑎 sinh 𝑦2 − 𝛽𝛿 𝑗′𝑎𝑀𝑎
]
−

4𝑀𝛿 𝑗
𝑣𝐷

[
[1𝑦

𝑢 𝑗′

1 + [2𝑦
𝑢 𝑗′

2 −
2𝑀𝛽𝛿 𝑗′
𝐷

]
,

coefficients of vectors ®𝐴
𝑇

and ®𝐵𝑇
:

𝐴𝑇1 = [
𝑦1
1 𝑦

𝑇
1 + [𝑦2

1 𝑦
𝑇
2 + 𝛽𝑤

𝐷𝑇
(2𝑎 sinh 𝑦1 − 2𝑀[1) ,

𝐴𝑇2 = [
𝑦1
2 𝑦

𝑇
1 + [𝑦2

2 𝑦
𝑇
2 + 𝛽𝑤

𝐷𝑇
(2𝑎 sinh 𝑦2 − 2𝑀[2) ,

𝐵𝑇
𝑗 =

4𝛿 𝑗
𝑣𝐷

[
𝑦𝑇1 𝑎 sinh 𝑦1 + 𝑦𝑇2 𝑎 sinh 𝑦2 +

𝑎𝑀𝑎𝛽𝑤

𝑇

]
−

4𝛿 𝑗𝑀
𝑣𝐷

[
𝑦𝑇1 [1 + 𝑦𝑇2 [2 +

2𝑀𝛽𝑤
𝐷𝑇

]
.
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Електрокалоричний i барокалоричний ефекти у
сегнетоелектрику CsH2PO4

А. С. Вдович 1, Р. Р. Левицький 1, I. Р. Зачек 2

1 Iнститут фiзики конденсованих систем Нацiональної академiї наук України,
вул. Свєнцiцького, 1, 79011 Львiв, Україна

2 Нацiональний унiверситет “Львiвська полiтехнiка”, Україна, 79013, Львiв, вул. С. Бандери, 12

Для дослiдження калоричних ефектiв у сегнетоелектрику CsH2PO4 використано модифiковану псевдоспi-
нову модель цього кристала, яка враховує залежнiсть параметрiв взаємодiї мiж псевдоспiнами вiд дефор-
мацiй гратки. Модель також враховує залежнiсть ефективного дипольного момента на водневому зв’яз-
ку вiд параметра впорядкування. В наближеннi двочастинкового кластера вивчено вплив поздовжнього
електричного поля i гiдростатичного тиску на молярну ентропiю кристала. Дослiджено електрокалорич-
ний i барокалоричний ефекти. Розрахована електрокалорична змiна температури близько 1 K; вона може
мiняти знак пiд дiєю гiдростатичного тиску. Барокалорична змiна температури близько −0.5 K; при її роз-
рахунках не враховувалися ангармонiзми гратки.

Ключовi слова: сегнетоелектрики, сегнетоелектричний фазовий перехiд, електрокалоричний ефект,
барокалоричний ефект
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