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The majority-voter model is studied by Monte Carlo simulations on hypercubic lattices of dimension d = 2to 7
with periodic boundary conditions. The critical exponents associated to the finite-size scaling of the magnetic
susceptibility are shown to be compatible with those of the Ising model. At dimension d = 4, the numerical
data are compatible with the presence of multiplicative logarithmic corrections. For d > 5, the estimates of the
exponents are close to the prediction d/2 when taking into account the dangerous irrelevant variable at the
Gaussian fixed point. Moreover, the universal values of the Binder cumulant are also compatible with those of
the Ising model. This indicates that the upper critical dimension of the majority-voter model is not d. = 6 as
claimed in the literature, but d.. = 4 like the equilibrium Ising model.
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1. Introduction

The renormalization group theory, pioneered by Wilson and Fisher among others, has provided a
deep understanding of the critical behavior of statistical models, such as the Ising model, below their
upper critical dimension d. [1]. Above d., the situation is much simpler and the critical exponents take
the values predicted by the mean-field theory. However, the correct finite-size scaling of thermodynamic
averages above the upper critical dimension has been clarified only recently [2].

The critical behavior of the d-dimensional Ising model is described in the continuum limit by the
Landau-Ginzburg action [3H5]]

S[¢]=/[|V¢|2+r¢2+u¢4 dex. (1.1)

Since the action is dimensionless, one can determine the scaling dimensions of the field and of the
couplings by power-counting. The scaling dimension of ¢ is x4 = (d —2)/2 and therefore, the dimension
of the coupling u is y, = d —4x4 = 4 —d. It follows that the quartic term is relevant for d < 4, marginal at
d =4 and irrelevant at d > 4. Below the upper critical dimension d. = 4, the critical exponents can only
be estimated using the full machinery of the renormalization group (RG). By contrast, above the upper
critical dimension d. = 4, one expects the critical behavior to be governed by the Gaussian fixed point
corresponding to u = 0. It turns out that the coupling u is a dangerously irrelevant variable and should
be taken into account [6]. From the RG flow equations, it can be shown that under a rescaling x — x/b,
the singular part of the free energy density behaves as

f(rou) =b~4 f(B*(r + au) — b* T au, b*u). (1.2)

It follows that the critical exponents are not those of the Gaussian fixed point but the mean-field exponents.
The standard hyperscaling relation holds only at d = d,. and is violated above. Finite-size scaling is also
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affected by the dangerous irrelevant coupling u. With periodic boundary conditions, the quartic term of
the action equation (I.1)) involves the volume V of the system in Fourier space:

=2 R+l + 53 D0 0105059k (1.3)
k

k1K, ks

At the pseudo-critical point » = 0, the finite-size scaling of the magnetic susceptibility is dominated by
the contribution of the k = 0 mode [8]]:

g5 exp (—:¢¢) ddo
(¢ ~ /
[ew (-0t don

It is therefore anomalous with a divergence L%/? with the lattice size L and not LY/” with y/v = 2
as expected at the gaussian fixed point. Similarly, the correlation length scales with the lattice size as
& ~ L4 [ [9]). A coherent finite-size scaling theory has been presented based on the new exponent
¢=d/d. for d > d. [10]. The later predicts that the magnetic susceptibility diverges with the lattice size
with an exponent 9y /v = d/2. This theory has recently been extended to quantum phase transitions [11]].
Despite some indications that the same finite-size scaling holds with free boundary conditions, the prob-
lem is not completely settled [2} [12].

~ 2=, (1.4)

The above discussion concerns only the Ising model but it is believed to be more general. In particular,
the finite-size scaling of percolation above its upper critical dimension d. = 6 was analyzed in the same
way [13]. In this paper, we are interested in the majority voter model which has the peculiarity, as
percolation, of not being described by a Hamiltonian. This model is nevertheless believed to belong to
the universality class of the Ising model. However, it has been claimed that the upper critical dimension is
notd. = 4butd, = 6[25]. We performed extensive Monte Carlo simulations and compared the finite-size
scaling of the magnetic susceptibility of the majority-voter and Ising models. In the first section, the two
models are more precisely defined and details on the Monte Carlo simulations are given. The numerical
results are analyzed in the second section. Conclusions follow.

2. Models and simulation details

In this study, we consider hypercubic lattices of dimension d ranging from d = 2 to 7. Each node i
of this lattice is occupied by a classical Ising spin that can take two possible values o; = +1. The Ising
model is defined by the Hamiltonian

H({o}) == ooy, 2.1
(i)
where the sum extends over all pairs of the neighboring sites of the lattice. At equilibrium with a thermal

bath at the temperature 7 = 1/kp3, the probability of a given spin configuration {o;}; is given by the
celebrated Boltzmann distribution

9Eq. ({}) = %e‘ﬁ’“’“”}). 2.2)

One can find different Markovian dynamics whose stationary distribution is the Boltzmann distribu-
tion pgq . It is convenient to impose the detailed balance condition

9Eq. {cHW({o} = {o'}) = 9. {'HW({o"} = {o}), (23)

which is satisfied by the Glauber transition rates consisting in single spin flips

1
W({o} = o) =5 > 0(@)00t 0, [[ 070, (2.4)

J#i
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with [14]
w(oy) = % l1 — o tanh (ﬁza,ﬂ, (2.5)
J

where the sum extends over all neighbors j of site i. The dynamics that is generated by these transition
rates can be seen as a local equilibration of the spin oy in the effective magnetic field created by its
neighbors. Note that there are several solutions to the detailed balance condition equation (2.3). The
Metropolis transition rate is another solution that is commonly used in Monte Carlo simulations [15]].
These two dynamics are slow: the dynamical exponent is z = 2 away from criticality and slightly larger
than 2 at the critical point. To compute the equilibrium properties by means of Monte Carlo simulations,
it is therefore much more efficient to use cluster algorithms based on non-local spin updates [[16} [17]].
The majority-voter model is another Markovian dynamics for Ising spins on a lattice. As the Glauber
dynamics, it consists in single-spin flips, i.e., the transition rates are of the form equation (2.4) but with

w(oy) = % ll —/la’,S(Za'j)], (2.6)
J

where S(x) is the sign function defined by S(x) = 1 for x > 0, —1 for x < 0, and O for x = 0. Note that in
reference [23]], the parameter A is denoted tanh 7. In contrast to Glauber dynamics, the majority-voter
model does not satisfy the detailed balance condition equation (2.3). No Hamiltonian can be associated
to this model and the parameter A is not related to any temperature. The majority-voter dynamics can be
used to study the spreading of opinion in a population [18]]. Each node i of the lattice is associated to a
voter and the spin o7 is associated to his answer to a binary question. At each time, each voter adapts his
choice according to the majority opinion of his neighbors. Note that the majority-voter model should not
be confused with the voter model[f| The Ising-Glauber and majority-voter models are special cases of the
more general transition rates

w(oy) = % ll — Aoy tanh (ﬁzajﬂ. 2.7
j

The Ising-Glauber model is recovered with the choice A = 1 and the majority-voter model with § — +co.
As a consequence, the majority-voter model appears as an Ising-Glauber model at zero temperature with
an additional noise.

Even though the majority-voter model cannot be associated with any Hamiltonian, it is believed that
the averages computed in the stationary distribution display the same critical behavior as the equilibrium
Ising model [[19]. Measurements of the static critical exponents of the 2D majority-voter model by
Monte Carlo simulations indeed support this idea [20, 23]]. The dynamical exponent z and the initial
critical slip exponent 6 were also shown to be compatible with those of the Ising model [21]. A more
recent Monte Carlo simulation of the 3D majority-voter model also found critical exponents in the Ising
universality class [22}[24]. However, extensive Monte Carlo simulations in dimensions d = 2 to 7 reached
the conclusion that the upper critical dimension of the majority-voter model is not d. = 4, like the Ising
model, but d. = 6 [25].

In this work, the critical behavior of the Ising-Glauber and majority-voter models is studied by Monte
Carlo simulations. Much more accurate estimates of the critical exponents of the Ising model could
have been computed with cluster algorithms. However, our goal is here to study both models with local
dynamics and with the same number of Monte Carlo iterations in order to compare the exponents with
similar error bars. The code was parallelized with the Cuda language and run on GPUs Nvidia Tesla P100
and GTX 1080. Hypercubic lattices of dimension d = 2 to 7 were considered with periodic boundary
conditions. The largest lattice sizes that could be reached are 1024 in 2D, 120 in 3D, 36 in 4D, 18 in
5D, 12 in 6D and 8 in 7D. 10’ iterations were performed to thermalize the system and 10° iterations
were used to compute the averages. Several independent simulations were performed and the error was
estimated as o/ VN where o is the standard deviation among the N independent simulations.

In the voter model, each voter chooses one of its neighbours and adopts his choice.

13202-3



C. Chatelain

3. Numerical results
In figure [T} the magnetic susceptibility
x = L4 [(m?) = (m)?] (3.1)

is plotted versus the parameter A of the majority-voter model and 3 of the Ising model in dimension d = 5.
For each lattice size, the pseudo-critical parameters A.(L) and SB.(L) were estimated as the location of
the maximum of susceptibility. To improve the accuracy, a quadratic fit of the data is first performed
over the points for which y > 0.7 max y and the maximum is computed from the parameters of the fit.
In figure 2] the magnetic susceptibility at the pseudo-critical point is plotted versus the lattice size. The
critical exponent 9y /v is estimated from a simple power-law fit over all data. The estimates are collected
in table |1} The critical exponents 9y /v of the majority-voter and Ising models are compatible within
the error bars, except at d = 4 where the two error bars do not overlap but are very close to each other
(the distance between them is 0.03). Note that d = 4 is the upper critical dimension of the Ising model
and, as will be shown in this paper, of the majority-voter model. RG predicts the presence of logarithmic
corrections in the scaling behavior of the #* model with temperature [[3H3]]. These corrections were shown
to be present in finite-size scaling too [26]]. In dimension d > 4, the critical exponents ¢y /v of both the
majority-voter and Ising model are close to the prediction d/2 at the Gaussian fixed point when taking
into account the dangerous irrelevant variable, although not compatible within the error bars.
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Figure 1. (Colour online) Susceptibility y of the SD majority-voter model (left-hand) and of the 5D Ising
model (right-hand) versus the parameters A and S. The different curves correspond to different lattice
sizes.

Table 1. Estimates of the critical exponent ¢y /v for the majority-voter model (left-hand) and the Ising
model (center) on an hypercubic lattice of dimension d. The known values for the Ising model are given
in the right-hand column. At d = 3, the value is a recent estimate by functional RG [27]. Other values
are exact. At d = d. = 4, multiplicative logarithmic corrections are present.

d | Majority-voter Ising Known

2 | 1.72(19) 1.73(20) 1.75

3 12.01(12) 1.97(14) 1.96370(20)
4 | 2.344) 2.23(4) 2 (+log)

5 | 2.66(9) 2.60(11) 2.5

6 | 3.17(4) 3.084) 3

7 | 3.55(5) 3.53(7) 35
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Figure 2. (Colour online) Maximum of the susceptibility of the 5D majority-voter model (cross) and of
the 5D Ising model (circle) versus the lattice size L. The solid lines are power-law fits of the data. The
estimated critical exponents y /v are indicated in the legend.
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Figure 3. (Colour online) Critical exponent 9y /v obtained from the finite-size scaling of the susceptibility
of the majority-voter model and the Ising model versus the dimension d of the lattice. The dashed line
is the prediction d/2 at the Gaussian fixed point with dangerous irrelevant variables that is expected to
hold above the upper critical dimension.
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Figure 4. (Colour online) Maximum of the susceptibility of the 4D majority-voter model (cross) and of
the 4D Ising model (circle) divided by L? versus the logarithm In L of the lattice size L. The solid lines
are power-law fits of the data. The estimated exponents /7 are indicated in the legend.

As already discussed above, the critical behavior of the magnetic susceptibility of the Ising model is
expected to involve multiplicative logarithmic corrections at the upper critical dimension d. = 4. It can
be inferred that the finite-size scaling of the magnetic susceptibility at its maximum is of the form

x ~ L (InL)""7, (3.2)

where 7/7 is known to be 1/2 for the Ising model at the critical temperature S, [26]. To test this scaling
for the majority-voter model, the quantity y/L? is plotted versus In L with a logarithmic scale in ﬁgure
A very nice power-law behavior can be observed for both the majority-voter model and the Ising model.
The exponent ¥/7 is estimated to be 0.94(10) for the majority-voter model and 0.62(9) for the Ising
model. For the Ising model, the known value /9 = 1/2 is slightly outside the error bar of our estimate.
Note also that, for both the majority-voter and the Ising models, the magnetic susceptibility can also be
fitted with logarithmic corrections in dimensions d > 4 but with an exponent ¥/V decreasing with d
[0.41(22) at d = 5 and 0.30(6) at d = 6 for the majority-voter model].

| | | ol | |
0.453 0.454 0.455 0.1136 0.1139 0.1142
lambda beta

Figure 5. (Colour online) Binder cumulant U of the 5D majority-voter model (left-hand) and of the 5D
Ising model (right-hand) versus the parameters A and . The different curves correspond to different
lattice sizes.
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Table 2. Estimates of the universal Binder cumulant U, (o) for the majority-voter model (left-hand) and
the Ising model (right-hand) on an hypercubic lattice of dimension d.

d | Majority-voter Ising

2 | 0.62(4) 0.62(4)
3| 0.47(6) 0.46(6)
4 10.36(2) 0.33(2)
51 0.27(7) 0.30(6)
6 | 0.31(5) 0.29(3)
7 | 040 0.33

In figure[5} the Binder cumulant
vo1- S 3.3)
- 3(m2>2 :

is plotted versus the parameters A and S in dimension d = 5. The curves for different lattice sizes are
expected to cross at the critical parameters 1. and . in the thermodynamic limit and the value of the
Binder cumulant at the crossing points is expected to be universal. For all dimensions, very similar
values are observed for the majority-voter and Ising models. In dimensions d = 5, we have estimated
the universal values to be U, (o0) =~ 0.27(7) for the majority-voter model and U, (o0) =~ 0.30(6) for the
Ising model. Estimates at dimensions d = 2 to 7 are given in table 2] They were obtained by a linear
interpolation of the Binder cumulant to estimate more accurately the crossing points. The value U, (L)
at the crossing is then fitted with the law U(L) = U.(c0) + b/L. The absence of error bars for the largest
lattice sizes is due to a too small number of points in the fit. The accuracy on the Binder cumulant is

unfortunately insufficient to estimate v from the finite-size scaling of %U and %U .

Conclusions

In conclusion, we have provided numerical evidences that the majority-voter model belongs to
the universality class of the equilibrium Ising model for any dimension 2 < d < 7. The immediate
consequence is that the upper critical dimension of the majority-voter model is d. = 4, like the Ising
model. Above the upper critical dimension, the finite-size scaling of the magnetic susceptibility is indeed
close to the prediction y ~ L? at the Gaussian fixed point with a dangerous irrelevant variable. For both
the majority-voter and Ising models, the small deviation to this law may be attributed to the too small
lattice sizes that could be reached, and therefore due the to scaling corrections. At the upper critical
dimension, multiplicative logarithmic corrections are present in both the majority-voter and Ising models
but with a different exponent. Note that this is not a proof that d. = 4 since the data can also be fitted
with logarithmic corrections for d > 4, although with smaller exponents.
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CKiHYeHHO-BUMipHMIA CKeWNiHr Moaeni MakopuTapHMX
BM60OpLiIB Haj BEPXHbOK KPUTUUYHOKO PO3MIiPHICTIO

K. WaTneH
YHisepcuTteT JlotapuHrii, CNRS, LPCT, F-54000 HaHci, ®paHujis

Mogenb MaxopuTapHOro B16opLSA AOCNIAXKYETLCA MeTogoM MoHTe-Kapno Ha rinepky6iyHux rpatkax po3mip-
HocTi Big d = 2 Ao 7 3 NepiognyHNMU rPaHNYHNMU yMOBaMK. MoKa3aHo, Lo KPUTWYHI NOKAa3HUKY, NOB'A3aHi
3i CKIHYeHHO-BUMIPHWM CKeNiHroM MarHiTHOI CMPUAHATANBOCTI, € CyMiCHUMM 3 NOKa3HMKaMu Mojeni I3iHra.
Mpu po3mipHocTi d = 4 uncnoBi AaHi CyMiCHI 3 HAsIBHICTIO MyIbTUNAIKATUBHUX NorapuGMidYHMX nonpasok. Aas
d > 5 ouiHKM NoKasHUKIB 6a13bKI 40 nepea6adyBaHuX y BUnagky d/2 3 ypaxyBaHHSM HepeseBaHTHOI 3MiHHOT
y pikcoBaHili Touui Fayca. Kpim Toro, yHiBepcanbHi 3Ha4eHHS KyMynsHTa biHepa € TakoX CyMiCHUMM iX BiANOBIA-
HUKamu y Mmogeni I3iHra. Lis 06cTaBrHa BKa3ye Ha Te, L0 BEPXHS KPUTUYHA PO3MIPHICTb MOAeNi MaXopuTapHUX
BMGOPLIB CTaHOBUTL He d = 6, AK CTBEPAXYETLCS B HAYKOBIl NiTepaTypi, a de = 4 Ak s piBHOBaXHOT Mogeni
I3iHra.

KnrouoBi cnoBa: kpuTuyHi ABULLYa, PIBHOBaXHI I'paTkoBi Mojeni, HepiBHOBAaXHi rpatkosi Mogen,
CKIHYeHHO-BUMIPHWIT CKelniHr, meTo4 MoHTe-Kapio
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