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The long-time behaviour of spin-spin correlators in the slow relaxation of systems undergoing phase-ordering
kinetics is studied in geometries of finite size. A phenomenological finite-size scaling ansatz is formulated and
tested through the exact solution of the kinetic spherical model, quenched to below the critical temperature, in
2 < 𝑑 < 4 dimensions.
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1. Critical relaxations in finite-size systems

Collective phenomena arise in many-body systems with dynamically created long-range interactions
and thereby often show new qualitative properties which cannot be obtained in systems with a small
number of degrees of freedom. An important class are critical phenomena, characterised by scale-
invariance. We are interested here in time-dependent phenomena with time-dependent or ‘dynamical’
scaling. As a physical example, we consider many-body spin systems, initially prepared in a disordered
state with at most short-ranged correlations and then suddenly quenched to a temperature 0 < 𝑇 < 𝑇𝑐
below the critical temperature 𝑇𝑐 > 0, with at least two physically distinct phases. Such a quenched spin
system is then said to undergo phase-ordering kinetics [1]. For a spatially infinite geometry, observables
such as correlation functions are then expected to be invariant under the time-space dilatation

𝑡 ↦→ 𝑡′ = ^𝑧𝑡, r ↦→ r′ = ^r, (1.1)

where ^ is a constant rescaling factor and the dynamical exponent 𝑧 serves to distinguish the scaling
between time and space. The relaxation of the system after the quench can be measured through the
connected correlators of the time- and space-dependent spin variables 𝑆r(𝑡), namely

𝐶 (𝑡; r) := 〈𝑆r(𝑡)𝑆0(𝑡)〉 − 〈𝑆r(𝑡)〉 〈𝑆0(𝑡)〉 = 𝐹𝐶
(
|r|
𝑡1/𝑧

)
, (1.2a)

𝐶 (𝑡, 𝑠) := 〈𝑆r(𝑡)𝑆r(𝑠)〉 − 〈𝑆r(𝑡)〉 〈𝑆r(𝑠)〉 = 𝑓𝐶

( 𝑡
𝑠

)
, (1.2b)

where the quoted scaling forms are meant to hold in the limit of large times and large distances, such that
|r|𝑧/𝑡 and 𝑡/𝑠 are kept fixed. In (1.2b), 𝑡 is the observation time and 𝑠 is the waiting time. Asymptotically,
the scaling function 𝑓𝐶 (𝑦) in (1.2b) should be algebraic

𝑓𝐶 (𝑦) ∼ 𝑦−_/𝑧 , as 𝑦 → ∞, (1.3)
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where_ = _𝐶 is the autocorrelation exponent. A many-body non-stationary system whose slow relaxation
dynamics also breaks time-translation-invariance and is such that the single-time correlator 𝐶 (𝑡, r) and
the two-time auto-correlator 𝐶 (𝑡, 𝑠) obey the dynamical scaling (1.2), is said to be ageing [2–5].

For phase-ordering, with a non-conserved order parameter, some general exact results exist for
models with short-ranged interactions. First, the dynamical exponent 𝑧 = 2 for a non-conserved order
parameter [6, 7].1 Second, the Yeung-Rao-Desai inequality states that _ > 𝑑/2 [8]. Third, for the 2D Ising
model one has the Fisher-Huse inequality _ 6 5/4 [9]. Some typical values for 𝑧 and _ are listed in table 1.
They illustrate the sharpness of these exact bounds and permit a comparison between short-ranged and
long-ranged interactions. The agreement of the available experiments [10, 11] with the 2D universality
classes is very satisfying. For more detailed tables, see [4].

Table 1. Dynamical exponent 𝑧 and autocorrelation exponent _, as measured experimentally or found in
some spin models. Long-range (lr) behaviour occurs in the Ising model for 𝜎 < 1 and in the spherical
model for 𝜎 < 2. The spherical model is considered for dimensions 𝑑 > 𝑧.

Material/model 𝑧 _ References
Merck (CCH-501) 1.94(5) 1.246(79) [10]
nematic TNLC 2.01(1) 1.28(11) [11]
Ising 1D lr 1 + 𝜎 0.5 [12, 13]
Ising 2D lr 1 + 𝜎 1 [14, 15]
Ising 2D sr 2 1.24(2) [16]

2 1.25 [14, 15]
2 1.3 [17–21]

Ising 3D sr 2 1.60(2) [22]
2 1.6 [17–20]

Potts-3 2D sr 2 1.19(3) [16]
2 1.22(2) [23]

Potts-8 2D sr 2 1.25(1) [16]
XY 3D sr 2 1.7(1) [24]

2 1.6 [17–19]
spherical sr 2 𝑑/2 [25]
spherical lr 𝜎 𝑑/2 [26, 27]

How is the scaling behaviour, encoded in the scaling forms (1.2), modified in a system confined to a
domain of finite size, e.g., being placed into a box?

For a phenomenological answer, consider figure 1. For a fully finite hyper-cubic lattice with 𝑁𝑑

sites and periodic boundary conditions, the single-time correlator 𝐶 (𝑡; r) is shown in figure 1a, where r
is oriented along one of coordinate axes. If the spatial distances 𝑟 = |r| are not too large, the shape
of the correlator does not depend sensitively on 𝑁 . Only if 𝑟 . 𝑁/2, does the correlator also receive
contributions ‘from around the world’, such that for 𝑟 ≈ 𝑁/2 it no longer tends towards zero, but rather
saturates at a 𝑁-dependent constant𝐶 (1)

lim (𝑁) > 0. Figure 1b shows the two-time auto-correlator𝐶 (𝑦𝑠, 𝑠).
For large 𝑠, but 𝑦 small enough, there is a clear data collapse. However, for larger values of 𝑦, 𝐶 begins
to decrease more rapidly than the infinite-size curve (1.2b).2 As 𝑦 � 1, 𝐶 finally saturates at the limit
value 𝐶 (2)

∞ (𝑁) > 0.
Although the single-time correlator does not display strong finite-size effects, this is different for the

1In this work, we restrict to this model-A dynamics.
2Since for lattices large enough that the system is just leaving the effective finite-size regime, the local exponent estimates

_eff (𝑦) may slightly over-estimate _. In certain cases this might lead to claims of violation of exact upper bounds such as the
Fisher-Huse inequality.
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Figure 1. (Colour online) (a) Finite-size effects for the single-time correlator 𝐶 (𝑡, r) in the fully finite 3D
spherical model at 𝑇 < 𝑇𝑐 , with 𝑡 = 50 and 𝑁 = 10, 12, 14, 16, ∞ from top to bottom. The inset shows
the periodicity over the interval 0 6 𝑟/𝑁 6 1. (b) Finite-size effects for the two-time auto-correlator
𝐶 (𝑦𝑠, 𝑠) in the 3D fully finite spherical model at 𝑇 < 𝑇𝑐 , for 𝑁 = 15, 20, 30, 40 from top to bottom (at
the right) and 𝑠 fixed. The thin dashed line gives the infinite-size auto-correlator. The inset shows the
data collapse of the rescaled correlator 𝐶𝑁3/2 for 𝑦 = 𝑡/𝑠 large, with 𝑁 = 15, 20, 25, 30, 35, 40 from left
to right (arbitrary units).

length scale 𝐿 = 𝐿 (𝑡) of the growing clusters, estimated from the second moment

𝐿2(𝑡) =
∑

r |r|2𝐶 (𝑡; r)∑
r𝐶 (𝑡; r) . (1.4)

The precise extent of the sums is specified below. Figure 2 shows that for sufficiently short times, the
length 𝐿2(𝑡) ∼ 𝑡 behaves as for the infinite system, but as 𝑡 grows further, finally there occurs a cross-over
towards a finite constant 𝐿∞(𝑁). We can see how to explain the findings of figures 1 and 2 in terms of
phenomenological finite-size scaling. The resulting predictions are tested in the exactly solved kinetic
spherical model, for dimensions 2 < 𝑑 < 4.

The spherical model of a ferromagnet [28–30] served as an exactly solvable, yet non-trivial, model
for the detailed analysis of general concepts of critical phenomena, see [31] for a historical perspective.
Its non-equilibrium behaviour after a quench was also thoroughly analysed, see [4, 25–27, 32–40]. The
related Arcetri model provides a qualitative description of the dynamics in the non-equilibrium growth
of interfaces [41, 42]. Finite-size effects at equilibrium were also analysed at great depth in the spherical
model and were of value to test the theory of finite-size scaling derived from the renormalisation group,
see [43–52] and references therein. For dimensions 𝑑 > 𝑑𝑐 = 4, that is above the upper critical dimension,
the standard finite-size scaling ansatz must be considerably modified [49, 53–58].

Finite-size scaling techniques were applied in studies of phase-ordering kinetics [20, 21], the ageing of
polymer collapse [59–62] or the dynamics of mitochondrial networks [63]. Explicit studies of finite-size
scaling in an ageing system were carried out in Ising spin glasses [64] and notably on the dimensional
cross-over between the 3D and 2D Edwards-Anderson spin glass [65] motivated by extremely accurate
experiments on CuMn films [66, 67]. In addition, finite-size effects analogous to figures 1 and 2 are
clearly visible in the time-evolution of characteristic cluster sizes in long-ranged Ising models quenched
to 𝑇 < 𝑇𝑐 [14] or in the auto-correlator [15]. Since the bulk 3D spherical model and the bulk (𝑝 = 2)
spherical spherical spin glass are in the same dynamic universality class [36], one might hope that
finite-size effects could be similar as well. Not so! Rather, detailed studies of the (𝑝 = 2) spherical spin
glass [68, 69] show that this equivalence only holds in the spin glass for times 𝑡 � 𝑡cross ∼ 𝑁2/3. For time
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Figure 2. (Colour online) Finite-size effects for the longitudinal characteristic length 𝐿2
‖ (𝑡), measured

along a coordinate axis, in the fully finite spherical model with lattice sizes 𝑁 = 25, 50, 100, 200 from
bottom to top. The thin dashed line indicates the infinite-size behaviour 𝐿 (𝑡) ∼ 𝑡1/2.

scales 𝑡 � 𝑡cross, ageing still holds with a new set of universal exponents [69], to be followed by a second
cross-over to a regime of exponential decay at extremely large times [68].

This work is organised as follows. In section 2, we recall the main features of dynamical scaling in
ageing phase-ordering kinetics. In section 3, we extend this phenomenological treatment to finite systems,

using the hyper-cubic geometry

𝑑∗ factors︷         ︸︸         ︷
𝑁 × · · · × 𝑁 ×

𝑑−𝑑∗ factors︷         ︸︸         ︷
∞× · · · × ∞, where the first 𝑑∗ 6 𝑑 directions are finite

and periodic and the other 𝑑 − 𝑑∗ directions are infinite. The finite-size forms so obtained are checked
in section 4 using the exact solution of the kinetic spherical model in 2 < 𝑑 < 4 dimensions, quenched
to 𝑇 > 𝑇𝑐 from a totally disordered state and in section 5 we conclude. Technical details of the exact
solution are given in the appendix.

2. Dynamical scaling description

A central ingredient of ageing is dynamical scaling. For the general two-time and spatial bulk
correlator, our starting point is (below the upper critical dimension 𝑑 < 𝑑𝑐; for short-ranged interactions
usually 𝑑 (short)

𝑐 = 4)
𝐶 (^𝑧𝑡, ^𝑧𝑠; ^r) = ^𝜙𝐶 (𝑡, 𝑠; r) , (2.1)

where 𝑡, 𝑠 are the observation and the waiting time, 𝑧 is the dynamical exponent, 𝜙 is a scaling exponent
and r is the spatial distance. Writing (2.1) means that we assume negligible all finite-time and finite-
distance corrections to scaling. Choosing ^ = 𝑠−1/𝑧 , this gives

𝐶 (𝑡, 𝑠; r) = 𝑠𝜙/𝑧𝐶
(
𝑡

𝑠
, 1;

r
𝑠1/𝑧

)
. (2.2)

In phase-ordering, the single-time correlator at r = 0 is finite; namely either 𝐶 (𝑡; 0) = 1 in Ising-like
systems or else 𝐶 (𝑡; 0) = 𝑀2

eq for order parameters with a continuous global symmetry. Setting 𝑠 = 𝑡

in (2.2), this leads to 𝜙 = 0 and3 further to 𝐶 (𝑡; r) = 𝐶
(
1, 1; |r|𝑡−/𝑧

)
=: 𝐹𝐶 ( |r|𝑡−/𝑧

)
. On the other hand,

setting now r = 0, the two-time auto-correlator is 𝐶 (𝑡, 𝑠) = 𝐶
(
𝑡, 𝑠; 0

)
= 𝐶 (𝑡/𝑠, 1; 0) =: 𝑓𝐶 (𝑡/𝑠). These

results fully reproduce (1.2).

3If more generally, one would expect 𝐶 (𝑡 , 𝑠) = 𝑠−𝑏 𝑓𝐶 (𝑡/𝑠) , this would lead to the identification 𝑏 = −𝜙/𝑧, but for 𝜙 ≠ 0,
this is incompatible with 𝐶 (𝑡; 0) being finite and constant for 𝑡 → ∞.
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3. Dynamical finite-size scaling

According to the original definition, finite-size scaling [70] is the scaling behaviour in a nearly critical
system confined to a geometry of finite linear extent 𝑁 . For finite geometries, the natural generalisation
of (2.1) consists, as at equilibrium [43, 44, 49, 71], in considering 1/𝑁 as a further relevant scaling field4.
While this hypothesis was originally specified for the order parameter at the critical point [71], we adapt
this to the situation at hand and write down the finite-size scaling (FSS) ansatz for the full two-time
correlator

𝐶

(
^𝑧𝑡, ^𝑧𝑠; ^r; ^−1 1

𝑁

)
= ^𝜙𝐶

(
𝑡, 𝑠; r;

1
𝑁

)
, (3.1)

meant to hold in the hyper-cubic geometry

𝑑∗ factors︷         ︸︸         ︷
𝑁 × · · · × 𝑁 ×

𝑑−𝑑∗ factors︷         ︸︸         ︷
∞× · · · × ∞, where 𝑁 describes the finite

length in the system. For simplicity, we consider a single length of this kind5. Of course, for 𝑁 → ∞,
one is back to the bulk scaling form (2.1), and hence (1.2).

Choose the rescaling factor ^ = 𝑠−1/𝑧 . For phase-ordering kinetics, recall from section 2 that 𝜙 = 0.
Then, (3.1) can be equivalently expressed as

𝐶

(
𝑡, 𝑠; r;

1
𝑁

)
= 𝐶

(
𝑡

𝑠
, 1;

r
𝑠1/𝑧

;
𝑠1/𝑧

𝑁

)
. (3.2)

As above in section 2, we then expect for the correlators (provided spatial rotation-invariance can be
assumed)

𝐶
(
𝑡; r; 𝑁−1) = 𝐹𝐶 (

|r|𝑧
𝑡

;
𝑁 𝑧

𝑡

)
, 𝐶

(
𝑡, 𝑠; 𝑁−1) = 𝑓𝐶

(
𝑡

𝑠
;
𝑁 𝑧

𝑡

)
(3.3)

such that the corresponding scaling functions are now functions of two variables. Finite-size scaling in
ageing can be analysed in the asymptotic FSS limit where 𝑡 → ∞, 𝑠 → ∞, |r| → ∞ and 𝑁 → ∞ such
that the three scaling variables

𝑦 =
𝑡

𝑠
, 𝜚 =

r
𝑡1/𝑧

, 𝑍 =
𝑁 𝑧

𝑡
(3.4)

are kept fixed. The precise form of the finite-size scaling functions (3.3) will depend on the universality
class under study, and on the boundary conditions [44, 45, 49, 53].

As a first consequence, consider the characteristic length 𝐿 (𝑡) of the clusters. From (1.4) and (3.3),
we derive the finite-size scaling form

𝐿2(𝑡; 𝑁−1) =
∑

r |r|2𝐶 (𝑡; r; 𝑁−1)∑
r𝐶 (𝑡; r; 𝑁−1)

' 𝑡2/𝑧
∫
dr

(
|r|𝑡−1/𝑧 )2

𝐹𝐶 ( |r|𝑧/𝑡; 𝑁 𝑧/𝑡)∫
dr 𝐹𝐶 ( |r|𝑧/𝑡; 𝑁 𝑧/𝑡)

= 𝑡2/𝑧 𝑓𝐿

(
𝑁 𝑧

𝑡

)
. (3.5)

For 𝑍 � 1, the behaviour of an effectively infinite system requires that 𝑓𝐿 (𝑍)
𝑍�1' 𝑓0 = const and for

𝑍 � 1, the time-independent saturation in figure 2 is captured by 𝑓𝐿 (𝑍) 𝑍�1∼ 𝑍2/𝑧 such that 𝐿∞(𝑁) ∼ 𝑁 ,
as would have been expected from dimensional analysis.

Next, we consider the plateau in the two-time auto-correlator𝐶 (𝑦𝑠, 𝑠) for 𝑦 � 1, see figure 1b. Recall
that for the infinite system, we expect from (1.2b) and (1.3) that 𝐶 (𝑡, 𝑠; 0; 0) = 𝑓𝐶 (𝑡/𝑠) ∼

(
𝑡/𝑠

)−_/𝑧 . For
𝑁 < ∞, we reformulate (3.2) as follows

𝐶
(
𝑡, 𝑠; 𝑁−1) = 𝐶 (

𝑡, 𝑠; 0;
1
𝑁

)
= 𝐶

(
𝑡

𝑠
, 1; 0;

𝑠1/𝑧

𝑁

)
=

( 𝑡
𝑠

)−_/𝑧
F𝐶

(( 𝑡
𝑠

)1/𝑧
,
𝑠1/𝑧

𝑁

)
. (3.6)

Herein, the first argument in the scaling function F𝐶 = F𝐶

(
𝑦, 𝑢

)
will be considered large and be kept

fixed, 𝑦 � 1. In that case, the scaling function will describe the cross-over between (i) the infinite-system

4Very interesting adaptations of this idea were brought forward in the study of the kinetics of polymer collapse, where 𝑁 is
now the finite number of monomers, but the spatial geometry of the system was not specified [61, 62].

5Spatially anisotropic finite-size effects could be taken into account by introducing distinct finite sizes 𝑁 𝑗 in different spatial
directions.

13501-5



M. Henkel

behaviour (when 𝑢 = 𝑠1/𝑧/𝑁 → 0) 𝑓𝐶 (𝑦) = F𝐶 (𝑦, 0) ∼ 𝑦−_/𝑧 , which is independent of 𝑠, and (ii) the
fully finite-system behaviour (when 𝑢 = 𝑠1/𝑧/𝑁 → ∞), when 𝐶

𝑦�1
−→ 𝐶

(2)
∞ no longer depends on 𝑦 = 𝑡/𝑠.

The first limit case is taken into account by admitting F𝐶 (𝑦, 𝑢) ' F
(
𝑦𝑢

)
and F(0) = const. Then, the

second limit case leads to

𝐶

(
𝑡, 𝑠; 0;

1
𝑁

)
𝑡/𝑠�1
'

( 𝑡
𝑠

)−_/𝑧
F
(( 𝑡
𝑠

)1/𝑧
· 𝑠

1/𝑧

𝑁

)
∼

( 𝑡
𝑠

)−_/𝑧 [( 𝑡
𝑠

)1/𝑧
· 𝑠

1/𝑧

𝑁

]𝜔
, (3.7)

where in the last step, we assumed a power-law form of F(𝑦𝑢) ∼
(
𝑦𝑢

)𝜔 for 𝑦𝑢 � 1. The 𝑦-independent
plateau𝐶 (2)

∞ observed for fully finite systems (see figure 1b for 𝑠 fixed) is reproduced if we choose 𝜔 = _.
Hence, for finite systems with 𝑦 = 𝑡/𝑠 � 1

𝐶

(
𝑡, 𝑠; 0;

1
𝑁

)
𝑡/𝑠�1
−→ 𝐶

(2)
∞ ∼

(
𝑠1/𝑧

𝑁

)_
. (3.8)

Herein, 𝑠 is still kept fixed whereas 𝑁 must be taken large enough such that the system under study is
indeed in its finite-size scaling regime (in other word, 𝑁𝑠−1/𝑧 must be large enough).

Hence, for fully finite systems, quenched to 𝑇 < 𝑇𝑐, the auto-correlator 𝐶 (𝑦𝑠, 𝑠) = 𝑓𝐶 (𝑦)
𝑦�1
−→ 𝐶

(2)
∞ ,

such that the plateau value 𝐶 (2)
∞ = 𝐶

(2)
∞ (𝑠, 𝑁) should obey the scalings

𝐶
(2)
∞ ∼ 𝑁−_ with 𝑠 fixed, 𝐶

(2)
∞ ∼ 𝑠_/𝑧 with 𝑁 fixed. (3.9)

These are the sought scalings for the plateau of the auto-correlator and the main result of this section.
The inset in figure 1b shows the data collapse of 𝑁_𝐶 (𝑦𝑠, 𝑠) to a 𝑦-independent constant for 𝑦 large

enough and 𝑠 fixed, in the 3D spherical model, where _ = 3
2 . In the next section, (3.9) is verified

analytically from the exact solution of the quenched kinetic spherical model in dimensions 2 < 𝑑 < 4.
A simple heuristic argument to establish (3.8) goes as follows. For widely different times 𝑡 � 𝑠 �

𝜏mic, the asymptotic form of the auto-correlator is expressed through the cluster sizes 𝐿 as 𝐶 (𝑡, 𝑠) ∼[
𝐿 (𝑡)/𝐿 (𝑠)

]−_. If furthermore 𝑡 is so large that 𝐿 (𝑡) ∼ 𝑁 while 𝑠 is small enough such that still
𝐿 (𝑠) ∼ 𝑠1/𝑧 , the scaling (3.8) of the plateau 𝐶 (2)

∞ follows.

4. The kinetic spherical model

Following standard developments [25, 34, 35, 42], the kinetic spherical model is defined in terms of
real spin variables 𝑆n = 𝑆n(𝑡) ∈ R at each lattice site n ∈ Λ ⊂ Z𝑑 , subject to the spherical constraint∑

n∈Λ 𝑆
2
𝑛 (𝑡) = |Λ|, where |Λ| = ∏𝑑

𝑗=1 𝑁 𝑗 is the number of sites of the lattice Λ ⊂ Z𝑑 . Its dynamics is
given by the Langevin equation

𝜕𝑡𝑆n(𝑡) = 𝐷Δn𝑆n(𝑡) − 𝔷(𝑡)𝑆n(𝑡) + [n(𝑡), (4.1)

with the spatial laplacian Δn and the thermal white noise [n = [n(𝑡). It has the first two moments〈
[n(𝑡)

〉
= 0,

〈
[n(𝑡)[m(𝑡′)

〉
= 2𝐷𝑇𝛿(𝑡 − 𝑡′)𝛿n,m, (4.2)

where 𝑇 is the bath temperature and 𝐷 is a kinetic coefficient. The Lagrange multiplier 𝔷(𝑡) is fixed from
the spherical constraint. The Fourier representation

𝑆n(𝑡) =
1
|Λ|

𝑁1−1∑︁
𝑘1=0

· · ·
𝑁𝑑−1∑︁
𝑘𝑑=0

exp ©«2πi
𝑑∑︁
𝑗=1

𝑘 𝑗

𝑁 𝑗

𝑛 𝑗
ª®¬ 𝑆(𝑡, k) (4.3)

achieves a formal solution of the model which reads

𝑆(𝑡, k) = 𝑆(0, k)
exp

[
−2𝐷𝜔(k)𝑡

]√︁
𝑔(𝑡)

+
𝑡∫

0

d𝜏 [̂(𝜏, k)

√︄
𝑔(𝜏)
𝑔(𝑡) exp

[
−2𝐷𝜔(k) (𝑡 − 𝜏)

]
, (4.4a)
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with the abbreviations (nearest-neighbour interactions assumed)

𝜔(k) =
𝑑∑︁
𝑗=1

(
1 − cos

2π
𝑁 𝑗

𝑘 𝑗

)
, 𝑔(𝑡) = exp

2
𝑡∫

0

d𝜏 𝔷(𝜏)
 . (4.4b)

In what follows, we restrict ourselves to a totally disordered initial state, such that
〈
𝑆n(0)

〉
= 0 and〈

𝑆n(0)𝑆m(0)
〉
= 𝛿n,m. In momentum space, the second moments of initial and thermal noises become〈
𝑆(0, k)𝑆(0, k′)

〉
= |Λ|𝛿k+k′ ,0,

〈
[̂(𝑡, k)[̂(𝑡′, k′)

〉
= 2𝐷𝑇 |Λ|𝛿(𝑡 − 𝑡′)𝛿k+k′ ,0. (4.4c)

Then, the spherical constraint can be cast into a Volterra integral equation for 𝑔 = 𝑔(𝑡)

𝑔(𝑡) = 𝑓 (𝑡) + 2𝐷𝑇
𝑡∫

0

d𝜏 𝑔(𝜏) 𝑓 (𝑡 − 𝜏), 𝑓 (𝑡) :=
1
|Λ|

∑︁
k

exp [−4𝐷𝜔(k)𝑡] . (4.4d)

Here and below, we abbreviate
∑

k :=
∑𝑁1−1

𝑘1=0 · · ·∑𝑁𝑑−1
𝑘𝑑=0 . Equations (4.4) specify the exact solution of the

kinetic spherical model. We are interested in

(I) the two-time correlation function 𝐶 (𝑡, 𝑠; k) in momentum space, defined by〈
𝑆(𝑡, k)𝑆(𝑠, k′)

〉
=: |Λ|𝛿k+k′ ,0 𝐶 (𝑡, 𝑠; k), (4.5a)

𝐶 (𝑡, 𝑠; k) = e−2𝐷𝜔 (k) (𝑡+𝑠)√︁
𝑔(𝑡)𝑔(𝑠)

+ 2𝐷𝑇
min(𝑡 ,𝑠)∫

0

d𝜏
𝑔(𝜏)√︁
𝑔(𝑡)𝑔(𝑠)

e−2𝐷𝜔 (k) (𝑡+𝑠−2𝜏 ) , (4.5b)

and especially the two-time auto-correlator

𝐶 (𝑡, 𝑠) :=
1
|Λ|

∑︁
k
𝐶 (𝑡, 𝑠; k) = 𝐶 (𝑠, 𝑡). (4.6)

(II) The single-time correlator in momentum space 𝐶 (𝑡; k) := 𝐶 (𝑡, 𝑡; k), obtained from (4.5) by setting
𝑠 = 𝑡. The time-space correlator reads

𝐶 (𝑡; n) = 1
|Λ|

∑︁
k

exp ©«2πi
𝑑∑︁
𝑗=1

𝑘 𝑗

𝑁 𝑗

𝑛 𝑗
ª®¬𝐶 (𝑡; k). (4.7)

The well-known bulk critical temperature [28] (𝐼0(𝑢) is a modified Bessel function [72])

1
𝑇𝑐 (𝑑)

=

∞∫
0

d𝑢
[
e−2𝑢𝐼0(2𝑢)

]𝑑 (4.8)

is finite and positive for 𝑑 > 2. Explicitly [73, 74]

1
𝑇𝑐 (3)

=

√
3 − 1

192π3

[
Γ

(
1
24

)
Γ

(
11
24

)]2
≈ 0.25273 . . . (4.9)

In what follows, we consider a hyper-cubic geometry

𝑑∗ factors︷         ︸︸         ︷
𝑁 × · · · × 𝑁 ×

𝑑−𝑑∗ factors︷         ︸︸         ︷
∞× · · · × ∞, where the first

𝑑∗ 6 𝑑 directions are finite and periodic and the other 𝑑 − 𝑑∗ directions are infinite. We also restrict
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ourselves to 2 < 𝑑 < 4 and rescale the temporal units such that 8π𝐷 !
= 1. After a quench from the

disordered initial state (4.4c) to a temperature 𝑇 < 𝑇𝑐 (𝑑), we find in the FSS limit (3.4) (see the appendix
for calculations):

(A) the single-time temporal-spatial correlator, namely

𝐶 (𝑡; n) = 𝑀2
eq exp ©«−π

𝑑∑︁
𝑗=1

𝑛2
𝑗

𝑡

ª®¬
𝑑∗∏
𝑗=1

𝜗3
(
iπ 𝑁𝑛 𝑗

𝑡
, e−π𝑍

)
𝜗3

(
0, e−π𝑍

) (4.10a)

= 𝑀2
eq exp ©«−π

𝑑∑︁
𝑗=𝑑∗+1

𝑛2
𝑗

𝑡

ª®¬
𝑑∗∏
𝑗=1

𝜗3
(
π𝑛 𝑗/𝑁, e−π/𝑍

)
𝜗3

(
0, e−π/𝑍

) , (4.10b)

where 𝑀2
eq = 1 − 𝑇/𝑇𝑐 (𝑑) is the squared equilibrium magnetisation and 𝑍 was defined in (3.4) with

𝑧 = 2. Finally, 𝜗3(𝑧, 𝑞) =
∑∞

𝑝=−∞ 𝑞
𝑝2 cos(2𝑝𝑧) is a Jacobi theta function [72]6. See figure 1a for

illustration. From (4.10a) we identify the finite-size scaling function 𝐹𝐶 = 𝐹𝐶 (𝜚, 𝑍) in (3.3). The shape
of this function is temperature-independent. Indeed, an universal shape of 𝐹𝐶 is expected, since the
temperature 𝑇 should be irrelevant in phase-ordering kinetics [1].

Equation (4.10a) gives a factorisation of 𝐶 (𝑡, n) = 𝐶bulk (𝑡; n) · 𝐶red(𝑡; n; 𝑁) into a size-independent
‘bulk’ part and a ‘reduced’ part which contains the finite-size effects. Because of the identity 𝜗3(𝑧+π, 𝑞) =
𝜗3(𝑧, 𝑞), it is seen from (4.10b) that the correlator repeats periodically when 𝑛 𝑗 ↦→ 𝑛 𝑗 + 𝑁 is in the finite
directions, as illustrated in the inset of figure 1a. For 𝑍 large enough7, the central peak of the correlator
around n = 0 decays as in the bulk with a length scale 𝐿 (𝑡) ∼ 𝑡1/2 such that the system decomposes into
separate and independent clusters of linear size 𝐿 (𝑡), as expected. The bulk gaussian decay∼ exp(−n2/𝑡),
rather than an exponential ∼ exp(−|n|/

√
𝑡 ), is a peculiar property of the spherical model which distin-

guishes it from the Ising universality class.

(B) the two-time auto-correlator, for all 𝑇 < 𝑇𝑐 (𝑑), reads

𝐶 (𝑦𝑠, 𝑠) = 𝑀2
eq

( 2√𝑦
1 + 𝑦

)𝑑/2 
𝜗3

(
0, exp

(
−π 2𝑍

1+1/𝑦
) )2

𝜗3
(
0, exp(−π𝑍)

)
𝜗3

(
0, exp(−π𝑍𝑦)

) 
𝑑∗/2

(4.11a)

= 𝑀2
eq

( 2√𝑦
1 + 𝑦

) (𝑑−𝑑∗ )/2 [
𝜗3

(
0, exp

(
−π 1+1/𝑦

2𝑍
) )2

𝜗3
(
0, exp(−π/𝑍)

)
𝜗3

(
0, exp(−π/𝑍𝑦)

) ]𝑑∗/2

, (4.11b)

as illustrated in figure 1b. We identify from (4.11a) the finite-size scaling function 𝑓𝐶 = 𝑓𝐶 (𝑦, 𝑍) in (3.3),
whose shape is once more temperature-independent. As above for the single-time correlator, (4.11a) dis-
plays a natural factorisation into the bulk two-time auto-correlator 𝐶bulk (𝑦𝑠, 𝑠) = 𝑀2

eq
[
2√𝑦 /(1 + 𝑦)

]𝑑/2
and a ‘reduced’ factor which alone contains all finite-size effects. Equation (4.11a) shows that for 𝑍 � 1,
finite-size corrections with respect to the bulk behaviour are exponentially small. On the other hand,
equation (4.11b) shows that for 𝑍 � 1, the system behaves effectively as if it had only 𝑑− 𝑑∗ dimensions,
up to exponentially small corrections8.

Having verified the generic finite-size scaling forms (3.3), we now test the validity of the finite-size
scaling predictions (3.9) for the plateau values 𝐶 (2)

∞ . To be specific, we consider a fully finite system,
with 𝑑∗ = 𝑑. Fix the system size 𝑁 and the waiting time 𝑠 and consider the changes in 𝑦 = 𝑡/𝑠 by varying
the observation time 𝑡. Physically, finite-size effects will be felt first by the larger length 𝐿 (𝑡) ∼ 𝑡1/2.

6Analogous expressions of the finite-size scaling functions in terms of Jacobi Theta functions are known for the particle density
in several 1D reaction-diffusion processes for both periodic and open boundary conditions [75, 76] and for the single-time correlator
in the periodic 1D Glauber-Ising model at temperature 𝑇 = 0 [77].

7Actually for 𝑍 & 25, which in physical units corresponds to 𝐿 (𝑡 ) . 5𝑁 .
8Finite-temperature and finite-time effects merely give a corrective factor 1 + O

(
𝑇𝑠1−𝑑/2) , negligible for large waiting times

𝑠 → ∞, if 𝑑 > 2.
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Since 𝑡 � 𝑠, we expect that 𝐿 (𝑡) � 𝐿 (𝑠). The limit 𝑦 � 1 is realised by taking 𝑡 � 1. With the identity
𝜗3

(
0, e−π𝑦

)
= 𝑦−1/2 𝜗3

(
0, e−π/𝑦

)
, we have

𝐶 (𝑡, 𝑠) = 𝑀2
eq

(
𝑡 (𝑠/𝑡)1/2

(𝑡 + 𝑠)/2

)𝑑/2 
(
2 𝑁2

𝑡+𝑠

)−1/2
𝜗3

(
0, exp

(
− π

2
𝑡+𝑠
𝑁2

))
√︂(

𝑁2

𝑡

)−1/2
𝜗3

(
0, exp

(
−π 𝑡

𝑁2

))
𝜗3

(
0, exp

(
−π 𝑁2

𝑠

))

𝑑∗

. (4.12)

For 𝑁2/𝑠 finite but large enough (such that the plateaux in figure 1b is reached), the last of the theta
functions in (4.12) are very close to unity. Because of the condition 𝑡/𝑁2 � 1, the other two theta-
functions in (4.12) are also close to unity. Up to constants, we obtain

𝐶 (𝑡, 𝑠) 𝑡→∞∼
( 𝑠
𝑡

)𝑑/4 [( 𝑡 + 𝑠
𝑁2

)1/2 (
𝑁2

𝑡

)1/4
const

]𝑑∗

∼
( 𝑠
𝑡

)𝑑/4 [
𝑡 (1 + 𝑠/𝑡)
𝑡1/2

]𝑑∗/2 (
𝑁−2 1

2+2 1
4

)𝑑∗

. (4.13)

Finally, now admitting a fully finite system such that 𝑑 = 𝑑∗, we have (for 2 < 𝑑 < 4)

𝐶 (𝑡, 𝑠) ∼
( 𝑠
𝑡

)𝑑/4
𝑡𝑑/4𝑁−𝑑/2 = 𝑠𝑑/4𝑁−𝑑/2, (4.14)

which in view of the well-known results _ = 𝑑/2 [25] and 𝑧 = 2 [1] does indeed reproduce equation (3.8),
or (3.9) if either 𝑠 or 𝑁 is kept fixed.

(C) Characteristic time-dependent length scales 𝐿 (𝑡) of the ordered clusters can be measured as second
moments of the single-time correlator

𝐿2(𝑡) :=
∑

n n2𝐶 (𝑡; n)∑
n𝐶 (𝑡; n) . (4.15)

Precise expressions follow from (4.10a) once the range of summation of the distances |n| is fixed. For
example, if one measures the distances along one of the coordinate axes of one of the infinite directions,
one obtains the ‘transverse’ length scale 𝐿2

⊥(𝑡) = 4𝐷𝑡, as for a fully infinite system [78]. On the other
hand, if the distances are measured along the coordinates axes of one of the finite directions, we find a
‘longitudinal’ length scale, which reads for sufficiently thick films, and in agreement with (3.5)

𝐿2
‖ (𝑡) =

1
π
𝑡 𝑓𝐿 (𝑍), 𝑓𝐿 (𝑍) =

π

6
𝑍

©«1 + 12
π2

∞∑︁
𝑝=1

(−1) 𝑝
𝑝2 e−π𝑝

2/𝑍ª®¬ '
{ π

6 𝑍; if 𝑍 � 1,
1; if 𝑍 � 1.

(4.16)

The scaling function 𝑓𝐿 is temperature-independent. This describes the cross-over shown in figure 2,
such that for 𝑍 = 𝑁2/𝑡 small enough, we obtain saturation at 𝐿2

‖ (𝑡) → 𝐿2
∞ ∼ 𝑁2, but on the other hand

one has 𝐿2
‖ (𝑡) ∼ 𝑡 of an effectively infinite system for 𝑍 large enough.

5. Conclusions

We studied finite-size scaling in the ageing relaxation of phase-ordering kinetics after a quench from
a disordered initial state into the two-phase coexistence regime with temperature 0 < 𝑇 < 𝑇𝑐. The
finite-size scaling ansatz (3.1) is the natural extension of dynamic finite-size scaling at equilibrium [71].
Phenomenologically, the observations to be gleaned from figure 1 for the single-time and two-correlations
and figure 2 for the characteristic length scale are captured by the finite-size scaling forms (3.3). The form
of the associated scaling functions is temperature-independent, which confirms the expectation that the
temperature should be irrelevant in phase-ordering kinetics [1]. From these, the finite-size scaling (3.5) for
the length scale 𝐿 ‖ (𝑡) and especially (3.9) for the plateaux 𝐶 (2)

∞ in the two-time auto-correlator of a fully
finite system were derived. We checked that these predictions are fully bourne out in the phase-ordering
of the exactly solved kinetic spherical model, for 2 < 𝑑 < 4 dimensions.

Clearly, several open questions remain, including:
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1. Do the FSS predictions (3.3), (3.5), (3.9) also hold for other universality classes? For kinetic Ising
models with either short-ranged or long-ranged interactions, detailed tests on all these have been
carried out recently and will be reported elsewhere [79].

2. Although the discussion was entirely formulated here in terms of classical dynamics, a finite-size
scaling ansatz such as (3.3) should a priori also work for relaxations in quantum systems, either
closed or open.

3. Our analysis is restricted to below the upper critical dimension 𝑑 < 𝑑𝑐. At equilibrium, it is well-
known that dangerous irrelevant variables lead to essential modifications of the finite-size scaling
ansatz (3.1), (3.3) [49, 53–58]. Such modifications should also become necessary for the dynamics.
Considerations of this kind might become crucial either for long-ranged interactions, where 𝑑𝑐 is
lowered with respect to the value 𝑑 (short)

𝑐 = 4 of short-ranged systems or else for 𝑑-dimensional
quantum systems (possibly with long-ranged interactions as well), for which at least the equilib-
rium quantum phase transitions at 𝑇 = 0 are known to be in the same universality class as the
corresponding (𝑑 + \)-dimensional classical universality class at finite temperature, where the
anisotropy exponent \ > 1 [80].

4. From figure 1b it appears that finite-size effects might create a spurious regime where the auto-
correlator𝐶 (𝑦𝑠, 𝑠) ∼ 𝑦−_eff might look algebraic in a certain window; but rather the system already
is the transition region between the rapid fall-off after having left the infinite-size behaviour of
𝐶bulk (𝑦𝑠, 𝑠) and the turn-around towards the saturation plateau𝐶 (2)

∞ . Since _eff > _, not recognising
that this effect carries the risk of systematic over-estimation of the auto-correlation exponent _, in
simulations or in experiments.

5. One may generalise dynamical FSS to critical quenches and to two-time response functions as
well. The theory and numerical tests thereof will be presented elsewhere [79].

6. Can one use (3.9) to devise improved methods for the measurement of _?
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Appendix. Analytical derivations

The exact solution of the kinetic spherical model at 𝑇 < 𝑇𝑐 (𝑑), starting from (4.4), is described.

A.1. Spherical constraint

The Volterra integral equation (4.4d) gives the long-time behaviour of 𝑔(𝑡) in a large, but finite system,
as follows. The first part retraces the steps used at equilibrium [51, 52], with the notation adapted for
dynamics. The second part gives the new ingredients needed for non-equilibrium dynamics.

1. Through a Laplace transform one formally solves (4.4d)

𝑔(𝑝) = L (𝑔) (𝑝) :=
∞∫
0

d𝑡 e−𝑝𝑡𝑔(𝑡) = 𝑓 (𝑝)
1 − 2𝐷𝑇 𝑓 (𝑝)

. (A.1)

Standard Tauberian theorems [81] relate the behaviour of 𝑔(𝑝) in the 𝑝 → 0 limit to the asymptotic
long-time behaviour of 𝑔(𝑡) for 𝑡 → ∞. One needs the leading terms of 𝑓 (𝑝) as 𝑝 → 0. Recall the
generalised Poisson resummation formula [82]
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𝑏∑︁
𝑛=𝑎

𝑓 (𝑛) =
∞∑︁

𝑞=−∞

𝑏∫
𝑎

d𝑥 e2πi𝑞𝑥 𝑓 (𝑥) + 1
2
𝑓 (𝑎) + 1

2
𝑓 (𝑏) (A.2)

and use this to deduce the important identity, for 𝑚 ∈ Z and 𝑥 ∈ R
𝑁−1∑︁
𝑘=0

exp
(
2πi
𝑁
𝑘𝑚 + 𝑥 cos

2π𝑘
𝑁

)
= 𝑁

∞∑︁
𝑞=−∞

𝐼𝑞𝑁+𝑚(𝑥), (A.3)

where 𝐼𝑛 (𝑥) is a modified Bessel function [72].
Now, one writes as in [51], using equation (A.3) with 𝑚 = 0 in the second line 𝑑 times

2𝐷 𝑓 (𝑝) =
2𝐷
|Λ|

∑︁
k

∞∫
0

d𝑡 exp
−

𝑝 + 4𝐷
𝑑∑︁
𝑗=1

(
1 − cos

2π
𝑁 𝑗

𝑘 𝑗

) 𝑡


= 2𝐷
∞∫
0

d𝑡 e−(𝑝+4𝐷𝑑)𝑡
∑︁

𝑞1 ,...,𝑞𝑑∈Z

𝑑∏
𝑗=1

𝐼𝑁 𝑗𝑞 𝑗
(4𝐷𝑡)

=
1
2

∞∫
0

d𝑢 e−
1
2 𝜙𝑢 [e−𝑢𝐼0(𝑢)]𝑑 + 1

2

∑︁′
q∈Z𝑑

∞∫
0

d𝑢 e−
1
2 𝜙𝑢

𝑑∏
𝑗=1

[
e−𝑢𝐼𝑁 𝑗𝑞 𝑗

(𝑢)
]
, (A.4)

where one sets 𝜙 := 𝑝/2𝐷. In the last line, the bulk contribution which arises from q = 0, is separated
from the finite-size terms which have q ≠ 0 (indicated by

∑′).
In what follows, restrict throughout to dimensions 2 < 𝑑 < 4. First, standard techniques [25, 43, 46, 48]

give the leading order of the Watson function𝑊𝑑 (𝜙) for 𝜙 � 1, as follows

𝑊𝑑 (𝜙) :=
1
2

∞∫
0

d𝑢 e−
1
2 𝜙𝑢 [e−𝑢𝐼0(𝑢)]𝑑

' 𝑊𝑑 (0) − (4π)−𝑑/2
����Γ (

1 − 𝑑

2

)���� 𝜙 (𝑑−2)/2 [1 + o(𝜙)] , (A.5)

with an implied analytic continuation in 𝑑. Next, the finite-size terms are evaluated in the hyper-cubic
geometry, such that the first 𝑑∗ dimensions are finite (0 < 𝑑∗ 6 𝑑), with periodic boundary conditions
(for simplicity, set 𝑁 𝑗 = 𝑁 for all 𝑗 = 1, . . . , 𝑑∗). The remaining 𝑑 − 𝑑∗ dimensions are assumed to be
infinite, formally 𝑁 𝑗 = ∞. With the asymptotic identity [51] 𝐼a (𝑥) = (2π𝑥)−1/2e𝑥−a2/2𝑥 [1 + O(1/𝑥)

]
one has

1
2

∞∫
0

d𝑢 e−
1
2 𝜙𝑢

𝑑∏
𝑗=1

[
e−𝑢𝐼𝑁 𝑗𝑞 𝑗

(𝑢)
]
' 1

2

∞∫
0

d𝑢 e−
1
2 𝜙𝑢

(
2π𝑢

)−𝑑/2 𝑑∗∏
𝑗=1

e−(𝑁𝑞 𝑗 )2/2𝑢

= (4π)−𝑑/2𝜙𝑑/2−1
∞∫
0

d𝑣 𝑣−𝑑/2 exp ©«−𝑣 − 1
𝑣

𝜙

4

𝑑∗∑︁
𝑗=1

𝑁2𝑞2
𝑗

ª®¬
=

2
(4π)𝑑/2

(
2𝜓
𝑁

)𝑑−2 (
1
𝜓 |q|

) (𝑑−2)/2
𝐾 (𝑑−2)/2

(
2𝜓 |q|

)
, (A.6)

with the thermo-geometric parameter 𝜓 := 1
2𝑁𝜙

1/2, the short-hand |q|2 :=
∑𝑑∗

𝑗=1 𝑞
2
𝑗
, the other modified

Bessel function 𝐾a (𝑥) [72] and where the identity [51]
∞∫
0

d𝑥 𝑥a−1e−𝛽𝑥−𝛼/𝑥 = 2
(
𝛼

𝛽

)a/2
𝐾a

(
2
√︁
𝛼𝛽

)
(A.7)
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was used in the last line. In the infinite directions, only the terms with 𝑞 𝑗 = 0 contribute in (A.6), for
𝑗 = 𝑑∗ + 1, . . . , 𝑑. The final result of the first part is, for 2 < 𝑑 < 4 [51, 52]

2𝐷 𝑓 (𝑝) = 𝑊𝑑 (0) −
1

(4π)𝑑/2


����Γ (

1 − 𝑑

2

)���� − 2
∑︁′

q∈Z𝑑∗
𝐾 (𝑑−2)/2(2𝜓 |q|)
(𝜓 |q|) (𝑑−2)/2


(
2𝜓
𝑁

)𝑑−2
+ . . . (A.8)

2. We define the abbreviation

𝐻𝛼 (𝜓) :=
1

(4π)𝑑/2

[
|Γ (−𝛼) | − 2

∑︁′
q∗

𝐾𝛼 (2𝜓 |q|)
(𝜓 |q|)𝛼

]
, (A.9)

where
∑

q∗ =
∑

q∈Z𝑑∗ is only extended over the finite directions. In the spherical model, the equilibrium
magnetisation 𝑀2

eq = 1 − 𝑇/𝑇𝑐, where the critical temperature 1/𝑇𝑐 = 𝑊𝑑 (0) [25, 28, 34, 43, 51]. For
quenches to 𝑇 < 𝑇𝑐 one has 𝑀2

eq > 0. Then, using (A.1) and (A.8)

𝑔(𝑝) ' 1
2𝐷

𝑊𝑑 (0) − 𝐻(𝑑−2)/2(𝜓)
( 2𝜓
𝑁

)𝑑−2 + . . .

1 − 𝑇𝑊𝑑 (0) + 𝑇𝐻(𝑑−2)/2(𝜓)
( 2𝜓
𝑁

)𝑑−2 + . . .

' 1
2𝐷𝑇𝑐

1
𝑀2

eq
− 1

2𝐷
1
𝑀4

eq
𝐻(𝑑−2)/2(𝜓)

(
2𝜓
𝑁

)𝑑−2
+ . . .

=
1

2𝐷𝑇𝑐
1
𝑀2

eq
− 1

2𝐷𝑀4
eq

|Γ(1 − 𝑑/2) |
(4π)𝑑/2

( 𝑝
2𝐷

) (𝑑−2)/2

+ 2
2𝐷𝑀4

eq

1
(4π)𝑑/2

( 𝑝
2𝐷

) (𝑑−2)/4 ∑︁′
q∗

(
𝑁 |q|

2

) (2−𝑑)/2
𝐾 (𝑑−2)/2

(
𝑁 |q|
√

2𝐷
𝑝1/2

)
(A.10)

gives the leading terms of 𝑔(𝑝) for small values of 𝑝. The first two of these terms are the bulk contributions,
while the remaining ones give the leading finite-size effects.

The leading long-time behaviour of 𝑔(𝑡) is then obtained via the identities [83]

L −1 (𝑝a/2𝐾a (2𝑎𝑝1/2)
)
(𝑡) = 1

2
𝑎a

𝑡a+1 e−𝑎
2/𝑡 , (A.11a)

L −1 (𝑝−a ) (𝑡) = 1
Γ(a) 𝑡

a−1, (A.11b)

and we find, where from now on both 𝑑 and 𝑑∗ can be considered as continuous parameters

𝑔(𝑡) =
1

2𝐷𝑇𝑐
1
𝑀2

eq
𝛿(𝑡) + 1

𝑀4
eq

1
(8π𝐷𝑡)𝑑/2

+ 1
𝑀4

eq(8π𝐷𝑡)𝑑/2
∑︁′

q∗ exp
(
−π 𝑁2

8π𝐷𝑡
|q|2

)
=

1
2𝐷𝑇𝑐

1
𝑀2

eq
𝛿(𝑡) + (8π𝐷𝑡)−𝑑/2

𝑀4
eq

𝜗3

(
0, exp

(
−π 𝑁2

8π𝐷𝑡

))𝑑∗

(A.12)

with the Jacobi Theta function 𝜗3 [72], which obeys the functional identity

𝜗3
(
0, e−π𝑦

)
= 𝑦−1/2 𝜗3

(
0, e−π/𝑦

)
. (A.13)

Figure 3 illustrates the rapid cross-over (essentially in the interval 1
2 . 𝑦 . 2) between the two

asymptotic regimes. Therefore, we have the following asymptotic limits, for 2 < 𝑑 < 4 and 𝑇 < 𝑇𝑐

𝑔(𝑡) = 1
2𝐷𝑇𝑐

1
𝑀2

eq
𝛿(𝑡) +


(8π𝐷𝑡 )−𝑑/2

𝑀4
eq

; if 𝑁2/𝑡 � 1 infinite-size system,
(8π𝐷𝑡 )−(𝑑−𝑑∗)/2

𝑀4
eq

𝑁−𝑑∗ ; if 𝑁2/𝑡 � 1 finite-size system.
(A.14)

This shows that the long-time behaviour of the spherical constraint in a finite geometry is effectively
(𝑑 − 𝑑∗)-dimensional. The singular terms in (A.12) and (A.14) will become very important for the
calculation of the correlators, as we shall see below.

Equation (A.12) is the main result of this subsection.
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0.0 0.5 1.0 1.5 2.0
y

1.0

1.2

1.4

1.6

θ(
y)

Figure 3. The function \ (𝑦) := 𝜗3
(
0, e−π𝑦

)
and its cross-over between the regimes where 𝑦 � 1 and

\ (𝑦) ' 1 (dotted line) and 𝑦 � 1 and \ (𝑦) ' 𝑦−1/2 (dashed line).

A.2. Two-time auto-correlator

We decompose in (A.12) 𝑔(𝑡) = 𝑔sing(𝑡) +𝑔reg(𝑡), where 𝑔sing(𝑡) = 1
2𝐷𝑇𝑐

1
𝑀2

eq
𝛿(𝑡). In momentum space,

with the convention 𝑡 > 𝑠, we have from (4.5), for large times, the decomposition

𝐶 (𝑡, 𝑠; k) =
e−2𝐷𝜔 (k) (𝑡+𝑠)√︁
𝑔reg(𝑡)𝑔reg(𝑠)

1 + 2𝐷𝑇
2𝐷𝑇𝑐

1
𝑀2

eq

𝑠∫
0

d𝜏 𝛿(𝜏)e2𝐷𝜔 (k)2𝜏 + 2𝐷𝑇
𝑠∫

0

d𝜏 𝑔reg(𝜏)e2𝐷𝜔 (k)2𝜏


=
1
𝑀2

eq

e−2𝐷𝜔 (k) (𝑡+𝑠)√︁
𝑔reg(𝑡)𝑔reg(𝑠)

+ 2𝐷𝑇
𝑠∫

0

d𝜏
𝑔reg(𝜏)√︁

𝑔reg(𝑡)𝑔reg(𝑠)
e−2𝐷𝜔 (k) (𝑡+𝑠−2𝜏 ) (A.15)

for all temperatures 𝑇 < 𝑇𝑐. With (4.6), this gives the two-time auto-correlator 𝐶 (𝑡, 𝑠) = 𝐶 [1] (𝑡, 𝑠) +
𝐶 [2] (𝑡, 𝑠). The first term in (A.15) leads to

𝐶 [1] (𝑡, 𝑠) =
|Λ|−1𝑀−2

eq√︁
𝑔reg(𝑡)𝑔reg(𝑠)

∑︁
k

exp
−2𝐷

𝑑∑︁
𝑗=1

(
1 − cos

2π
𝑁 𝑗

𝑘 𝑗

)
(𝑡 + 𝑠)


=

𝑀−2
eq√︁

𝑔reg(𝑡)𝑔reg(𝑠)

𝑑∏
𝑗=1

∑︁
𝑞 𝑗 ∈Z

e−2𝐷 (𝑡+𝑠) 𝐼𝑁 𝑗𝑞 𝑗
(2𝐷 (𝑡 + 𝑠))

'
𝑀−2

eq√︁
𝑔reg(𝑡)𝑔reg(𝑠)

1
[4π𝐷 (𝑡 + 𝑠)]𝑑/2

𝑑∗∏
𝑗=1

∑︁
𝑞 𝑗 ∈Z

exp

[
−

(𝑁𝑞 𝑗 )2

4𝐷 (𝑡 + 𝑠)

] [
1 + O

(
(𝑡 + 𝑠)−1) ]

= 𝑀2
eq

(
𝑡𝑑/2𝑠𝑑/2

[(𝑡 + 𝑠)/2]𝑑

)1/2


𝜗3

(
0, exp

(
−π 𝑁2

4π𝐷 (𝑡+𝑠)

))
√︂
𝜗3

(
0, exp

(
−π 𝑁 2

8π𝐷𝑡

))
𝜗3

(
0, exp

(
−π 𝑁2

8π𝐷𝑠

))

𝑑∗

, (A.16)

where in the first line (A.3) with 𝑚 = 0 was used once more. In the second line, we use the asymptotic
expansion of the modified Bessel function 𝐼𝑛 (𝑥). In the third and forth lines, 𝑔reg(𝑡) was inserted with
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𝑁 𝑗 = 𝑁 for 𝑗 = 1, . . . , 𝑑∗ from (A.12) and the sums in the same line were expressed in terms of the
Jacobi theta function 𝜗3. Both 𝑑 and 𝑑∗ can be taken as continuous variables.

The second term in (A.15) can be expressed as a convolution

𝐶 [2] (𝑦𝑠, 𝑠) = 2𝐷𝑇√︁
𝑔reg(𝑦𝑠)𝑔reg(𝑠)

L −1
(
𝑔reg(𝑝)

( [
e−4𝐷 ( (𝑦+1)𝑠/2) 𝐼0(4𝐷 (𝑦 + 1)𝑠/2)

]𝑑 )
(𝑝)

)
(𝑠). (A.17)

For 𝑠 → ∞, a Tauberian theorem relates the leading behaviour to the one of the Laplace transform at
𝑝 → 0 [81]. In turn, the behaviour of the two factors should be dominated by the long-time behaviour
of the original functions. Therefore, one expects the leading contribution to be of the order [𝑔0 is the
amplitude of 𝑔reg(𝜏)]

𝐶 [2] (𝑦𝑠, 𝑠) ' 2𝐷𝑇√︁
𝑔reg(𝑦𝑠)𝑔reg(𝑠)

𝑠∫
0

d𝜏 𝑔0𝜏
−𝑑/2

(
8π𝐷

𝑦 + 1
2

(𝑡 + 𝑠 − 2𝜏)
)−𝑑/2

' 2𝐷𝑇
(
𝑦𝑠2

)𝑑/4
𝑠1−𝑑

1∫
0

d𝑣 𝑣−𝑑/2
(
4π𝐷 (𝑦 + 1) (𝑦 + 1 − 2𝑣)

)−𝑑/2
= O

(
𝑇𝑠1−𝑑/2

)
(A.18)

up to an 𝑠-independent amplitude. For 𝑑 > 2, 𝐶 [2] (𝑦𝑠, 𝑠) is negligible in the scaling limit where 𝑠 → ∞.
Hence, for all temperatures 𝑇 < 𝑇𝑐, the leading term of the auto-correlator is 𝐶 (𝑡, 𝑠) = 𝐶 [1] (𝑡, 𝑠).

Finally, introducing the scaling variables 𝑍 and 𝑦 in (A.15), and with the scaling 8π𝐷 !
= 1, we arrive

at (4.11a). With (A.13), the equivalent form (4.11b) is obtained.

A.3. Single-time correlator

We reuse the decomposition 𝑔(𝑡) = 𝑔sing(𝑡) + 𝑔reg(𝑡) from above. In momentum space, we decompose
𝐶 (𝑡; k) = 𝐶 [1] (𝑡; k) + 𝐶 [2] (𝑡; k) and have for all 𝑇 < 𝑇𝑐

𝐶 (𝑡; k) =
e−4𝐷𝜔 (k)𝑡

𝑔reg(𝑡)
+ 2𝐷𝑇
𝑔reg(𝑡)

𝑡∫
0

d𝜏

[
1

2𝐷𝑇𝑐
1
𝑀2

eq
𝛿(𝜏) + 𝑔reg(𝜏)

]
e−4𝐷𝜔 (k) (𝑡−𝜏 )

=
e−4𝐷𝜔 (k)𝑡

𝑀2
eq 𝑔reg(𝑡)

+ 2𝐷𝑇
𝑡∫

0

d𝜏
𝑔reg(𝜏)
𝑔reg(𝑡)

e−4𝐷𝜔 (k) (𝑡−𝜏 ) . (A.19)

Herein, the first term is analysed as follows

𝐶 [1] (𝑡; n) =
|Λ|−1

𝑀2
eq 𝑔reg(𝑡)

∑︁
k

exp


𝑑∑︁
𝑗=1

2πi
𝑁 𝑗

𝑘 𝑗𝑛 𝑗 − 4𝐷
(
1 − cos

2π
𝑁 𝑗

𝑘 𝑗

)
𝑡


=

e−4𝐷𝑑𝑡

𝑀2
eq 𝑔reg(𝑡)

∑︁
q∈Z𝑑

𝑑∏
𝑗=1

𝐼𝑁 𝑗𝑞 𝑗+𝑛 𝑗
(4𝐷𝑡)

'
𝑀2

eq

𝜗3
(
0, e−π𝑁2/(8π𝐷𝑡 ) )𝑑∗

𝑑∏
𝑗=1

∑︁
𝑞 𝑗 ∈Z

e−(𝑞 𝑗𝑁 𝑗+𝑛 𝑗 )2/(8𝐷𝑡 ) , (A.20)

where first the full identity (A.3) is used 𝑑 times, then the asymptotic form of the modified Bessel function
𝐼𝑛 (𝑥) is used for 𝑥 � 1 and finally, in the chosen finite-size geometry, the asymptotic form (A.12) is
inserted. The product over the sums in the last line of (A.20) is evaluated as follows: (i) in the 𝑑 − 𝑑∗
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infinite directions where formally 𝑁 𝑗 = ∞, only the terms with 𝑞 𝑗 = 0 contribute and lead to a factor
exp

[
− 1

8𝐷𝑡

∑𝑑
𝑗=𝑑∗+1 𝑛

2
𝑗

]
. (ii) The 𝑑∗ finite directions with 𝑁 𝑗 = 𝑁 produce 𝑑∗ factors, each of the form

∑︁
𝑞 𝑗 ∈Z

exp

[
−
(𝑞 𝑗𝑁 + 𝑛 𝑗 )2

8𝐷𝑡

]
= e−𝑛

2
𝑗
/(8𝐷𝑡 )

∑︁
𝑞 𝑗 ∈Z

exp
[
−
𝑁𝑛 𝑗

4𝐷𝑡
𝑞 𝑗 −

𝑁2

8𝐷𝑡
𝑞2
𝑗

]
. (A.21)

With the identity

e−𝑛
2
𝑗
/(8𝐷𝑡 )

𝜗3

(
iπ
𝑁𝑛 𝑗

8π𝐷𝑡
, e−π𝑁

2/(8π𝐷𝑡 )
)

=

√
8π𝐷𝑡
𝑁

𝜗3

(
π
𝑛 𝑗

𝑁
, e−π [𝑁

2/(8π𝐷𝑡 ) ]−1
)

(A.22)

we finally obtain [and used again (A.13)]

𝐶 [1] (𝑡; n) = 𝑀2
eq exp ©«−π

𝑑∑︁
𝑗=1

𝑛2
𝑗

8π𝐷𝑡
ª®¬

𝑑∗∏
𝑗=1

𝜗3
(
iπ 𝑁𝑛 𝑗

8π𝐷𝑡
, e−π𝑁2/(8π𝐷𝑡 ) )

𝜗3
(
0, e−π𝑁2/(8π𝐷𝑡 ) )

= 𝑀2
eq exp ©«−π

𝑑∑︁
𝑗=𝑑∗+1

𝑛2
𝑗

8π𝐷𝑡
ª®¬

𝑑∗∏
𝑗=1

𝜗3
(
π
𝑛 𝑗

𝑁
, e−π [𝑁2/(8π𝐷𝑡 ) ]−1 )

𝜗3
(
0, e−π [𝑁2/(8π𝐷𝑡 ) ]−1 ) . (A.23)

The second term can be rewritten as follows

𝐶 [2] (𝑡; n) = 2𝐷𝑇
∑︁

q

𝑡∫
0

d𝜏
𝑔reg(𝜏)
𝑔reg(𝑡)

𝑑∏
𝑗=1

e−4𝐷 (𝑡−𝜏 ) 𝐼𝑞 𝑗𝑁 𝑗+𝑛 𝑗
(4𝐷 (𝑡 − 𝜏)) (A.24)

and takes on the form of a convolution. For large times 𝑡 → ∞, we estimate this asymptotically by
appealing to Tauberian theorems [81]. Then, the leading term should become

𝐶 [2] (𝑡; n) ' 2𝐷𝑇
(8π𝐷)𝑑/2

𝑡∫
0

d𝜏 𝑡−𝑑/2
(
1 − 𝜏

𝑡

)−𝑑/2
exp

−π
𝑑∑︁
𝑗=1

𝑛2
𝑗

8π𝐷 (𝑡 − 𝜏)


×

𝑑∗∏
𝑗=1

𝜗3
(
iπ 𝑁𝑛 𝑗

8π𝐷 (𝑡−𝜏 ) , e
−π𝑁2/(8π𝐷 (𝑡−𝜏 ) ) ) 𝜗3

(
0, e−π𝑁2/(8π𝐷𝜏 ) )

𝜗3
(
0, e−π𝑁2/(8π𝐷𝑡 ) )

∼ O
(
𝑇𝑡1−𝑑/2

)
, (A.25)

which becomes negligible in the long-time limit 𝑡 → ∞ for 𝑑 > 2.
Therefore, in the long-time limit 𝑡 → ∞, 𝐶 (𝑡; n) = 𝐶 [1] (𝑡; n). Introducing the scaling variables (3.5)

into (A.23), and reusing (A.13) and (A.22) and scaling 8π𝐷 !
= 1, we arrive at equations (4.10).

A.4. Characteristic length

The characteristic lengths 𝐿 (𝑡) are defined from (4.15), with the single-time correlator given by (A.23).
If the distances are calculated along the coordinate axes in one of the 𝑑∗ finite directions, i.e., n =

(𝑛, 0, . . . , 0), we find a longitudinal length 𝐿 ‖ . If 𝑛 is measured along one of the infinite directions, we
find a transverse length 𝐿⊥(𝑡).

The most simple example of a transverse length arises if the distances are measured along one of the
coordinate axes in one of the infinite directions [i.e., n = (0, 0, . . . , 𝑛) with 𝑑∗ 6 𝑑 − 1]

𝐿2
⊥(𝑡) =

∑∞
𝑛=−∞ 𝑛

2 exp
[
−π 𝑛2

8π𝐷𝑡

]
∑∞

𝑛=−∞ exp
[
−π 𝑛2

8π𝐷𝑡

] ' 8π𝐷𝑡

∫∞
−∞d𝑛 𝑛2 e−π𝑛2∫∞
−∞d𝑛 e−π𝑛2

= 4𝐷𝑡, (A.26)
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which is identical to the known result for the bulk system [78].
A longitudinal length is found when n = (𝑛, 0, . . . , 0) with 𝑑∗ > 1 is measured along one of the

coordinate axes in a finite direction. If 𝑁 = 2𝑀 is even, we have

𝐿2
‖ (𝑡) =

∑𝑀
𝑛=−𝑀+1 𝑛

2 𝜗3
(
π 𝑛

2𝑀 , e
−π/𝑍 )∑𝑀

𝑛=−𝑀+1 𝜗3
(
π 𝑛

2𝑀 , e−π/𝑍
) . (A.27)

Using the definition of the Jacobi Theta function 𝜗3, we have

𝑀∑︁
𝑛=−𝑀+1

𝜗3
(
π
𝑛

2𝑀
, e−π/𝑍

)
=

∑︁
𝑝∈Z

𝑀∑︁
𝑛=−𝑀+1

exp
[
−πi

𝑛

𝑀
𝑝 − π𝑝2

𝑍

]
= 2𝑀 +

∑︁
𝑝≠0

e−π𝑝
2/𝑍

(
1 + e−πi𝑝 +

𝑀−1∑︁
𝑛=1

e−πi(𝑛/𝑀 ) 𝑝 +
𝑀−1∑︁
𝑛=1

eπi(𝑛/𝑀 ) 𝑝

)
= 2𝑀 (A.28)

and
𝑀∑︁

𝑛=−𝑀+1
𝑛2 𝜗3

(
π
𝑛

2𝑀
, e−π/𝑍

)
=

∑︁
𝑝∈Z

𝑀∑︁
𝑛=−𝑀+1

𝑛2 exp
[
−πi

𝑛

𝑀
𝑝 − π𝑝2

𝑍

]
=

𝑀∑︁
𝑛=−𝑀+1

𝑛2 +
∑︁
𝑝≠0

e−π𝑝
2/𝑍

[
0 + 𝑀2e−πi𝑝 +

𝑀−1∑︁
𝑛=1

𝑛2 e−πi(𝑛/𝑀 ) 𝑝 +
𝑀−1∑︁
𝑛=1

𝑛2 eπi(𝑛/𝑀 ) 𝑝

]
' 2

3
𝑀3 + 𝑀2 +

∑︁
𝑝≠0

e−π𝑝
2/𝑍

[
𝑀2(−1) 𝑝 + 4(−1) 𝑝

π2𝑝2 𝑀3 + (−1) 𝑝𝑀2
]
+ O(𝑀)

' 2
3
𝑀3 + 8𝑀3

π2

∞∑︁
𝑝=1

e−π𝑝
2/𝑍 (−1) 𝑝

𝑝2 + O
(
𝑀2) , (A.29)

where in the third line, an asymptotic expansion for 𝑀 large was made. Inserting (A.28) and (A.29) into
(A.27) and fixing 8π𝐷 = 1 gives (4.16). The same leading result also holds if 𝑁 = 2𝑀 + 1 is odd.
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Нерiвноважнi релаксацiї: явища старiння та
скiнченно-вимiрнi ефекти

М. Хенкель1,2
1 Лабораторiя теоретичної фiзики та хiмiї, Унiверситет Лотарингiї, CNRS, F-54000 Нансi, Францiя
2 Центр теоретичної та обчислювальної фiзики Лiсабонського унiверситету, Кампо-Грандi, P–1749-016
Лiсабон, Португалiя

Дослiджено довгочасову поведiнку кореляторiв “спiн-спiн” приповiльнiй релаксацiї системив умовах кiне-
тики фазового впорядкування та геометрiй скiнченного розмiру. Феноменологiчний скiнченно-вимiрний
скейлiнговий анзац сформульовано та перевiрено через точний розв’язок кiнетичної сферичної моделi
для системи, миттєво охолодженої до температур нижче критичної та при розмiрностях 2 < 𝑑 < 4.

Ключовi слова: фазовi переходи, скiнченно-вимiрний скейлiнг, динамiчнi критичнi явища, ефекти
старiння, точнi моделi
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