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It is well known that the Dresselhaus spin-orbit coupling (SOC) in semiconductor two dimensional electron
gases (2DEGs) possesses both linear and cubic in momentum contributions. Nevertheless, the latter is usually
neglected in most theoretical studies. However, recent Kerr rotation experiments have revealed a significant
enhancement of the cubic Dresselhaus interaction by increasing the drift velocities in 2DEGs hosted in GaAs
quantum wells. Here, we present a study of the optical spin Hall conductivity in 2DEGs under the simultaneous
presence of Rashba and (linear plus cubic) Dresselhaus SOC. The work was done within the Kubo formalism in
linear response. We show that the coexistence of the Rashba and cubic Dresselhaus SOC in 2DEGs promotes a
strong anisotropy of the band spin splitting which in turn leads to a very characteristic frequency dependence
of the spin Hall conductivity. We find that the spin Hall conductivity response could be very sensible to sizeable
cubic-Dresselhaus coupling strength. This may be of relevance for the optical control of spin currents in 2DEGs
with non-negligible cubic-Dresselhaus SOC.

Key words: spin-orbit, 2DEGs, spin Hall effect, spin conductivity, spin transport

1. Introduction

The spin-orbit coupling (SOC) is the origin of a wide range of fascinating phenomena in solid
state physics [1]. It promotes the splitting of the conduction and valence bands in semiconductors, is
the main source of spin scattering processes through the Dyakonov–Perel [2] and Elliot–Yafet [3, 4]
spin relaxation mechanisms, induces the spin-to-charge current interconversion [5], gives rise to the
appearance of topological edge states [6–10] and persistent spin helix behavior [11, 12], and it is a key
element for the generation of the spin Hall effect [13–16], among other phenomena. In two-dimensional
semiconducor electron gases (2DEGs), the SOC produces a zero-field band spin splitting owing to
the breaking of structural and bulk inversion symmetry, widely known as the Rashba [17, 18] and
Dresselhaus [19] SOC effects. This type of SOC introduces a spin-momentum locking of the conduction
electrons leading to effective magnetic fields which in turn yields to the precession of the spins. While
the Rashba Hamiltonian is linear in momentum by crystal symmetry, the Dresselhaus term possesses in
general both 𝒑-linear and 𝒑-cubic terms contributions. Nevertheless, widespread spin-transport studies
have focused on the dominant linear dependence of the Dresselhaus SOC in typical 2DEGs. Interestingly,
in the 𝒑-linear regime, and as long as the values of the Rashba and Dresselhaus coupling strengths are
set equal [20], a strong suppression of the spin relaxation can be attained, leading to the realization of the
persistent spin helix phenomenon. It has been also established that the precise control of the spin state,
along with the relative directions of the Rashba and both linear and non-linear Dresselhaus SOC fields
are crucial for stability of a persistent spin helix state [21–23].
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Generally, the 𝒑-cubic SOC of the Dresselhaus term in low-dimensional structures is neglected or
assumed to be just a weak disturbance to the spin-transport properties [24]. However, very recent Kerr
rotation spectroscopy experiments on the impact of an in-plane electric field on the drifting spins in GaAs
quantum wells revealed a significant enhancement of the 𝒑-cubic Dresselhaus interaction by increasing
the drift velocities [25]. Clearly, the 𝒑-cubic fields introduce oscillations of the spin polarization during
the spin-transport and may cause, in conjunction with disorder, an additional spin dephasing, which
are detrimental for instance to the robustness of realistic spin-transistors[26, 27]. Moreover, the recent
theoretical and experimental studies have put forward a significant role of the anisotropy on the spin
dynamics in semiconductor narrow wires which are induced by the interaction between the linear and
cubic-Deresselhaus spin-orbit fields and the Larmor precession under an in-plane magnetic field [28, 29].
Very recent theoretical studies have emphasized a complex picture that emerges once we consider
the dominant cubic-Deresselhaus SOC by exploring the superconducting correlations, the support of
Majorana bound states relevant for superconducting spintronics [30]. The effect of the 𝒑-cubic term of
the Dresselhaus and its interplay with the 𝒑-linear Rashba term on the spin Hall conductivity has not been
explored so far. Since the spin Hall effect is tied to the spin-charge current interconversion mediated by
the Rashba and Dresselhaus SOC, there is evidently a need for a better understanding of the significance
of the 𝒑-cubic Dresselhaus contribution to the spin-transport properties.

In this paper, we use the Kubo formulation of quantum transport to study the optical spin Hall
conductivity response of two-dimensional electron gases with joined Rashba and Dresselhaus SOC
effects and evaluate the impact of the cubic-Dresselhaus contribution.

2. Spin Hall effect and SOC Hamiltonian models in 2DEGs

The generation and manipulation of spin currents through the spin Hall effect (SHE) is of funda-
mental importance in spintronics. The SHE describes the flow of a spin current in a sample material in
perpendicular direction to a driven longitudinal electric field in the presence of a SOC-induced effective
magnetic field. Consequently, the driven electric current is deflected to the sample edges depending upon
its spin orientation, causing an accumulation of spin-polarization without generating a Hall voltage [16].
The SHE can be generated by the extrinsic and intrinsic SOC mechanisms. The extrinsic mechanism
is launched by impurity scattering processes in periodic crystals, which can be generated by both skew
scattering [31] and side jump [32] processes. On the other hand, the intrinsic mechanism was first de-
scribed by anomalous Hall effect (AHE) in 1954 by Karplus and Luttinger [33], but it was first related
to the SHE in 2003 by Murakami, Nagaosa and Zhang [34, 35]. This mechanism depends on the band
structure of the crystal material. The Rashba and Dresselhaus interactions are two of the main intrinsic
SOC sources of the spin Hall conductivity in 2DEGs. The intrinsic SHE was first observed by Kato et
al. [36] and Wunderlich et al. [15].

Since in this work we are interested in the study of spin Hall conductivity for low-dimensional
semiconductor heterostructures with SOC of the Rashba and Dresselhaus type with an emphasis on the
interplay of the effect of the cubic term in the Dresselhaus SOC, herein below we discuss the main
characteristics of its model Hamiltonians.

2.1. Rashba spin orbit coupling

The Rashba SOC arises from the structure inversion asymmetry (SIA) in the confinement poten-
tial 𝑉 (r) of the quantum semiconductor heterostructure that hosts the 2DEG. It is the asymmetry in this
potential that generates an electric field E = −∇𝑉 (r), that in turn induces the coupling of the electron
spins with its momentum. The Rashba SOC is described by the Hamiltonian [17, 18, 37],

�̂�𝑅 =
𝛼

ℏ
(𝝈 × p̂) · ẑ =

𝛼

ℏ

(
�̂�𝑥 𝑝𝑦 − �̂�𝑦𝑝𝑥

)
, (2.1)

in which p̂ is the electron momentum in the plane of the 2DEG, 𝝈 is the vector of the Pauli matrices
and 𝛼 is the Rashba coefficient which is gate controllable and depends on the material and on the
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effective electric field at the interface of the 2DEG [37]. Under this interaction and in the absence of the
Dresselhaus SOC, the total Hamiltonian reads,

�̂� = �̂�0 + �̂�𝑅 =
𝑝2

2𝑚∗ + 𝛼

ℏ

(
�̂�𝑥 𝑝𝑦 − �̂�𝑦𝑝𝑥

)
, (2.2)

where �̂�0 is the free particle Hamiltonian and 𝑚∗ is the electron effective mass. This Hamiltonian leads
to the well known spin-splitting of the electron bands in momentum space,

E±(k) =
ℏ2𝑘2

2𝑚∗ ± 𝛼𝑘, (2.3)

which are characterized by the eigenvectors

|k,±〉 = eik·r
√

2

(
1

∓iei\

)
, with \ = arctan

(
𝑘𝑦

𝑘𝑥

)
. (2.4)

where k = (𝑘𝑥 , 𝑘𝑦) and 𝑘 = |k|.

2.2. Dresselhaus spin orbit coupling

The three-dimensional SOC correction for a free particle Hamiltonian is due to the bulk inversion
asymmetry (BIA) observed in semiconductors with zinc-blende cristalline structure, and it is given by
the Dresselhaus Hamiltonian [19]

�̂�3𝐷
𝐷 = 𝛾

[
𝑝𝑥

(
𝑝2
𝑦 − 𝑝2

𝑧

)
�̂�𝑥 + 𝑝𝑦

(
𝑝2
𝑧 − 𝑝2

𝑥

)
�̂�

𝑦
+ 𝑝𝑧

(
𝑝2
𝑥 − 𝑝2

𝑦

)
�̂�𝑧

]
, (2.5)

where the 𝛾 coefficient is a material dependent constant and gives the strength of the Dresselhaus SOC. For
a quantum well potential profile along the 𝑧-direction, a two-dimensional Hamiltonian �̂�2𝐷

𝐷
is obtained

after taking the expectation value with the wave function of the quantum well ground state along such
a direction, 〈�̂�3𝐷

𝐷
〉, which after the use of 〈𝑝𝑧〉 = 0 due to the quantum well symmetry, in conjunction

with 〈𝑝𝑧2/ℏ2〉 ∼ (π/𝐿𝑧)2, with 𝐿𝑧 being the width of the quantum well layer, the Dresselhaus SOC
Hamiltonian for the 2DEG reduces to

�̂�2𝐷
𝐷 = �̂�𝐷 + �̂�𝐷3 =

𝛽

ℏ

(
𝑝𝑦�̂�𝑦 − 𝑝𝑥�̂�𝑥

)
+ 𝛾

ℏ3
(
𝑝𝑥 𝑝

2
𝑦�̂�𝑥 − 𝑝𝑦𝑝

2
𝑥�̂�𝑦

)
, (2.6)

where 𝛽 = 𝛾〈𝑝𝑧2/ℏ2〉. Hence, in general the Dresselhaus SOC in 2DEGs has both a linear �̂�𝐷 and a
cubic �̂�𝐷3 contribution. The latter is usually neglected with the argument that 〈𝑝2

𝑧〉 � 𝑝𝑥 , 𝑝𝑦.

2.3. Joined Rashba and Dresselhaus SOC

As we mentioned, here we are interested in the effect of the cubic term of Dresselhaus SOC in 2DEG’s
under the joined action of the Rashba and Dresselhaus SOC. The total Hamiltonian of this system can be
written as

�̂� = �̂�0 + �̂�𝑅 + �̂�2𝐷
𝐷 =

𝑝2

2𝑚∗ + 𝛼

ℏ

(
�̂�𝑥 𝑝𝑦 − �̂�𝑦𝑝𝑥

)
+ 𝛽

ℏ

(
𝑝𝑦�̂�𝑦 − 𝑝𝑥�̂�𝑥

)
+ 𝛾

ℏ3
(
𝑝𝑥 𝑝

2
𝑦�̂�𝑥 − 𝑝𝑦𝑝

2
𝑥�̂�𝑦

)
. (2.7)

This Hamiltonian leads to the energy band dispersion,

Ea (k, \) =
ℏ2𝑘2

2𝑚∗ + aΔ(𝑘, \)𝑘, (2.8)

in which a = ±1, \ is given in equation (2.4), and

Δ(𝑘, \) =
√︂
𝛼2 + 𝛽2 − 2𝛼𝛽 sin 2\ + 𝛾𝑘2 sin 2\

(
−𝛼 + 𝛽 sin 2\ + 𝛾

4
𝑘2 sin 2\

)
. (2.9)
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The eigenstates for the Hamiltonian (2.7) are given by

|k, a〉 = eik·r
√

2

(
1

ia
𝑘Δ(𝑘, \ ) (𝛼𝑘+ − i𝛽𝑘− − 𝛾𝑘+𝑘2 sin \ cos \)

)
, (2.10)

with 𝑘± = 𝑘𝑥 ± i𝑘𝑦.

3. Optical spin Hall conductivity (SHE)

Consider now a 2DEG with joined Rashba and Dresselhaus SOC as in (2.7) and let us seek for the
response of applying an uniform electric field of frequency 𝜔 and aligned along the �̂� direction. If the
perturbation starts at time 𝑡0 = 0, then the optical spin Hall conductivity of spins 𝑧-oriented electrons
flowing along the 𝑥 direction can be described using the Kubo formalism of quantum transport. It reads
explicitly,

𝜎
𝑠𝑧
𝑥𝑦(𝜔) =

𝑒

ℏ𝐴(𝜔 + i[)

∞∫
0

d𝑡 ei(𝜔+i[)𝑡
∑︁
𝒌 ,a

𝑓 (Ea)𝑇=0〈Ψ𝒌 ,a (𝒓) | [Ĵ 𝑠𝑧
𝑥 (𝑡), �̂�𝑦(0)] |Ψ𝒌 ,a (r)〉, (3.1)

where 𝑓 (Ea)𝑇=0 is the Fermi-Dirac distribution function evaluated at zero temperature, Ĵ 𝑠𝑧
𝑥 (𝑡) is the

conventional spin-current operator written in the interaction representation, �̂�𝑦(0) is the velocity operator
at 𝑡0 = 0, |Ψ𝒌 ,a (𝒓)〉 are the eigenvectors of the non-perturbed Hamiltonian, 𝑒 is the charge of the electrons,
𝐴 is the area of the sample, and [ shows that the perturbation is turned on adiabatically. This ensures
a causal response, but also can be interpreted as a phenomenological parameter that characterizes the
disipation effects due to the scattering by disorder. In analogy with the charge current definition, the
conventional spin-current operator written in the Schrödinger representation is expressed through the
anti-commutator,

Ĵ 𝑠𝑧
𝑥 =

1
2
{�̂�𝑥 , 𝑠𝑧}, (3.2)

with 𝑠𝑧 =
ℏ
2 �̂�𝑧 and the 𝑥-component of electron velocity operator is �̂�𝑥 (0) = 𝜕�̂�

𝜕�̂�𝑥
.

3.1. Pure Rashba coupling

It is illustrative to revisit the result obtained for the frequency dependent spin Hall conductivity in the
absence of Dresselhaus interaction, considering the Rashba SOC only. For this situation, the expectation
value of the “spin current-charge current” correlation function leads simply to

〈k, a | [Ĵ 𝑠𝑧
𝑥 (𝑡), �̂�𝑦(0)] |k, a〉 =

ia𝛼ℏ
𝑚∗𝑘

𝑘2
𝑥 cos

(
2𝛼𝑘𝑡
ℏ

)
, (3.3)

from which, after making the substitution

∑︁
k,a

a 𝑓 (Ea)𝑇=0 → −
2π∫
0

𝑘F−∫
𝑘F+

𝐴𝑘

(2π)2 d𝑘 d\,

and carrying out the time-integration in the Kubo formula, leads to the frequency dependent spin Hall
conductivity,

𝜎
𝑠𝑧
𝑥𝑦(𝜔) =

𝑒

8π
− ℏ3𝑒

32π𝛼2𝑚∗ (𝜔 + i[)
{
arctanh

[
2𝛼𝑘F−

ℏ(𝜔 + i[)

]
− arctanh

[
2𝛼𝑘F+

ℏ(𝜔 + i[)

]}
, (3.4)

where 𝑘F± are the (Fermi) wave numbers for the spin-splitted a = ± bands at the Fermi energy EF, defined
by

𝑘F± = ∓𝛼𝑚∗

ℏ2 +

√︄
𝛼2𝑚∗2

ℏ4 + 2𝑚∗

ℏ2 EF, (3.5)
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Figure 1. (Colour online) Spin Hall conductivity for an InAs-based 2DEG under pure Rashba SOC. (a) Real
part, and (b) imaginary contribution. See text for the description of the characteristic energies ℏ𝜔±.

with EF = ℏ2𝑘F
2/2𝑚∗ and 𝑘F =

√
2π𝑛𝑒, being 𝑛𝑒 the electron density of the 2DEG. Interestingly, in

the static limit, 𝜔 → 0 and when the disorder is negligible [ → 0, the spin Hall conductivity does not
depend on the material parameters, and it is given by

𝜎
𝑠𝑧
𝑥𝑦(0) =

𝑒

8π
. (3.6)

However, it is known that this contribution is eventually cancelled by short-range disorder scattering
because the driven spin-current is proportional to the dynamics of the spins, which should necessarily
vanish in the steady state regime [16]. Therefore, the constant result (3.6) is valid in the ideal system
without electron-electron interactions and without the scattering with impurities or disorder. In figure 1 it
is shown a frequency dependence of the real part (left-hand panel) and imaginary part (right-hand panel)
of the spin Hall conductivity for a typical 2DEG in InAs quantum well under Rashba SOC.

3.2. Joined Rashba and linear Dresselhaus coupling

Before we study the impact of the cubic Dresselhaus term on the spin Hall conductivity it is useful
first to discuss the coexistence of the Rashba and linear Dresselhaus interactions. Starting with the
Hamiltonian (2.7) with the cubic Dresselhaus parameter 𝛾 = 0, one arrives at the “spin current-charge
current” correlation function,

〈k, a | [Ĵ 𝑠𝑧
𝑥 (𝑡), �̂�𝑦(0)] |k, a〉 =

−iaℏ𝑘2
𝑥

𝑚∗𝑘Δ0(\)
(
𝛼2 − 𝛽2) cos

[
2𝑘Δ0(\)𝑡

ℏ

]
, (3.7)

with Δ0(\) ≡ Δ(0, \) =
√︁
𝛼2 + 𝛽2 − 2𝛼𝛽 sin 2\, which is contrary to the pure Rashba case, it is angular

dependent due to the interplay between the Rashba and linear Dresselhaus couplings. This fact together
with the angular anisotropy of its energy band dispersion, Ea (k, \) = (ℏ2𝑘2/2𝑚∗) + aΔ0(\)𝑘, entails an
anisotropic spin-splitting, E+ − E− = Δ0(\)𝑘 , as well as an angular dependence of Fermi wave numbers
for the spin-splitted bands 𝑘F± → 𝑘F± (\). All together avoid us to arrive at an analytical expression for
the spin Hall conductivity, and get instead,

𝜎
𝑠𝑧
𝑥𝑦(𝜔) =

−𝑒
(
𝛽2 − 𝛼2)

𝑚∗(2π)2

2π∫
0

𝑘F− (\ )∫
𝑘F+ (\ )

𝑘2 cos2 \

Δ0(\)
1

(𝜔 + i[)2 − [2𝑘Δ0(\)/ℏ]2 d𝑘 d\, (3.8)

that should be integrated numerically in \ after using 𝑘F− − 𝑘F+ = 2𝑚∗Δ0(\)/ℏ2. Now, if we take the
static limit (𝜔 → 0) for a 2DEG in the clean limit ([ → 0), together with the reasonable assumption that
2𝑘Δ0(\)/E𝐹 � 1, the spin Hall conductivity (3.8) reduces to

𝜎
𝑠𝑧
𝑥𝑦(0) =

(
𝛽2 − 𝛼2)𝑒

8π2

2π∫
0

cos2 \

Δ2(\)
d\, (3.9)
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Figure 2. (Colour online) Spectra for (a) the real and (b) the imaginary part of the spin Hall conductivity
in a InAs-based 2DEG under joined Rashba and lineal Dresselhaus SOC. The plots were calculated using
the values 𝛼 = 1.6 × 10−11 eV m, electron density 𝑛𝑒 = 5 × 1015 m−2 and ℏ[ = 0.25 × 10−3 meV. Three
cases are shown for different 𝛽 values: 𝛽 = 0.5𝛼 (orange), 𝛽 = 0.25𝛼 (blue) and 𝛽 = 0 (yellow).

that once we integrate over \, the spin Hall conductivity in the static limit yields[38, 39],

𝜎
𝑠𝑧
𝑥𝑦(0) =

𝑒

8π
𝛼2 − 𝛽2

|𝛼2 − 𝛽2 |
. (3.10)

The real and imaginary parts of the optical spin Hall conductivity given by equation (3.8) are shown
in figure 2. For both plots of the spectral response, it can be seen that if the parameter 𝛽 increases, the
spectrum widens and the maximum and minimum of the spin conductivity tends to separate from each
other. For the real part (left-hand panel) the spin Hall conductivity in the static limit approaches to the
constant 𝑒/8π value, whiles for higher frequencies, the conductivity approaches zero. By constrast, the
imaginary part (right-hand panel), for both static limit and large frequencies, the conductivity drops to
zero.

These properties of the optical spin conductivity respond to the spin-split anisotropy of the bands for
joined Rashba and linear Dresselhaus SOC, and can alternatively be understood through the calculation
of the joint density of states (JDOS)[40]. Note that the angular dependence adds four characteristic
frequencies, two related to the absorption edges in the spectrum denoted by 𝜔+ and 𝜔− , and two more
responsible for the absorption and high-density peaks (singularities) of the JDOS at photon frequencies
𝜔𝑎 and 𝜔𝑏, respectively. These frequencies are connected to the angular energy spin-splitting of the
bands given by

ℏ𝜔+ = 2𝑘F+

( π
4

)
Δ0

( π
4

)
, (3.11)

ℏ𝜔− = 2𝑘F−

(
3π
4

)
Δ0

(
3π
4

)
, (3.12)

ℏ𝜔𝑎 = 2𝑘F−

( π
4

)
Δ0

( π
4

)
, (3.13)

ℏ𝜔𝑏 = 2𝑘F+

(
3π
4

)
Δ0

(
3π
4

)
, (3.14)

which gives meaning to the the structure of the spectra profile of the spin Hall conductivity (see figure 3).
Using the equations above, we find that for 𝛽 = 0.25𝛼, the characteristic energies for such frequencies
in an InAs-based 2DEG are ℏ𝜔+ = 4.05 meV, ℏ𝜔𝑎 = 4.46 meV, ℏ𝜔𝑏 = 6.51 meV and ℏ𝜔− = 7.66 meV.
For 𝛽 = 0.50𝛼 the important frequencies are ℏ𝜔+ = 2.74 meV, ℏ𝜔𝑎 = 2.93 meV, ℏ𝜔𝑏 = 7.68 meV and
ℏ𝜔− = 9.34 meV. These energies are depicted with dotted lines in figure 3. It is clear that such frequencies
basically correspond to the peaks, minuma, as well as to the changes in the slope of the optical spin Hall
conductivity.
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Figure 3. (Colour online) Spin Hall conductivity spectra for a system with joined Rashba and lineal
Dresselhaus SOC for 𝛽 = 0.25𝛼 (a and b) and 𝛽 = 0.50𝛼 (c and d). In this spectra the dashed blue line
represents the ℏ𝜔+ value, the dashed gray line represents ℏ𝜔𝑎, the dotted gray line is the frequency ℏ𝜔𝑏

and the dotted blue line represents the frequency ℏ𝜔− .

3.3. Rashba with linear plus cubic Dresselhaus couplings

In this section we analise the spin Hall conductivity response using the full 2D Hamiltonian given in
the equation (2.7) that takes into account the cubic Dresselhaus term (𝛾 ≠ 0). The exact eigenvalues and
the eigenvectors for this system are provided by equations (2.8) and (2.10). It is clear that this general
model that also includes the cubic contribution of Dresselhaus SOC is much more complicated, and as a
consequence, it turns out to be even more intricate to be solved for the spin Hall conductivity analytically
than the previous models, and at a certain point we shall appeal to numerical computations.

It can be shown that the “spin current-charge current” correlation function (see Appendix) associated
to the Hamiltonian (2.7) is given by,

〈k, a | [Ĵ 𝑠𝑧
𝑥 (𝑡), �̂�𝑦(0)] |k, a〉 =

aiℏ𝑘2
𝑥

𝑚∗𝑘Δ(𝑘, \) cos
[
2𝑘Δ(𝑘, \)𝑡

ℏ

]
G(𝑘, \), (3.15)

where Δ(𝑘, \) is defined in (2.9), and

G(𝑘, \) = 𝛽2 − 𝛼2 + 𝛾 (𝛼 sin 2\ + 𝛽 cos 2\) 𝑘2 − 𝛾2

4
sin(2\)𝑘4. (3.16)

Therefore, the Kubo formula for the joint Rashba and cubic Dresselhaus SOC reads explicitly,

𝜎
𝑠𝑧
𝑥𝑦(𝜔) =

−i𝑒
𝑚∗(𝜔 + i[)

∞∫
0

d𝑡 ei(𝜔+i[)𝑡
2π∫
0

𝑘F− (\ )∫
𝑘F+ (\ )

𝑘2

(2π)2 d𝑘 d\
cos2 \

Δ(𝑘, \) cos
[
2𝑘Δ(𝑘, \)𝑡

ℏ

]
G(𝑘, \). (3.17)

Even though this expression for the optical spin Hall conductivity is exact, it is not amenable for analytical
integration, and therefore a numerical integration should be implemented. However, before we proceed
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further in analyzing its numerical behavior, it is illustrative to consider some assumptions that will lead
us to approximate expressions in the static regime and vanishing [.

First we notice that the ratio

G(𝑘, \)
Δ2(𝑘, \)

'
G(𝑘F0 (\), \)
Δ2(𝑘F0 (\), \)

, with 𝑘F0 (\) = −Δ0(\)𝑚∗

ℏ2 +

√︄
Δ2

0(\)𝑚∗2

ℏ4 + 2𝑚∗

ℎ2 EF, (3.18)

which allows us to rewrite ( 3.17) as

𝜎
𝑠𝑧
𝑥𝑦(𝜔) = − 𝑒ℏ3

8π2𝑚

2π∫
0

cos2 \
G(𝑘F0 , \)
Δ(𝑘F0 , \)

(𝜔 + i[)[
2Δ(𝑘F0 , \)

]3 ln
[
ℏ(𝜔 + i[) − 2Δ(𝑘F0 , \)𝑘F+

2Δ(𝑘F0 , \)𝑘F− − ℏ(𝜔 + i[)

]
d\

+ 𝑒

8π2

2π∫
0

cos2 \
G(𝑘F0 , \)
Δ2(𝑘F0 , \)

d\, (3.19)

where the Fermi wave numbers are now defiend as

𝑘F± = ∓
𝑚∗Δ(𝑘F0 , \)

ℏ2 +

√︄
𝑚∗2Δ2(𝑘F0 , \)

ℏ4 + 2𝑚∗

ℏ2 EF. (3.20)

Hence, in static limit (𝜔 → 0 and [ → 0), the spin Hall conductivity reduces to

𝜎
𝑠𝑧
𝑥𝑦(0) =

𝑒

8π2

2π∫
0

cos2 \
G(𝑘F0 , \)
Δ2(𝑘F0 , \)

d\, (3.21)

which can be further simplified for the case of a realtively large quantum well, that is considering 𝛾𝑘2
F � 𝛽

and 𝛼 � 𝛾𝑘2
F, for instance in an InAs quantum well. Under these considerations, the equation (3.21)

leads to

𝜎
𝑠𝑧
𝑥𝑦(0) =

𝑒

8π2

2π∫
0

d\ cos2 \
−𝛼2 + 𝛽2 + 𝛼𝛾𝑘2

F sin 2\
𝛼2 + 𝛽2 − 2𝛼𝛽 sin 2\ − 𝛼𝛾𝑘2

F sin 2\

≈ 𝑒

8π

[
𝛾𝑘2

F

2𝛽 + 𝛾𝑘2
F
+ 2𝛽(

2𝛽 + 𝛾𝑘2
F
) (𝛼2 − 𝛽2)
|𝛼2 − 𝛽2 |

]
, (3.22)

and since (𝛼2 − 𝛽2)/|𝛼2 − 𝛽2 | = sign(𝛼 − 𝛽), then we can write

𝜎
𝑠𝑧
𝑥𝑦(0) ≈

𝑒

8π

{
1 − 2𝛽

2𝛽 + 𝛾𝑘2
F
[1 − sign(𝛼 − 𝛽)]

}
. (3.23)

Note that if 𝛾 = 0, this approximation for the static spin Hall conductivity reduces, as we expect, to the
constant value found for a 2DEG under joined Rashba and linear-Dresselhaus SOC, see equation (3.10).
Similarly, it reduces to 𝑒/8π, equation (3.6), for the case of vanishing linear-Dresselhaus term (𝛽 → 0)
and finite Rashba (𝛼 ≠ 0) and finite cubic-Dresselhaus (𝛾 ≠ 0) SOC terms.

In figure 4 we show the calculated spectral response for both the real and imaginary part of the
spin Hall conductivity 𝜎

𝑠𝑧
𝑥𝑦(𝜔) for three cases, i) weak linear Dresselhaus (𝛽 = 0.25𝛼), figure 4 (a)–(b),

ii) equal Rashba and linear Dresselhaus coupling strength (𝛼 = 𝛽), figure 4 (c)–(d), and iii) strong
linear Dresselhaus interaction (𝛽 = 4𝛼), figure 4 (e)–(f). All cases are calculated for different values
of the cubic-Dresselhaus coupling strength (𝛾 = 𝛾0, 4𝛾0, 7𝛾0 and 10𝛾0,). Here, we used the values
𝛼 = 1.6 × 10−11 eV m, and 𝛾0 = 4.863 × 10−29 eV m3 to produce these plots. The spectra shown for
𝛽 = 0.25𝛼 (figures 4 a and 4 b) widen as 𝛾 increases. This follows from the fact that the energy range in
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Figure 4. (Colour online) Real and imaginary parts of the spin Hall conductivity for a system with Rashba
and Dresselhaus (linear and cubic) SOC. The spectra were computed for different 𝛾 values: 𝛾 = 𝛾0 (red),
𝛾 = 4𝛾0 (blue), 𝛾 = 7𝛾0 (orange) and 𝛾 = 10𝛾0 (purple). We used 𝛽 = 0.25𝛼, ℏ[ = 0.25×10−3 meV (a)–
(b), 𝛽 = 𝛼, ℏ[ = 0.6 × 10−4 meV (c)–(d), and 𝛽 = 4𝛼, ℏ[ = 0.25 × 10−3 meV (c)–(d).

which the optical transitions are allowed increases also with 𝛾. Notoriously, the spin Hall conductivity
peaks/minima exhibit higher values for weak cubic-Dresselhaus coupling 𝛾. In all cases, the real part
of the spin Hall conductivity approaches the constant value of conductivity (𝑒/8π) for the static limit
(𝜔 → 0) and clean limit, while it approaches zero when 𝜔 takes higher values. As for the imaginary part,
when 𝜔 → 0 and for high 𝜔 values, the spin Hall conductivity approaches zero too. It develops a pair of
peaks near the characteristic absorption energies ℏ𝜔𝑎,𝑏. The energy values for such absorption energies
and for the band-edge energies ℏ𝜔± are shown in table 1.

Due to the experimental possibility of tuning the Rashba coupling parameter 𝛼 through electrostatic
gating, it is interesting to analyse the case when the Rashba and linear Dresselhaus coupling strength is set
equal (𝛽 = 𝛼) and explore its interplay with the cubic-Dresselhaus term on the spin Hall response; this is
done in figure 4 (c)–(d). The overall shape of the optical spin Hall conductivity differs significantly with
respect to the previous case (𝛽 = 0.25𝛼) although it preserves the main characteristics of widening of the
spectra. However, in contrast to the weak linear Dresselhaus case, as the cubic-Dresselhaus parameter 𝛾
is increased, an enhancement of the peaks for both the real and imaginary part of 𝜎𝑠𝑧

𝑥𝑦(𝜔) is developed,
showing the dominant influence of the cubic contribution. Finally, we consider the extreme case in which
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Table 1. Absorption and band-edge energies, ℏ𝜔+, ℏ𝜔𝑎, ℏ𝜔𝑏 and ℏ𝜔− for 𝛽 = 0.25𝛼 and several 𝛾
values for the plots of figure 4 (a)–(b). Note that the energy difference between the allowed transitions
ℏ𝜔𝑏 − ℏ𝜔𝑎 and the difference of the band-edge energies ℏ𝜔− − ℏ𝜔+ increases as 𝛾 does.

Ratio 𝛾/𝛾0 ℏ𝜔+ [meV] ℏ𝜔𝑎 [meV] ℏ𝜔𝑏 [meV] ℏ𝜔− [meV]
1 3.82 4.19 6.70 7.94
4 3.15 3.40 7.27 8.75
7 2.46 2.61 7.83 9.57
10 1.76 1.83 8.38 10.40

the modulation of the Rashba parameter 𝛼 is such that 𝛽 = 4𝛼, figure 4 (e)–(f). For this scenario, when 𝛾

increases, the spectra are shifted slightly to the right at higher energies. The Re[𝜎𝑠𝑧
𝑥𝑦(𝜔)] of the spectra

(figure 4 e) exhibits first a minimum and then a maximum in spin Hall conductivity, with an inflection
point in between as the frequency increases. The overall behavior changes the sign with respect to the weak
coupling scenario. Similarly as it occurs for the latter case, in the static limit (𝜔 → 0) and free of disorder
limit, the real part of the spin Hall conductivity reaches the constant value of conductivity, but with
opposite sign (−𝑒/8π), and tends to zero for larger frequencies. We have also estimated the characteristic
energies associated to the absorption optical transitions and to the band-edge energy transitions allowed.
These values are shown in table 2.

Table 2. Absorption and band-edge energies, ℏ𝜔±, ℏ𝜔𝑎, and ℏ𝜔𝑏 for 𝛽 = 4𝛼 and several 𝛾 values for the
plots of figure 4 (e)–(f).

Ratio 𝛾/𝛾0 ℏ𝜔+ [meV] ℏ𝜔𝑎 [meV] ℏ𝜔𝑏 [meV] ℏ𝜔− [meV] ℏ𝜔− − ℏ𝜔+ [meV]
1 13.80 20.60 19.17 37.84 24.04
4 14.13 21.37 19.31 38.55 24.42
7 14.45 22.15 19.45 39.26 24.81
10 14.77 22.94 19.59 39.98 25.21

The difference ℏ𝜔− − ℏ𝜔+ shows us that the energy range of the allowed optical transitions increases
as 𝛾 is increased. This energy range is larger than the one for the 𝛽 = 0.25𝛼 case, but the increase in the
range for the allowed optical transitions between different 𝛾 values is less than the case 𝛽 = 4𝛼.

4. Summary and conclusions

We have investigated the spin Hall conductivity in the frequency domain for 2DEGs under Rashba
and (linear plus cubic) Dresselhaus spin-orbit coupling using the Kubo formalism in the linear response.
We have shown that a simultaneous presence of Rashba and cubic Dresselhaus SOC in 2DEGs leads to
a strongly anisotropic spin splitting of the bands which in turn gives rise to a characteristic frequency
dependence of the spin Hall conductivity. Such characteristic frequencies are connected with the absorp-
tion and band-edge energies responsible for the absorption and high-density peaks of the joint density of
states. We further analyse the spin Hall conductivity in the static limit in the absence of scattering with
impurities or disorder and find that in general it depends on the Fermi wave number and on the SOC
parameters, in sharp constrast with the pure Rashba case. The significant widening and energy separation
of the peaks as well as the change of sign of the spin Hall conductivity response, as the Rashba parameter
is varied in 2DEGs with sizable cubic-Dresselhaus coupling, may offer a signature of the presence and
impact of a competing Rashba with linear and cubic Dresselhaus SOC. This could be also of interest for
the optical control of spin currents in 2DEGs.
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Appendix

In this appendix we describe details of the derivation of the “spin current-charge current” correlation
function (3.15) for the most general Hamiltonian (2.7) that includes the linear and cubic Dresselhaus
interaction in coexistence with the Rashba term. We start by calculating the components of the velocity
operators in the Schrödinger picture using �̂� 𝑗 =

1
iℏ [𝑥 𝑗 , �̂�], with 𝑗 = 𝑥, 𝑦 leading to

�̂�𝑦(0) =
𝑝𝑦

𝑚∗ − 1
ℏ

(
𝛼�̂�𝑥 + 𝛽�̂�𝑦

)
+ 𝛾

ℏ3
(
2𝑝𝑥 𝑝𝑦�̂�𝑥 − 𝑝2

𝑥�̂�𝑦

)
, (A.1)

�̂�𝑥 (0) =
𝑝𝑥

𝑚∗ + 1
ℏ

(
𝛼�̂�𝑦 + 𝛽�̂�𝑥

)
+ 𝛾

ℏ3
(
𝑝2
𝑦�̂�𝑥 − 2𝑝𝑦𝑝𝑥�̂�𝑦

)
. (A.2)

Therefore, the spin-current operator (3.2) of 𝑧-polarized spins flowing along the 𝑥-axis reads

Ĵ 𝑠𝑧
𝑥 (0) =

1
2

{
ℏ

2
�̂�𝑧 , �̂�𝑥

}
=

1
2

{
ℏ

2
�̂�𝑧 ,

(
𝑝𝑥

𝑚∗ + 1
ℏ

(
𝛼�̂�𝑦 + 𝛽�̂�𝑥

)
+ 𝛾

ℏ3
(
𝑝2
𝑦�̂�𝑥 − 2𝑝𝑦𝑝𝑥�̂�𝑦

) )}
=

ℏ

2𝑚∗ �̂�𝑧 𝑝𝑥 , (A.3)

after using the property {𝜎𝑖 , 𝜎𝑗 } = 2𝛿𝑖, 𝑗 I. In the interaction picture, the time-dependent spin current
operator is

Ĵ 𝑠𝑧
𝑥 (𝑡) = ℏ

2𝑚∗ ei�̂�𝑡/ℏ �̂�𝑧 𝑝𝑥 e−i�̂�𝑡/ℏ, (A.4)

that yields the to commutator[
Ĵ 𝑠𝑧
𝑥 (𝑡), �̂�𝑦(0)

]
=

[
ℏ

2𝑚∗ ei�̂�𝑡/ℏ�̂�𝑧 𝑝𝑥e−i�̂�𝑡/ℏ,
𝑝𝑦

𝑚∗ − 1
ℏ

(
𝛼�̂�𝑥 + 𝛽�̂�𝑦

)
+ 𝛾

ℏ3
(
2𝑝𝑥 𝑝𝑦�̂�𝑥 − 𝑝2

𝑥�̂�𝑦

) ]
= − 1

2𝑚∗ ei�̂�𝑡/ℏ�̂�𝑧 𝑝𝑥e−i�̂�𝑡/ℏ (𝛼�̂�𝑥 + 𝛽�̂�𝑦

)
+ 1

2𝑚∗
(
𝛼�̂�𝑥 + 𝛽�̂�𝑦

)
ei�̂�𝑡/ℏ�̂�𝑧 𝑝𝑥e−i�̂�𝑡/ℏ

+ 𝛾𝑚∗

2ℏ2 ei�̂�𝑡/ℏ�̂�𝑧 𝑝𝑥e−i�̂�𝑡/ℏ (2𝑝𝑥 𝑝𝑦�̂�𝑥 − 𝑝2
𝑥�̂�𝑦

)
− 𝛾𝑚∗

2ℏ2
(
2𝑝𝑥 𝑝𝑦�̂�𝑥 − 𝑝2

𝑥�̂�𝑦

)
ei�̂�𝑡/ℏ�̂�𝑧 𝑝𝑥e−i�̂�𝑡/ℏ, (A.5)

and taking the expectation value of (A.5) of each term using the eigenvectors (2.10), we get,

〈k, a | (−1/2𝑚∗)ei�̂�𝑡/ℏ�̂�𝑧 𝑝𝑥e−i�̂�𝑡/ℏ (𝛼�̂�𝑥 + 𝛽�̂�𝑦

)
|k, a〉

=
−1
2𝑚∗

ℏ𝑘2
𝑥ai

𝑘Δ(𝑘, \)
(
𝛼2 − 𝛽2 − 𝛼𝛾𝑘𝑥𝑘𝑦 − 𝛽𝛾𝑘2

𝑦

)
exp

[
2i𝑘Δ(𝑘, \)a𝑡

ℏ

]
, (A.6)

〈k, a | (−1/2𝑚∗)
(
𝛼�̂�𝑥 + 𝛽�̂�𝑦

)
ei�̂�𝑡/ℏ�̂�𝑧 𝑝𝑥e−i�̂�𝑡/ℏ |k, a〉

=
−1
2𝑚∗

ℏ𝑘2
𝑥ai

𝑘Δ(𝑘, \)
(
𝛼2 − 𝛽2 − 𝛼𝛾𝑘𝑥𝑘𝑦 − 𝛽𝛾𝑘2

𝑦

)
exp

[
−2i𝑘Δ(𝑘, \)a𝑡

ℏ

]
, (A.7)
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〈k, a | (𝛾/2ℏ2𝑚∗)ei�̂�𝑡/ℏ�̂�𝑧 𝑝𝑥e−i�̂�𝑡/ℏ (2𝑝𝑥 𝑝𝑦�̂�𝑥 − 𝑝2
𝑥�̂�𝑦

)
|k, a〉

=
𝛾ℏ

2𝑚∗
𝑘2
𝑥ai

𝑘Δ(𝑘, \)
[
𝛼𝑘𝑥𝑘𝑦 + 𝛽

(
− 2𝑘2

𝑦 + 𝑘2
𝑥

)
− 𝛾𝑘2

𝑥𝑘
2
𝑦

]
exp

[
2i𝑘Δ(𝑘, \)a𝑡

ℏ

]
, (A.8)

〈k, a | − (𝛾/2ℏ2𝑚∗)
(
2𝑝𝑥 𝑝𝑦�̂�𝑥 − 𝑝2

𝑥�̂�𝑦

)
ei�̂�𝑡/ℏ�̂�𝑧 𝑝𝑥e−i�̂�𝑡/ℏ |k, a〉

=
𝛾ℏ

2𝑚∗
𝑘2
𝑥ai

𝑘Δ(𝑘, \)
[
𝛼𝑘𝑥𝑘𝑦 + 𝛽

(
− 2𝑘2

𝑦 + 𝑘2
𝑥

)
− 𝛾𝑘2

𝑥𝑘
2
𝑦

]
exp

[
−2i𝑘Δ(𝑘, \)a𝑡

ℏ

]
, (A.9)

with Δ(𝑘, \) as defined in (2.9). Hence, finally after regrouping terms, the “spin current-charge current”
correlation function takes the form (3.15),

〈k, a | [Ĵ 𝑠𝑧
𝑥 (𝑡), �̂�𝑦(0)] |k, a〉 =

aiℏ𝑘2
𝑥

𝑘Δ(𝑘, \)𝑚∗ cos
[
2𝑘Δ(𝑘, \)𝑡

ℏ

]
×

(
−𝛼2 + 𝛽2 + 𝛼𝛾𝑘2 sin 2\ + 𝛽𝛾𝑘2 cos 2\ − 𝛾2

4
𝑘4 sin2 2\

)
. (A.10)
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Вплив p-кубiчного члена Дрессельгауза на спiновий ефект
Холла

Е. Сантана-Суарес1, Ф. Мiрелес2
1 Iнститут фiзики, Нацiональний автономний унiверситет Мексики (UNAM), PO Box 20-364, 01000 Мехiко,
Мексика

2 Фiзичний факультет, Центр нанотехнологiй, Автономний нацiональний унiверситет Мехiко, 22800
Енсенада, Баха Калiфорнiя, Мексика

Добре вiдомо, що спiн-орбiтальна взаємодiя Дрессельгауза (СОВ) у напiвпровiдникових двовимiрних еле-
ктронних газах (2D-ЕГ) має як лiнiйний, так i кубiчний внески за iмпульсом. Тим не менше, останнiм зазви-
чай нехтують у бiльшостi теоретичних дослiджень. Однак нещодавнi експерименти з обертання площи-
ни поляризацiї Керра виявили значне посилення кубiчної взаємодiї Дрессельгауза шляхом збiльшення
швидкостi дрейфу в 2D-ЕГ, помiщених у квантовi ями GaAs. У данiй роботi проведено дослiдження оптич-
ної спiнової провiдностi Холла у 2D-ЕГ за одночасної присутностi СОВ Рашби та Дрессельгауза (за наявно-
стi як лiнiйного, так i кубiчного внескiв). Дослiдження проведенi методом Кубо в рамках теорiї лiнiйного
вiдгуку. Показано, що спiвiснування СОВ Рашби та кубiчного внеску СОВ Дрессельгауза у 2D-ЕГ сприяє
сильнiй анiзотропiї спiнового розщеплення зони, що, у свою чергу, призводить до дуже специфiчної ча-
стотної залежностi спiнової провiдностi Холла. Виявлено, що спiнова провiднiсть Холла може бути дуже
чутливою до значної кубiчної складової в iнтенсивностi СОВ Дрессельгауза. Це може бути актуальним для
оптичного контролю спiнових струмiв у 2D-ЕГ з кубiчною СОВ Дрессельхауза.

Ключовi слова: двовимiрний електронний газ, спiн-орбiтальна взаємодiя, спiновий ефект Холла,
спiнова провiднiсть, спiновий перенос
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