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We discuss the possibility of defining an emergent local temperature in extended quantummany-body systems
evolving out of equilibrium. For the most simple case of free-fermionic systems, we give an explicit formula for
the effective temperature in the case of, not necessarily unitary, Gaussian preserving dynamics. In this frame-
work, we consider the hopping fermions on a one-dimensional lattice submitted to randomly distributed projec-
tivemeasurements of the local occupation numbers. We show from the average overmany quantum trajectories
that the effective temperature relaxes exponentially towards infinity.
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1. Introduction

In the last decade, there has been a tremendous interest in the study of the out of equilibrium properties
of simple many-body systems in both unitary and non-unitary cases. In the unitary settings, the out of
equilibrium dynamics is generated by the more or less sudden quench of some global [1, 2] or local [3, 4]
Hamiltonian parameter, after which the system is left to evolve unitarily in time. The quench may be also
homogeneous or inhomogeneous, varying the local couplings at different rates [5–8]. In this scenario, one
important way of catching the non-equilibrium properties of the system is by considering the dynamical
evolution of the entanglement spreading all over the system [9, 10]. For local short-range Hamiltonians,
starting from a disentangled initial state, it has been shown that the spreading of the quantum correlations
is a ballistic process governed by the existence of a Lieb-Robinson bound [11]. From each points of the
system, after the quench, correlation fronts propagate at a maximum velocity, the Lieb-Robinson bound,
and give rise to local light-cones effects. For integrable one-dimensional systems, with infinite-life time
quasi-particle excitations propagating ballistically, the entanglement spreading is linear in time, as it can
be easily understood from a simple quasi-particle picture [1, 12]. At later times, the system relaxes locally
to a generalized Gibbs state which, in general, is defined by the knowledge of an infinite set of conserved
quantities, reflecting an extensive scaling of the entanglement entropy [13–16]. However, many factors
may alter the unitarity of the evolution: in real life, the system is never perfectly isolated and it can also
be monitored non-unitarily as it is the case when projective measurements are performed [17]. Under
such a monitoring, the dynamics may be drastically modified, leading for example to the possibility of
suppressing completely the spreading of the entanglement [18–21]. The non-unitary dynamics in many
situations can be described by a Markovian dynamical map, leading to a Lindblad time evolution equation
for the density matrix of the system [22, 23], instead of the unitary Liouville equation. The opening of
the quantum system may also be global, where dissipative channels are connected to the whole system,
or may be local, where some regions of the system only are governed by a dissipative map while the
remaining part is governed by a Hamiltonian dynamics. One such a local situation is when a finite chain
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is coupled at its ends to different baths (or reservoirs of particles), generating at large enough times a
non-equilibrium steady state (NESS) [24–31]. The local quantum NESS generated this way is a stationary
current full quantum state which is given by a generalized MacLennan-Zubarev state [32, 33], which can
also be called a generalized Gibbs state, 𝜌(𝑥) ∼ e−𝛽𝐻 (𝑥 )−𝛿𝐽 (𝑥 ) , where 𝛽 = (𝛽𝐿 + 𝛽𝑅)/2 is the average
inverse temperature of the two baths coupled to the local Hamiltonian 𝐻 (𝑥) and 𝛿 = 𝛽𝐿 − 𝛽𝑅 is the drift
parameter coupled to a local current operator 𝐽 (𝑥) [24]. The melting of an initial domain wall may also
be described in this way since it represents locally the same physical setup [34–46].

In this paper we reconsider the situation of a one-dimensional quantum system evolving according to
a dynamical map which may or may not be unitary and wish to assign to it, in the most simple possible
way, a local temperature. This attempt has been considered in the equilibrium case, where the local
temperature of a quantum system, if not properly defined, may not be a well defined quantity in the sense
that it may not be anymore an intensive quantity and differs from the whole system temperature [47–54].
Let us mention that several attempts to define the effective temperatures appeared quite recently in the
context of the system-plus-reservoir paradigm in the strong coupling limit [55], by the introduction of a
virtual temperature in the context of quantum machines [56], or based on the analyses of the heat flow in
open quantum systems [57, 58].

In the next section we define the model and its dynamics. Section 3 is devoted to the question of local
effective temperatures. We end the paper by some discussion in section 4.

2. Out of equilibrium dynamics of an extended quantum system

2.1. Local state

2.1.1. Hydrodynamical description

We consider one-dimensional free-fermionic systems defined on an infinite one-dimensional lattice
with lattice spacing 𝑎. The system may also be submitted to an external potential 𝑉 (𝑥) which is assumed
to be a real smooth function. To describe the local properties of the system, we split the one-dimensional
lattice into regular intervals [𝑥, 𝑥 + 𝑎ℓ[, each containing a large number ℓ of lattice sites, while keeping
the width 𝑎ℓ of the cell small enough such that for whatever sites 𝑗 ∈ [𝑥, 𝑥 + 𝑎ℓ[ the value of the
potential is constant in that interval: 𝑉 𝑗 ≃ 𝑉 (𝑥). The Hilbert space of the system is thus decomposed as
a product of identical finite-dimensional local Hilbert spaces ℌ𝑥 located at position 𝑥. The Hamiltonian
𝐻 =

∫
d𝑥𝐻 (𝑥) of the full system is thus a sum over the real line of the Hamiltonian density 𝐻 (𝑥) which

in the hydrodynamic limit, for example for spinless fermionic tight binding models, is given by [59–63]

𝐻 (𝑥) = 1
𝑎ℓ

∫
𝑎ℓ

d𝑦
{
^(𝑥)

(
𝜓†
𝑥 (𝑦)𝜓𝑥 (𝑦 + 𝑎) + 𝜓†

𝑥 (𝑦 + 𝑎)𝜓𝑥 (𝑦)
)
+𝑉 (𝑥)𝜓†

𝑥 (𝑦)𝜓𝑥 (𝑦)
}
, (2.1)

where ^(𝑥) is the local hopping constant and the𝜓𝑥 and𝜓†
𝑥 are Fermi fields defined in the hydrodynamical

cell 𝑥. Within each coarse-grained point 𝑥, the system can be diagonalized by a Fourier-Bogoliubov
transformation. Obviously, in order to make this continuum limit practicable, the local scale ℓ should be
much larger than the inverse particle density: ℓ ≫ 1/𝜌. In any case, one can always go back to the discret
nature of the system and use the discret splitting 𝐻 =

∑
𝑥 𝐻 (𝑥), where 𝐻 (𝑥) is the local Hamiltonian

defined on the lattice sites 𝑗 ∈ [𝑥, 𝑥 + 𝑎ℓ[

𝐻 (𝑥) = 𝑐†(𝑥)𝑇 (𝑥, 0)𝑐(𝑥) =
∑︁
𝑖, 𝑗∈𝑥

𝑐
†
𝑖
(𝑥)𝑇𝑖 𝑗 (𝑥, 0)𝑐 𝑗 (𝑥). (2.2)

The 𝑐†
𝑖
(𝑥), 𝑐𝑖 (𝑥) are local creation and annihilation operators satisfying the usual canonical rules

{𝑐†
𝑖
(𝑥), 𝑐 𝑗 (𝑥′)} = 𝛿𝑖 𝑗𝛿𝑥𝑥′ , (2.3)

and 𝑇 (𝑥, 0) is the local one-particle Hamiltonian (ℓ × ℓ Hermitian coupling matrix).
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If the hydrodynamical description is valid, the lattice variables 𝑐†
𝑖
(𝑥), 𝑐𝑖 (𝑥) may be replaced by the

continuous creation and annihilation fields 𝜓†
𝑥 (𝑦) and 𝜓𝑥 (𝑦) acting at position 𝑦within the coarse-grained

cell 𝑥, such that

𝐻 (𝑥) = 𝜓†
𝑥𝑇 (𝑥, 0)𝜓𝑥 =

∫
Δ𝑥

d𝑦
∫
Δ𝑥

d𝑦′ 𝜓†
𝑥 (𝑦)𝑇𝑥 (𝑦, 𝑦′)𝜓𝑥 (𝑦′), (2.4)

where 𝑇𝑥 (𝑦, 𝑦′) is the kernel function associated to the 𝑇 (𝑥, 0).

2.1.2. Time evolution of the local state

The local initial state at position 𝑥 is deduced from the initial global state 𝜌(0) by tracing out the
degrees of freedom living in the complementary space ℌ/𝑥 of the local Hilbert space ℌ𝑥 :

𝜌(𝑥, 0) = trℌ/𝑥 {𝜌(0)} . (2.5)

Up to boundary corrections, we assume that this local state is initially given by a local canonical state1

𝜌(𝑥, 0) = 𝜔 (𝐻 (𝑥), 𝛽(𝑥)) ≡ e−𝛽 (𝑥 )𝐻 (𝑥 )

𝑍 [𝐻 (𝑥), 𝛽(𝑥)] , (2.6)

where 𝐻 (𝑥) is the local Hamiltonian (2.2) and 𝑍 (𝐻, _) = trℌ𝑥
{e−_𝐻 (𝑥 ) )} is the local partition function.

At a later time 𝑡, the system evolves according to a dynamical map Λ𝑡 such that

𝜌(𝑡) = Λ𝑡 [𝜌(0)], (2.7)

from which the local state is obtained by taking the partial trace

𝜌(𝑥, 𝑡) = trℌ/𝑥 {𝜌(𝑡)} = trℌ/𝑥 {Λ𝑡 [𝜌(0)]} . (2.8)

If the global dynamical map Λ𝑡 is unitary, then

𝜌(𝑡) = Λ𝑡 [𝜌(0)] = 𝑈 (𝑡, 0)𝜌(0)𝑈†(𝑡, 0), (2.9)

where𝑈 (𝑡, 0) is the unitary time evolution operator defined on the global Hilbert space ℌ. In such a case,
the local state is given by

𝜌(𝑥, 𝑡) = trℌ/𝑥

{
𝑈 (𝑡, 0)𝜌(0)𝑈†(𝑡, 0)

}
. (2.10)

In general, the system is not perfectly isolated and/or subject to an external monitoring, such as discret
or continuous driving of some parameter, measurements of some local properties, and this in general
breaks the unitarity of the dynamical map Λ𝑡 [21].

However, even for a perfectly isolated system, with a global unitary dynamics, the time evolution of
the reduced density matrix, that is the local state 𝜌(𝑥, 𝑡), is not in general a unitary evolution [22, 23].
Indeed, if we assume for simplicity that the initial global state 𝜌(0) is a tensor product state of the 𝑥-cell
state times, the state 𝜔𝑒 of the remaining part, that is 𝜌(0) = 𝜌(𝑥, 0) ⊗ 𝜔𝑒 (0), then the local state at a
later time is given by

𝜌(𝑥, 𝑡) = trℌ/𝑥

{
𝑈 (𝑡, 0)𝜌(𝑥, 0) ⊗ 𝜔𝑒 (0)𝑈†(𝑡, 0)

}
. (2.11)

Now, introduce the spectral decomposition of the environement state 𝜔𝑒 (0) =
∑
𝑘 _𝑘𝜋𝑘 , where {𝜋𝑘 =

| 𝑓𝑘⟩⟨ 𝑓𝑘 |} is a complete family of orthogonal projectors in the Hilbert space ℌ/𝑥 , and the tensor decom-
position of the unitary evolution operator

𝑈 (𝑡, 0) =
∑︁
𝑖 𝑗

𝑊 𝑖 𝑗 (𝑡) ⊗ 𝑀 𝑖 𝑗 , (2.12)

1For a general argument why the canonical states are ubiquitous states see [64, 65].
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where 𝑀 𝑖 𝑗 = | 𝑓𝑖⟩⟨ 𝑓 𝑗 | is defined on the environement and𝑊 𝑖 𝑗 (𝑡) is a matrix defined on ℌ𝑥 which can be
decomposed on an orthonormal basis {|𝜑𝑘⟩} of the local space ℌ𝑥 as 𝑊 𝑖 𝑗 (𝑡) = ∑

𝑘𝑙 (𝑊 𝑖 𝑗 (𝑡))𝑘𝑙𝐿𝑘𝑙 with
𝐿𝑘𝑙 = |𝜑𝑘⟩⟨𝜑𝑙 |. Plugging that into the time-evolved reduced density matrix one obtains

𝜌(𝑥, 𝑡) =
∑︁
𝑘

_𝑘

∑︁
𝑖

𝑊 𝑖𝑘 (𝑡)𝜌(𝑥, 0)𝑊 𝑖𝑘†(𝑡) . (2.13)

Since the _𝑘 are the eigenvalues of the environment density operator, they are all positive and one can
redefine the Kraus operators as 𝐾 𝑖 𝑗 =

√︁
_ 𝑗𝑊

𝑖 𝑗 such that the reduced dynamical map is given by

𝜌(𝑥, 𝑡) = Λ(𝑥,𝑡 ) [𝜌(𝑥, 0)] =
∑︁
𝛼

𝐾𝛼 (𝑡)𝜌(𝑥, 0)𝐾𝛼†(𝑡), (2.14)

with the trace preserving condition ∑︁
𝛼

𝐾𝛼
†(𝑡)𝐾𝛼 (𝑡) = 1ℌ𝑥

. (2.15)

When there is only one Kraus operator left, the local dynamics is unitary too.
If the local dynamical map Λ(𝑥,𝑡 ) satisfies the Markovian semi-group property

Λ(𝑥,𝑡 )Λ(𝑥,𝑠) = Λ(𝑥,𝑡+𝑠) , (2.16)

then
𝜌(𝑥, 𝑡) = Λ(𝑥,𝑡 ) 𝜌(𝑥, 0) = Λ(𝑥,𝜖 )Λ(𝑥,𝑡−𝜖 ) 𝜌(𝑥, 0) = Λ(𝑥,𝜖 ) 𝜌(𝑥, 𝑡 − 𝜖), (2.17)

from which one deduces that there is an infinitesimal generator L𝑥 , such that the infinitesimal dynamical
map Λ(𝑥,𝜖 ) = 1 + 𝜖L𝑥 , whose exponential gives the finite dynamics:

Λ(𝑥,𝑡 ) = lim
𝑛→∞

(
1 + 𝑡

𝑛
L𝑥

)𝑛
= e𝑡L𝑥 . (2.18)

Taking the time derivative of 𝜌(𝑥, 𝑡) = e𝑡L𝑥 𝜌(𝑥, 0) one has the differential equation

𝜕𝑡 𝜌(𝑥, 𝑡) = L𝑥𝜌(𝑥, 𝑡), (2.19)

which can be written in the Lindblad form

𝜕𝑡 𝜌(𝑥, 𝑡) = −i[𝐻 (𝑥), 𝜌(𝑥, 𝑡)] +
∑︁
𝑘

𝐿𝑘 (𝑥)𝜌(𝑥, 𝑡)𝐿†𝑘 (𝑥) −
1
2

{
𝐿
†
𝑘
(𝑥)𝐿𝑘 (𝑥), 𝜌(𝑥, 𝑡)

}
, (2.20)

where 𝐻 (𝑥) and the so-called jump operators {𝐿𝑘 (𝑥)} acting on the local Hilbert space ℌ𝑥 are defined
in terms of the infinitesimal Kraus operators {𝐾𝛼 (𝜖)} under a proper scaling limit [22, 23] and with
{𝐴, 𝐵} ≡ 𝐴𝐵 + 𝐵𝐴 the anticommutator of 𝐴 and 𝐵.

Solving the Lindblad equation for a many-body system is in general a very difficult task, even if a
few exact results do exist for non-interacting particles [24, 67] and for some Bethe-integrable systems
[27–29, 68].

2.2. Gaussian preserving dynamics

In this context, we consider a special class of dynamical maps that preserves the Gaussianity of the
local state. Gaussian states 𝜌(𝑥) are states for which Wick theorem applies and they are fully characterized
by the correlation matrix (two-point functions)

𝐶𝑖 𝑗 (𝑥) = ⟨𝑐†
𝑖
𝑐 𝑗⟩𝜌(𝑥 ) = trℌ𝑥

{
𝑐
†
𝑖
𝑐 𝑗𝜌(𝑥)

}
. (2.21)

If the initial state 𝜌(𝑥, 0) is Gaussian, then the unitarily evolved state 𝜌(𝑥, 𝑡) = ei𝑡𝐻 (𝑥 ) 𝜌(𝑥, 0)e−i𝑡𝐻 (𝑥 )

remains Gaussian and is fully characterized by 𝐶𝑖 𝑗 (𝑥, 𝑡) = trℌ𝑥
{𝑐†
𝑖
𝑐 𝑗𝜌(𝑥, 𝑡)}.
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However, Gaussian Preserving Dynamics (GPD) are more general and can be implemented by other
schemes. One of them is by a continuous monitoring of the system under projective measurements of
some local densities [21], which obviously destroys, in general, the unitarity of the dynamics. To be more
specific, consider a local observable 𝑄Ω, defined on some compact support Ω ⊂ Z,

𝑄Ω =
∑︁
𝑝

𝑞𝑝𝑃
(𝑝)
Ω
,

∑︁
𝑝

𝑃
(𝑝)
Ω

= 1Ω, (2.22)

where the 𝑃 (𝑝)
𝑗

are the orthogonal projectors on the corresponding subspace associated to the eigenvalue
𝑞𝑝 of the observable 𝑄Ω. Starting, for example, with a pure state |Ψ⟩, just after the measurement of the
local observable 𝑄Ω with an outcome 𝑞𝑘 , the state is projected according to the Born rule

|Ψ⟩ −→
𝑃𝑘
Ω
|Ψ⟩

⟨Ψ|𝑃𝑘
Ω
|Ψ⟩

. (2.23)

In general, projective measurements will not preserve the Gaussianity of the state. However, if one
considers the measurements of the local density �̂� 𝑗 = 𝑐

†
𝑗
𝑐 𝑗 , with the two possible outcomes 𝑞0 = 0

and 𝑞1 = 1, then the dynamics remains GPD. Indeed, the local density operator can be represented by
�̂� 𝑗 = 𝑞1𝑃

(1)
𝑗

+ 𝑞0𝑃
(0)
𝑗

with 𝑃 (1)
𝑗

+ 𝑃 (0)
𝑗

= 1 𝑗 which implies that all local number operators are projectors:

�̂� 𝑗 = 𝑃
(1)
𝑗
, 1 𝑗 − �̂� 𝑗 = 𝑃 (0)

𝑗
. (2.24)

Using the operator identity
ea�̂� 𝑗 = 1 𝑗 + (ea − 1)�̂� 𝑗 , (2.25)

we see that the projectors 𝑃 (0)
𝑗

= 1 𝑗 − �̂� 𝑗 and 𝑃 (1)
𝑗

= �̂� 𝑗 can be expressed as limits of Gaussian operators:

1 𝑗 − �̂� 𝑗 = lim
a→∞

e−a�̂� 𝑗 , �̂� 𝑗 = lim
a→∞

ea�̂� 𝑗

ea − 1
. (2.26)

Since by hypothesis the initial state is Gaussian, 𝜌 ∝ e
∑

𝑖 𝑗 𝑐
†
𝑖
𝑀𝑖 𝑗𝑐 𝑗 , from the projection rules associated to

either 1 𝑗 − �̂� 𝑗 or �̂� 𝑗 one has to consider the expression

e±a�̂� 𝑗e
∑

𝑘𝑙 𝑐
†
𝑘
𝑀𝑘𝑙𝑐𝑙e±a�̂� 𝑗 , (2.27)

which, from Baker-Campbell-Hausdorff formula, is nothing else but a Gaussian state

𝑒
∑

𝑘𝑙 𝑐
†
𝑘
𝐾𝑘𝑙𝑐𝑙 , (2.28)

associated to some new coupling matrix 𝐾 . Notice that since a Gaussian state is fully characterized by
its correlation matrix 𝐶𝑖 𝑗 , the projection rules can be translated into the following rules for the two-point
functions: If the outcome of the measurement of the local density at site 𝑘 is 1, which occurs with
probability 𝑝𝑘 = 𝐶𝑘𝑘 (𝑥, 𝑡) = ⟨�̂�𝑘⟩, then

𝐶𝑖 𝑗 (𝑥, 𝑡) −→ 𝛿𝑖𝑘𝛿 𝑗𝑘 + 𝐶𝑖 𝑗 (𝑥, 𝑡) −
𝐶𝑖𝑘 (𝑥, 𝑡)𝐶𝑘 𝑗 (𝑥, 𝑡)

𝐶𝑘𝑘 (𝑥, 𝑡)
(2.29)

and otherwise

𝐶𝑖 𝑗 (𝑥, 𝑡) −→ −𝛿𝑖𝑘𝛿 𝑗𝑘 + 𝐶𝑖 𝑗 (𝑥, 𝑡) +
[𝛿𝑖𝑘 − 𝐶𝑖𝑘 (𝑥, 𝑡)] [𝛿 𝑗𝑘 − 𝐶𝑘 𝑗 (𝑥, 𝑡)]

1 − 𝐶𝑘𝑘 (𝑥, 𝑡)
. (2.30)

Indeed, when the outcome of the measurement of the density at site 𝑘 is 1, the projection rule transforms
the two-point function 𝐶𝑖 𝑗 = tr{𝑐†

𝑖
𝑐 𝑗𝜌} into tr{𝑐†

𝑖
𝑐 𝑗 �̂�𝑘𝜌�̂�𝑘} = tr{�̂�𝑘𝑐†𝑖 𝑐 𝑗 �̂�𝑘𝜌} = ⟨𝑐†

𝑘
𝑐𝑘𝑐

†
𝑖
𝑐 𝑗𝑐

†
𝑘
𝑐𝑘⟩. After

normal ordering this six-point function, one obtains 𝛿𝑖𝑘𝛿 𝑗𝑘 ⟨𝑐†𝑘𝑐𝑘⟩ + ⟨𝑐†
𝑘
𝑐
†
𝑖
𝑐 𝑗𝑐𝑘⟩ and the last term is
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reduced to ⟨𝑐†
𝑘
𝑐𝑘⟩⟨𝑐†𝑖 𝑐 𝑗⟩ − ⟨𝑐†

𝑘
𝑐 𝑗⟩⟨𝑐†𝑖 𝑐𝑘⟩ thanks to Wick theorem. After dividing tr{𝑐†

𝑖
𝑐 𝑗 �̂�𝑘𝜌�̂�𝑘} by

the proper normalization factor tr{�̂�𝑘𝜌�̂�𝑘} = tr{�̂�𝑘𝜌} = 𝐶𝑘𝑘 , one obtains the projection rule (2.29).
Following the same logic one obtains the rule (2.30).

Whenever no measurement occurs, the time evolution is unitary and GPD such that the correlation
matrix𝐶 evolves according to𝐶 (𝑡 + 𝜏) = 𝑅†(𝜏)𝐶 (𝑡)𝑅(𝜏), where 𝑅(𝜏) is a unitary matrix. Consequently,
the combination of the unitary evolution and these projection rules leads to a quantum trajectory of the
system which is governed by a non-unitary GPD [21].

3. Local effective temperature

3.1. Evolution of the coupling matrix

Consider now a system initially prepared in a state such that the local density operator is a Gibbs
state (2.6) at some local inverse temperature 𝛽(𝑥). We assume that at a later time the new local state
generated by the local (non-unitary) dynamical map Λ(𝑥,𝑡 ) remains gaussian:

𝜌(𝑥, 𝑡) = 1
𝑍 [𝐻 (𝑥, 𝑡), 𝛽(𝑥)] e−𝛽 (𝑥 )𝑐

† (𝑥 )𝑇 (𝑥,𝑡 )𝑐 (𝑥 ) , (3.1)

where the normalization factor 𝑍 [𝐻 (𝑥, 𝑡), 𝛽(𝑥)] = trℌ𝑥

{
e−𝛽 (𝑥 )𝑐† (𝑥 )𝑇 (𝑥,𝑡 )𝑐 (𝑥 )

}
and with the new one

particle matrix
𝑇 (𝑥, 𝑡) = _ (𝑥,𝑡 ) [𝑇 (𝑥, 0)] (3.2)

evolved non-unitarily from the initial one particle Hamiltonian matrix 𝑇 (𝑥, 0) with a dynamical map
_ (𝑥,𝑡 ) . One can relate the dynamical evolution of the coupling matrix 𝑇 (𝑥, 𝑡) to the dynamical evolution
of the correlation matrix 𝐶 (𝑥, 𝑡) due to the relation

𝐶 tr(𝑥, 𝑡) = 1
1𝑥 + e𝛽 (𝑥 )𝑇 (𝑥,𝑡 )

⇔ −𝛽(𝑥)𝑇 (𝑥, 𝑡) = ln
𝐶 tr(𝑥, 𝑡)

1𝑥 − 𝐶 tr(𝑥, 𝑡) , (3.3)

where the upper script tr stands for the transposed matrix and 1𝑥 is the ℓ × ℓ identity matrix defined on
the 𝑥 cell.

Even if the quadratic form
𝐻 (𝑥, 𝑡) ≡ 𝑐†(𝑥)𝑇 (𝑥, 𝑡)𝑐(𝑥) (3.4)

entering the local state 𝜌(𝑥, 𝑡) may be interpreted as a new Hamiltonian, one is not legitimate to interpret
𝜌(𝑥, 𝑡) as a Gibbs state since 𝐻 (𝑥, 𝑡) is not the true local system Hamiltonian 𝐻 (𝑥).

Let𝑊𝑡 (𝑥) be the unitary matrix diagonalizing the coupling matrix 𝑇 (𝑥, 𝑡):

𝑊
†
𝑡 (𝑥)𝑇 (𝑥, 𝑡)𝑊𝑡 (𝑥) = 𝐸 (𝑥, 𝑡), (3.5)

where [𝐸 (𝑥, 𝑡)]𝑞𝑝 = 𝜖𝑝 (𝑡)𝛿𝑞𝑝 is the diagonal matrix associated to 𝑇 (𝑥, 𝑡). The quadratic form 𝐻 (𝑥, 𝑡)
may then be expressed in terms of instantaneous diagonal Fermi operators [(𝑥, 𝑡) = 𝑊†

𝑡 (𝑥)𝑐(𝑥) such that

𝐻 (𝑥, 𝑡) = 𝑐†(𝑥)𝑇 (𝑥, 𝑡)𝑐(𝑥) = 𝑐†(𝑥)𝑊𝑡 (𝑥)𝐸 (𝑥, 𝑡)𝑊†
𝑡 (𝑥)𝑐(𝑥)

= [†(𝑥, 𝑡)𝐸 (𝑥, 𝑡)[(𝑥, 𝑡) =
∑︁
𝑞

𝜖𝑞 (𝑡)[†𝑞 (𝑥, 𝑡)[𝑞 (𝑥, 𝑡) . (3.6)

The relation between the instantaneous diagonal Fermi operators and the diagonal Fermi operators (at
𝑡 = 0) of the local Hamiltonian 𝐻 (𝑥) = ∑

𝑞 𝜖𝑞 (𝑥)[†𝑞 (𝑥)[𝑞 (𝑥) is obtained from

[(𝑥, 𝑡) = 𝑊†
𝑡 (𝑥)𝑐(𝑥) = 𝑊

†
𝑡 (𝑥)𝑊0(𝑥)[(𝑥) ≡ 𝐷𝑡 (𝑥)[(𝑥) , (3.7)

where 𝐷𝑡 (𝑥) = 𝑊†
𝑡 (𝑥)𝑊0(𝑥) defines a unitary mapping transforming [(𝑥) into [(𝑥, 𝑡). The instantaneous

Hamiltonian (3.4) can thus be written as

𝐻 (𝑥, 𝑡) ≡ 𝑐†(𝑥)𝑇 (𝑥, 𝑡)𝑐(𝑥) = [†(𝑥)𝐷†
𝑡 (𝑥)𝐸 (𝑥, 𝑡)𝐷𝑡 (𝑥)[(𝑥) ≡ [†(𝑥)Ω(𝑥, 𝑡)[(𝑥) , (3.8)
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where the new matrix

Ω(𝑥, 𝑡) = 𝐷†
𝑡 (𝑥)𝐸 (𝑥, 𝑡)𝐷𝑡 (𝑥) = 𝑊

†
0 (𝑥)𝑇 (𝑥, 𝑡)𝑊0(𝑥) (3.9)

is not in general diagonal. With the matrix elements [Ω(𝑥, 𝑡)]𝑞𝑝 = 𝜔𝑞𝑝 (𝑥, 𝑡), the explicit expression of
𝐻 (𝑥, 𝑡) is:

𝐻 (𝑥, 𝑡) = 𝐻 (𝑥) +
∑︁
𝑞

[
𝜔𝑞𝑞 (𝑥, 𝑡) − 𝜖𝑞 (𝑥)

]
[†𝑞 (𝑥)[𝑞 (𝑥) +

∑︁
𝑞≠𝑝

𝜔𝑞𝑝 (𝑥, 𝑡)[†𝑞 (𝑥)[𝑝 (𝑥) . (3.10)

The diagonal correction to 𝐻 (𝑥) describes the energy level shift of the original single-particle spectrum
while the non-diagonal term makes the transitions between the single-particle states.

3.2. Effective local temperature

Assuming that the system is at time 𝑡 in a local Gaussian state of the form (3.1), we want to quantify
how close is that state to an actual local canonical state 𝜔(𝐻 (𝑥), _) at inverse temperature _. If the local
state is very close to this canonical state, we shall then identify the parameter _ as the effective local
inverse temperature 𝛽(𝑥, 𝑡) of the system at position 𝑥 and time 𝑡.

To properly quantify the closeness of the states, we consider the distance

𝑑 (𝑥, 𝑡, _) ≡ ∥𝜌(𝑥, 𝑡) − 𝜔(𝐻 (𝑥), _)∥ (3.11)

defined from the Hilbert-Schmidt operator norm (on bounded operators)

∥𝐴∥ =
√︁

tr{𝐴†𝐴} . (3.12)

A more natural measure of the distance between two states 𝜌1 and 𝜌2 would have been given by the
trace-norm ∥𝜌1 − 𝜌2∥1, where

∥𝐴∥1 = tr|𝐴| = tr
√︁
𝐴†𝐴 ,

as this distance is small if and only if the two states are effectively indistinguishable in the experimental
sense. This is not the case for the Hilbert-Schmidt norm since, for high-dimensional spaces, it can be
small even for perfectly distinguishable states (for example orthogonal states). Nevertheless, the two
norms are related through the inequality

∥𝐴∥1 ⩽
√
𝑑∥𝐴∥,

where 𝑑 is the dimension of the Hilbert space on which 𝐴 is defined. In this sense, for finite-dimensional
spaces, the two norms lead to physically equivalent conclusions. The advantage of using the Hilbert-
Schmidt norm is that it is much easier to be handled.

The effective local inverse temperature 𝛽(𝑥, 𝑡) at time 𝑡 is defined through the minimization of the
distance 𝑑 (𝑥, 𝑡, _) over the one-parameter canonical family 𝜔(𝐻 (𝑥), _) :

𝑑 (𝑥, 𝑡, 𝛽(𝑥, 𝑡)) ≡ inf_𝑑 (𝑥, 𝑡, _) . (3.13)

Taking the _ derivative of 𝑑2(𝑥, 𝑡, _) one arrives at

𝜕_𝑑
2(𝑥, 𝑡, _) = 2⟨

(
𝐻 (𝑥) − ⟨𝐻 (𝑥)⟩𝜔 (𝐻 (𝑥 ) ,_)

)
(𝜌(𝑥, 𝑡) − 𝜔(𝐻 (𝑥), _))⟩𝜔 (𝐻 (𝑥 ) ,_) , (3.14)

where we have defined the expectation value ⟨𝐴⟩𝜔 ≡ tr{𝐴𝜔}. Consequently, the roots of that equation
are simply given by the vanishing of the connected correlation function

⟨𝐻 (𝑥)Δ_𝜌(𝑥, 𝑡)⟩𝑐_
���
_=𝛽 (𝑥,𝑡 )

= 0, (3.15)

where Δ_𝜌(𝑥, 𝑡) ≡ 𝜌(𝑥, 𝑡) −𝜔(𝐻 (𝑥), _) and ⟨𝐴𝐵⟩𝑐 = ⟨𝐴𝐵⟩− ⟨𝐴⟩⟨𝐵⟩. See [53, 54] for a somehow related
approach based on the fidelity measure.
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To give an explicit formula in the case of Gaussian states, we need to compute the following trace

tr
{
e𝑐

† (𝑥 )𝐴(𝑥 )𝑐 (𝑥 )𝑒𝑐
† (𝑥 )𝐵(𝑥 )𝑐 (𝑥 )

}
. (3.16)

Noticing that
[𝑐†(𝑥)𝐴(𝑥)𝑐(𝑥), 𝑐†(𝑥)𝐵(𝑥)𝑐(𝑥)] = 𝑐†(𝑥) [𝐴(𝑥), 𝐵(𝑥)]𝑐(𝑥) (3.17)

one has from Backer-Campbell-Hausdorff formula

e𝑐
† (𝑥 )𝐴(𝑥 )𝑐 (𝑥 )e𝑐

† (𝑥 )𝐵(𝑥 )𝑐 (𝑥 ) = e𝑐
† (𝑥 )𝐴(𝑥 )𝑐 (𝑥 )+𝑐† (𝑥 )𝐵(𝑥 )𝑐 (𝑥 )+ 1

2 [𝑐
† (𝑥 )𝐴(𝑥 )𝑐 (𝑥 ) ,𝑐† (𝑥 )𝐵(𝑥 )𝑐 (𝑥 ) ]+... , (3.18)

that is, using the previous commutator identity,

e𝑐
† (𝑥 )𝐴(𝑥 )𝑐 (𝑥 )e𝑐

† (𝑥 )𝐵(𝑥 )𝑐 (𝑥 ) = e𝑐
† (𝑥 ) (𝐴(𝑥 )+𝐵(𝑥 )+ 1

2 [𝐴(𝑥 ) ,𝐵(𝑥 ) ]+... )𝑐 (𝑥 ) = e𝑐
† (𝑥 )𝑀 (𝑥 )𝑐 (𝑥 ) , (3.19)

with the matrix 𝑀 defined by
e𝑀 (𝑥 ) = e𝐴(𝑥 )e𝐵(𝑥 ) . (3.20)

Now, since the trace of a Gaussian state is

tr
{
e𝑐

† (𝑥 )𝑀 (𝑥 )𝑐 (𝑥 )
}
= det(1𝑥 + e𝑀 (𝑥 ) ) , (3.21)

where 1𝑥 is the unit matrix of size ℓ (the size of the local cell), one arrives at the identity

tr
{
e𝑐

† (𝑥 )𝐴(𝑥 )𝑐 (𝑥 )e𝑐
† (𝑥 )𝐵(𝑥 )𝑐 (𝑥 )

}
= det(1𝑥 + e𝐴(𝑥 )e𝐵(𝑥 ) ) . (3.22)

Together with the formula

𝜕_det(1 + e_𝐴e𝐵) = det(1 + e_𝐴e𝐵) tr{(1 + e_𝐴e𝐵)−1𝐴e_𝐴e𝐵} (3.23)

and (3.1), the equation (3.15) leads to

det(1𝑥 + e−2_𝑇 (𝑥,0) )
det(1𝑥 + e−_𝑇 (𝑥,0) )

tr
{
𝑇 (𝑥, 0)

(
1

1𝑥 + e_𝑇 (𝑥,0)
− 1
1𝑥 + e2_𝑇 (𝑥,0)

)}
− det(1𝑥 + e−_𝑇 (𝑥,0)e−𝛽 (𝑥 )𝑇 (𝑥,𝑡 ) )

det(1𝑥 + e−𝛽 (𝑥 )𝑇 (𝑥,𝑡 ) )

× tr
{
𝑇 (𝑥, 0)

(
1

1𝑥 + e_𝑇 (𝑥,0)
− 1
1𝑥 + e𝛽 (𝑥 )𝑇 (𝑥,𝑡 )e_𝑇 (𝑥,0)

)}����
_=𝛽 (𝑥,𝑡 )

= 0 . (3.24)

This cumbersome explicit condition is the main result we wanted to derive.
At high temperature initial state and assuming that the effective local temperature remains high too,

that is for _ ∼ 𝛽(𝑥) ≪ 1, using the identity det(1𝑥 + 𝜖𝑀) = 1 + 𝜖 tr{𝑀} + 𝑜(𝜖), to the leading order in
𝛽(𝑥), the previous equation drastically simplifies into

_ tr
{
𝑇2(𝑥, 0)

}
− 𝛽(𝑥) tr {𝑇 (𝑥, 0)𝑇 (𝑥, 𝑡)}

��
_=𝛽 (𝑥,𝑡 ) = 0, (3.25)

which gives the effective local temperature as

𝛽(𝑥, 𝑡) = 𝛽(𝑥) tr{𝑇 (𝑥, 0)𝑇 (𝑥, 𝑡)}
tr{𝑇2(𝑥, 0)}

= 𝛽(𝑥)
(
1 + tr{𝑇 (𝑥, 0)Δ(𝑥, 𝑡)}

tr{𝑇2(𝑥, 0)}

)
, (3.26)

where we have defined the difference matrix Δ(𝑥, 𝑡) ≡ 𝑇 (𝑥, 𝑡) − 𝑇 (𝑥, 0). Using (3.9) we have in terms of
the one-particle spectrum

𝛽(𝑥, 𝑡) = 𝛽(𝑥) tr{𝐸 (𝑥, 0)Ω(𝑥, 𝑡)}
tr{𝐸2(𝑥, 0)}

= 𝛽(𝑥)
∑
𝑞 𝜖𝑞 (𝑥)𝜔𝑞𝑞 (𝑥, 𝑡)∑

𝑞 𝜖
2
𝑞 (𝑥)

. (3.27)
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In order to appreciate the meaning of this formula, let us introduce the scalar product defined on
End(ℌ𝑥) by

(𝐴, 𝐵) = tr{𝐴†𝐵} , ∀ 𝐴, 𝐵 ∈ End(ℌ𝑥) . (3.28)
Equation (3.26) can thus be written as

𝛽(𝑥, 𝑡) = 𝛽(𝑥) (𝑇 (𝑥, 0), 𝑇 (𝑥, 𝑡))(𝑇 (𝑥, 0), 𝑇 (𝑥, 0)) . (3.29)

This means that only the non-orthogonal part of the actual one-particle Hamiltonian 𝑇 (𝑥, 𝑡), with respect
to the chosen reference state defined through the one-particle Hamiltonian 𝑇 (𝑥, 0), contributes to the
effective local inverse temperature 𝛽(𝑥, 𝑡). Whatever part in 𝑇 (𝑥, 𝑡) that is orthogonal to 𝑇 (𝑥, 0) will
not affect the value of the local inverse temperature, it may in general nevertheless increase the distance
to the optimum canonical state 𝜔(𝐻 (𝑥), 𝛽(𝑥, 𝑡)). If the one-particle Hamiltonian 𝑇 (𝑥, 𝑡) is completely
orthogonal to the coupling matrix of the system, then this procedure will fix an infinite value to the local
temperature.

Moreover, since in a hydrodynamical cell of size ℓ the local system is translation invariant, the
local Hamiltonian can be decomposed into a sum over local conserved charges 𝐻 (𝑥) = ∑

𝑘 𝐻
(𝑘 ) (𝑥) =∑

𝑘 𝑞
(𝑘 ) (𝑥)𝑐†(𝑥)𝑄 (𝑘 ) (𝑥)𝑐(𝑥), where the matrices 𝑄 (𝑘 ) (𝑥) are given by2(

𝑄 (𝑘 ) (𝑥)
)
𝑖 𝑗
=

1
2
(𝛿𝑖, 𝑗+𝑘 + 𝛿𝑖+𝑘, 𝑗 ) (3.30)

and 𝑞 (𝑘 ) (𝑥)s are real coefficients. Typically,𝑄 (0) gives the on-site energy contribution or potential energy

𝐻 (0) (𝑥) = 𝑞 (0) (𝑥)
∑︁
𝑗

𝑐
†
𝑗
(𝑥)𝑐 𝑗 (𝑥) , (3.31)

while 𝑄 (1) (𝑥) gives the kinetic contribution (one-site hopping terms)

𝐻 (1) (𝑥) = 𝑞 (1) (𝑥)
∑︁
𝑗

(
𝑐
†
𝑗
(𝑥)𝑐 𝑗+1(𝑥) + 𝑐†𝑗+1(𝑥)𝑐 𝑗 (𝑥)

)
(3.32)

and so on. In general, usual short range Hamiltonians contain only very few of these charges but one may
also encounter long-range hopping situations, for which in general the physical coefficients 𝑞 (𝑘 ) are given
by a decaying function of the hopping distance 𝑘 , such as a power law 𝑞 (𝑘 ) ∼ 𝑘−𝛼 with some positive
exponent 𝛼. Notice here that we do not consider in the reference Hamiltonian 𝐻 (𝑥) the presence of
current like terms, associated to antisymmetric Hermitian matrices of the form i 𝑗 (𝑘 ) (𝑥) (𝛿𝑖, 𝑗+𝑘 − 𝛿𝑖+𝑘, 𝑗 )
leading to terms like 𝐽 (1) (𝑥) = i 𝑗 (1) (𝑥)∑ 𝑗

(
𝑐
†
𝑗
(𝑥)𝑐 𝑗+1(𝑥) − 𝑐†𝑗+1(𝑥)𝑐 𝑗 (𝑥)

)
, but in principle we could.

To be more specific, let us suppose that the reference Hamiltonian is the sum over the 𝐾 + 1 first
charges 𝑄 (𝑘 ) . The set of charges {𝑄 (𝑘 ) } for 𝑘 = 0, 1, . . . , 𝐾 is obviously not a complete set but all the
charges are orthogonal to each other since (𝑄𝑘 , 𝑄𝑘′) ∝ 𝛿𝑘,𝑘′ . Indeed, the 𝑘 matrix 𝑄 (𝑘 ) = 1

2 (𝐿𝑘 + 𝑅𝑘),
where 𝐿𝑘 is the shift to the left by a distance 𝑘 and 𝑅𝑘 the corresponding shift to the right. For 𝑘 = 0,
𝑄 (0) = 𝐿0 = 𝑅0 = 1𝑥 . Since 𝐿†

𝑘
= 𝑅𝑘 , one has (𝐿𝑘 , 𝑅𝑝) = tr{𝐿†

𝑘
𝑅𝑝} = tr{𝑅𝑝+𝑘} = 0 and consequently

(𝑄 (𝑘 ) , 𝑄 (𝑝) ) = 1
4
[
(𝐿𝑘 , 𝐿𝑝) + (𝑅𝑘 , 𝑅𝑝)

]
=

1
4
(
tr{𝐿𝑝−𝑘} + tr{𝑅𝑝−𝑘}

)
=
ℓ

2
𝛿𝑘, 𝑝 ∀𝑘 ≠ 0 , (3.33)

(𝑄 (0) , 𝑄 (0) ) = ℓ . (3.34)

One can develop the 𝑇 (𝑥, 𝑡) coupling matrix into this set of charges plus a remaining part which is
orthogonal to it:

𝑇 (𝑥, 𝑡) =
𝐾∑︁
𝑘=0

𝑞 (𝑘 ) (𝑥, 𝑡)𝑄 (𝑘 ) (𝑥) + 𝑇⊥(𝑥, 𝑡) , (3.35)

2We suppose here that the hydrodynamical cell is large enough such that we can neglect the boundary details. The 𝐻 (𝑘) (𝑥 ) are
charges in the sense that they commute with each other and as a consequence with the Hamiltonian [𝐻 (𝑥 ) , 𝐻 (𝑘) (𝑥 ) ] = 0 which
implies that they are conserved quantities 𝜕𝑡𝐻 (𝑘) (𝑥 ) = 0. Locally, this translates into continuity equations satisfied by the charge
densities 𝑞 (𝑘) (𝑥 ) [𝑐†

𝑗
(𝑥 )𝑐 𝑗+𝑘 (𝑥 ) + 𝑐†𝑗+𝑘 (𝑥 )𝑐 𝑗 (𝑥 ) ].
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with

(𝑄 (𝑝) (𝑥), 𝑇 (𝑥, 𝑡)) = 𝑞 (𝑝) (𝑥, 𝑡) ℓ
2

∀𝑝 ≠ 0, (3.36)

(𝑄 (0) (𝑥), 𝑇 (𝑥, 𝑡)) = 𝑞 (0) (𝑥, 𝑡)ℓ . (3.37)

Notice here that since 𝑄 (𝑘 ) = 1
2 (𝐿𝑘 + 𝑅𝑘), the coefficient (𝑄 (𝑘 ) (𝑥), 𝑇 (𝑥, 𝑡)) is nothing else but the trace

over the two upper and lower 𝑘-diagonals of 𝑇 (𝑥, 𝑡), that is 1
2
∑
𝑗 [𝑇𝑗 , 𝑗+𝑘 (𝑥, 𝑡) +𝑇𝑗+𝑘, 𝑗 (𝑥, 𝑡)]. This implies

that even if within the cell 𝑥 the matrix 𝑇 (𝑥, 𝑡) itself is not homogeneous, the outcome to the local thermal
properties is averaged over the hydrodynamical cell. Plugging (3.35) into (3.29) gives our final formula

𝛽(𝑥, 𝑡) = 𝛽(𝑥)
𝑞 (0) (𝑥)𝑞 (0) (𝑥, 𝑡) + 1

2
∑𝐾
𝑘=1 𝑞

(𝑘 ) (𝑥)𝑞 (𝑘 ) (𝑥, 𝑡)[
𝑞 (0) (𝑥)

]2 + 1
2
∑𝐾
𝑘=1

[
𝑞 (𝑘 ) (𝑥)

]2 . (3.38)

If the Hamiltonian 𝐻 (𝑥) is a purely hopping Hamiltonian, then only 𝑞 (1) (𝑥) is non-zero and the formula
for the inverse temperature simplifies into

𝛽(𝑥, 𝑡) = 𝛽(𝑥) 𝑞
(1) (𝑥, 𝑡)
𝑞 (1) (𝑥)

,

which is kind of intuitive since it reflects the simplest identification of 𝛽(𝑥, 𝑡)𝐻 (𝑥) ≃ 𝛽(𝑥)𝐻 (𝑥, 𝑡),
up to orthogonal parts 𝑇⊥(𝑥, 𝑡), leading in the case of a single charge to 𝛽(𝑥, 𝑡)𝑞 (𝑘 ) (𝑥)𝑄 (𝑘 ) (𝑥) ≃
𝛽(𝑥)𝑞 (𝑘 ) (𝑥, 𝑡)𝑄 (𝑘 ) (𝑥) that is 𝛽(𝑥, 𝑡)𝑞 (𝑘 ) (𝑥) = 𝛽(𝑥)𝑞 (𝑘 ) (𝑥, 𝑡).

3.3. Effective temperature of the hopping fermions with projective measurements of
the local densities

Let us apply this derivation to the case of the one-dimensional hopping fermions subjected to
projective measurements of their local densities that we described in section 2.2. The unitary dynamics
is perturbed by the projective measurements at a rate 1/𝜏 of the one-site occupation numbers �̂� 𝑗 . As 𝜏
is increasing, the dynamics is getting closer and closer to the unitary evolution. On the contrary, for a
high measurement rate (low 𝜏) the system dynamics is very far from a unitary dynamics, with a very low
initial spreading and finally a saturation of the entanglement to a constant value [21].

The dynamics being GPD, it is fully encoded into the time-evolution of the two-point function (2.21)
through the unitary evolution 𝐶 (𝑡 + 𝑠) = 𝑅†(𝑠)𝐶 (𝑡)𝑅(𝑠) and the projection rules (2.29) and (2.30), from
which we reconstruct the coupling matrix 𝑇 . We averaged the deduced inverse temperature (3.38) over
different quantum trajectories3, typically we have taken up to a 100 different trajectories for a cell of size
ℓ ∼ 100 sites.

We show the behavior of the effective inverse temperature in figure 1. On the left, the scaling of the
averaged inverse temperature is plotted versus time for various measurement rates 1/𝜏, computed for
several values of the initial inverse temperature from 𝛽(0) = 0.1 up to 𝛽(0) = 5. We observe a clear
exponential decay toward zero (infinite temperature) at a rate 𝛼(𝜏) which is very well fitted by 2/𝜏, see
the right-hand figure. This value coincides with the inverse of the average life-time 𝜏/2 of the semi-
classical non-interacting quasi-particles that emerge from a Wigner function formalism applied to such a
problem [66]. Within this picture, the average inverse temperature is proportional to the probability that
a semi-classical particle, created at the initial time, survives up to time 𝑡. The precise connection of the
effective local temperature with the life-time of those semi-classical particles is still under investigation
and will be presented in a forthcoming publication.

4. Discussion

We have discussed the possibility of identifying an effective local temperature for one-dimensional
fermionic quantum systems undergoing a Gaussian Preserving Dynamics. The identification relies on

3Different quantum trajectories are generated from an initial state by following in time the different possible outcomes and
“state re-preparations” that occur after each projective measurements of the local densities.
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Figure 1. (Colour online) On the left, we show the time evolution of the averaged inverse temperature
starting from an initial value 𝛽(0) (in linear-log scale). The different colored symbols correspond to
different values of the measurement rate 1/𝜏. The dashed lines are exponential fits with the ansatz
⟨𝛽(𝑡)⟩/𝛽(0) = e−𝛼(𝜏 )𝑡 . On the right, we show the evolution of the fitting parameter 𝛼(𝜏) as a function
of 𝜏 in a log-log scale. The dashed line corresponds to 𝛼(𝜏) = 2/𝜏.

the comparison between the actual Gaussian state, generated by a dynamics which can be in general
non-unitary, and a reference Gibbs state which for quadratic Hamiltonians is Gaussian too. The effective
local temperature is deduced from the minimization of the distance between the two states, using the
Hilbert-Schmidt norm of trace class operators, and leads to a cumbersome formula which drastically
simplifies in the high temperature limit. In this regime, the effective temperature is proportional to the
projection of the actual one particle Hamiltonian, which represents the instantaneous coupling content
of the evolving system, on the reference one-particle Hamiltonian. Decomposing the Hamiltonian of the
system on a set of local charges, representing different orthogonal energy components of the system, we
show that the part of the actual coupling matrix which is orthogonal to the initial charge content does not
contribute to the value of the effective inverse local temperature. We have applied this theory to the case
of a GPD of one-dimensional hopping fermions submitted to projective measurements of the fermions
densities. In such a case, we have shown numerically that the local effective temperature increases with
an exponential law toward infinity as expected, see [21].
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Деякi мiркування щодо локальної термалiзацiї
нерiвноважних просторових квантових систем

М. Коппола, Д. Каревскi
Унiверситет Лотарингiї, CNRS, LPCT, F-54000 Нансi, Францiя

Обговорюється можливiсть визначення локальної температури у просторових квантових системах бага-
тьох частинок, якi знаходяться далеко вiд стану рiвноваги. Для найпростiшої модельної системи вiльних
фермiонiв отримано явний вираз для ефективної температури у випадку, коли гаусовi динамiчнi стани
системи не завжди задовольняють умову унiтарностi. У цьому наближеннi ми розглядаємо перескоковi
механiзми мiграцiї фермiонiв на одновимiрнiй ґратцi пiд впливом випадкових проективних вимiрювань
локальних чисел заповнення. На основi усереднення за багатьма квантовими траєкторiями показано, що
ефективна температура експоненцiйно прямує до безмежностi.

Ключовi слова: квантова статистика, нерiвноважна статистична механiка, вiдкритi квантовi системи
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