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Different models are proposed to understand magnetic phase transitions through the prism of competition
between the energy and the entropy. One of such models is a 𝑞-state Potts model with invisible states. This
model introduces 𝑟 invisible states such that if a spin lies in one of them, it does not interact with the rest
states. We consider such a model using the mean field approximation on an annealed scale-free network where
the probability of a randomly chosen vertex having a degree 𝑘 is governed by the power-law 𝑃(𝑘) ∝ 𝑘−_.
Our results confirm that 𝑞, 𝑟 and _ play a role of global parameters that influence the critical behaviour of
the system. Depending on their values, the phase diagram is divided into three regions with different critical
behaviours. However, the topological influence, presented by the marginal value of _𝑐 (𝑞), has proven to be
dominant over the entropic influence, governed by the number of invisible states 𝑟 .
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Our first paper on Potts model with invisible states was published together with Bertrand Berche.
This paper is submitted for a special issue: “Complexity and collective behaviour: Solids, Fields, and
Data” on the occasion of Bertrand Berche’s 60th birthday. By the present work we would like to thank
the jubilee and wish him an inspiration and interesting research topics to study.

1. Introduction

Critical properties of a system are defined by the topology of the space this system is placed into.
The nearest neighbours ferromagnetic Ising model can be considered as the textbook example of this.
When it is placed on a one dimensional chain, it exhibits no phase transition [1], while in two and
three dimensions it undergoes a second order phase transition with critical exponents dependent on the
dimensionality [2, 3]. An interesting behaviour is observed if this model is placed on a network. The phase
transition studies on networks are motivated mainly by the variety of real systems and objects described
by the topology of a network or a graph: from sociophysics and biophysics to transport networks and their
resistance to attacks [4–9]. For example, individuals of social networks may be considered as nodes of
the graph and individuals’ opinions as a value of the spin variable for a given node. The dimensionality
is not defined for networks in a traditional Euclidean sense, although there are some other characteristics
that describe the topology, one of them being a node degree distribution. The most studied is the class
of scale-free networks, where the probability of a particular node having 𝑘 neighbours is governed by a
power-law decaying node degree distribution:

𝑃(𝑘) ∼ 1/𝑘_, 𝑘 → ∞. (1.1)

The decay exponent _ in this case determines the properties of a phase transition in a similar way the
dimensionality for regular latices [10–12]. Therefore, tuning _ allows us to analyse how the properties of

This work is licensed under a Creative Commons Attribution 4.0 International License. Further distribution
of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

13507-1

https://doi.org/10.5488/CMP.26.13507
http://www.icmp.lviv.ua/journal
https://orcid.org/0000-0001-6916-5004
https://orcid.org/0000-0002-0464-5741
https://creativecommons.org/licenses/by/4.0/


P. Sarkanych, M. Krasnytska

a phase transition depend on the topology of a system.
Besides the topology, there are other factors that play a significant role in the properties of a phase

transition. One of those is entropy. Phase transitions, in general, are often explained through the lens of the
energy-entropy interplay. Shifting this equilibrium to one of the sides can drastically change the properties
of the phase transition. One of the models, that allows us to investigate the energy-entropy interplay is
the Potts model with invisible states [13–15]. It was proposed to explain why the phase transition in a
system with 𝑞-fold symmetry undergoes a different scenario than predicted theoretically [13]. It differs
from the original 𝑞 state Potts model by adding 𝑟 invisible states, in which a spin does not interact with
the rest of the system. Obviously, such generalisation does not affect the interaction energy spectrum
of a system but changes the number of configurations by which each energy level is occupied. In turn,
changing the density of states leads to a change in entropy. Adding invisible states can make the phase
transition “sharper”, or even can change the second order phase transition into the first order transition.
For example, for the Ising model with invisible states on a complete graph, the marginal value 𝑟𝑐 = 3.62
separates the first and second order regimes [13–15]. A series of analytical studies for different lattice
systems were provided [16–20].

Some exact results for the model can be obtained for 1D systems. A positive number of invisible states
does not lead to the phase transition, while a negative number of invisible states induces a phase transition
at positive temperature [21]. A conjecture on the relationship between critical residual entropy and finite
temperature pseudo-transitions of one-dimensional spin models was analysed [22]. An interesting fact is
that such models break the Perron–Frobenius theorem [21–23]: free energy becomes non-analytical at
the phase transition temperature, or equivalently some elements of transfer-matrix become null (which
corresponds to an infinite energy).

The spin models with ‘invisible states’ became a subject of recent research and different applications.
The Potts model with invisible states is used in elementary coordination-type games by extending
equivalent models with neutral strategies [24]. An Ising model on a complete graph with the so-called
“molecule states” contributing to the entropy, rather than the interaction energy, was studied by means of
MFA and Monte Carlo. This model was proposed to study the structure-forming systems ranging from
the atoms that build molecules to the self-assembly of colloidal amphibolic particles. It was shown that
the model exhibits a first-order phase transition when the number of “molecule states” is high [25]. An
interesting is the case of a hybrid Potts model [26]. Within 𝑞𝑐 states, it introduces two subsets of states,
that can be occupied with different probability. Namely, each spin with a probability 𝑝 lies in one of the
𝑞0 ⩽ 𝑞𝑐 ‘strong’ states and with probability (1 − 𝑝) in the rest 𝑞𝑐 − 𝑞0 ‘weak’ states. It was shown that
for a given 𝑞, there exists a concentration 𝑝 such that, when cooled, the system first exhibits a continuous
transition and then a discontinuous transition at a lower temperature.

In the previous research we considered the critical behaviour for the 𝑞-state Potts model with invisible
states on a complete graph [27] being interested in the behaviour in the second order phase transition
region 1 ⩽ 𝑞 ⩽ 2. We observed and calculated two marginal values of 𝑟 separating regions with different
criticality: for small values of 𝑟 < 𝑟𝑐1 the system undergoes only the second order phase transition.
For large 𝑟 > 𝑟𝑐2, there is only the first order phase transition, while in-between these two regions we
observed the coexistence of both phase transitions at different temperatures. We have also seen that in
the limiting case 𝑞 = 2, these two marginal values coincide 𝑟𝑐1 = 𝑟𝑐2. Then, we analyzed the 𝑞 = 2-state
Potts (Ising) model with invisible states on a scale-free network [28]. Similarly to the complete graph
case, there are two marginal dimensions. However, on the scale-free networks, marginal dimensions are
_-dependent. Therefore, it is interesting to see how this effect manifests itself for all values of 𝑞. In
order to investigate the effect that the two above-mentioned factors have on a phase transition if included
simultaneously, in this paper we consider the Potts model with invisible states on an annealed scale-free
network. For the annealed random networks, the edges are in thermodynamic equilibrium, and thus can
fluctuate in time. This is not the case for quenched networks, where the edges are considered static. In
this paper we consider only the annealed networks.

The rest of the paper is organised as follows: in section 2 we shortly describe the model and the
method used for the study; in section 3 we present the main results obtained for 1 < 𝑞 ⩽ 2 and 𝑞 > 2;
conclusions are given in section 4.
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2. Model and method

For the Potts model with invisible states, the interaction between two neighbouring spins contributes
to the energy only if both of the spins are in the same ‘visible’ state. The state of each of the spins is
described by a spin variable 𝑆𝑖 that can take on (𝑞 + 𝑟) different values 𝑆𝑖 = (1, . . . , 𝑞, 𝑞 + 1, . . . , 𝑞 + 𝑟).
Hence, the first 𝑞 states are considered to be ‘visible’, while the rest 𝑟 are invisible. Introducing the
external magnetic field ℎ to favour the first visible state 𝑆𝑖 = 1, a ferromagnetic 𝑞 + 𝑟-state Potts model
Hamiltonian on an arbitrary graph reads [27]:

−𝐻 (𝑞, 𝑟) =
∑︁
<𝑖, 𝑗>

𝐽𝑖 𝑗

𝑞∑︁
𝛼=1

𝛿𝑆𝑖 ,𝛼𝛿𝛼,𝑆 𝑗
+ ℎ

𝑁∑︁
𝑖=1

𝛿𝑆𝑖 ,1. (2.1)

The first summation in (2.1) is performed over all pairs of spins in the network of 𝑁 nodes, while the
second sum in the first term requires both of the interacting spins to be in the same visible state. Therefore,
only visible states contribute to the interactions between the spins. Two spins are only interacting if they
are connected by the link of the graph our model is considered on. Therefore, we can consider coupling 𝐽𝑖 𝑗
to be proportional to the adjacency matrix elements of the graph 𝐽𝑖 𝑗 = 𝐽𝐴𝑖 𝑗 . The elements of the latter
are equal to 1 when there is a link between nodes 𝑖 and 𝑗 and 0 otherwise. Within the mean-field
approach, we also assume that the network on which our model is considered, is a completely random
annealed network [29]. In this case, the adjacency matrix is equal to the probability of two nodes being
connected 𝑝𝑖 𝑗 . For an annealed network, this probability is linearly proportional to their degrees (the
number of nearest neighbours) [29]; thus, we obtain:

𝐽𝑖 𝑗 = 𝐽𝑝𝑖 𝑗 = 𝐽
𝑘𝑖𝑘 𝑗

𝑁�̄�
, (2.2)

where 𝑘𝑖 , �̄� are the degree of the node 𝑖 and an average node degree, respectively.
We use a variant of a mean-field approach (MFA)1 with local variables as suggested for a standard Potts

model on a network [11, 30]. The main idea is to rewrite the interaction term in the Hamiltonian (2.1) in a
way that does not contain the product of two spin variables. To this end, we represent each Kronecker-delta
term as a sum of its mean value and deviation from that mean. We introduce three local thermodynamic
averages `𝑖 , a1𝑖 , a2𝑖 to distinguish between the state favoured by the magnetic field, other visible states
and invisible states:

⟨𝛿𝑆𝑖 ,𝛼⟩ =


`𝑖 , 𝛼 = 1,
a1𝑖 , 𝛼 = 2, . . . , 𝑞,
a2𝑖 , 𝛼 = 𝑞 + 1, . . . , 𝑟 .

(2.3)

Here, the averaging is performed with respect to the Hamiltonian (2.1)

⟨. . . ⟩ = 1
ZTr (. . . ) e−𝛽H , with Z = Tr e−𝛽H , (2.4)

in the thermodynamic limit, where 𝛽 is the inverse temperature and the trace is taken over all possible spin
configurations (taking into account invisible states as well). The introduced averages have predictable
low-temperature and high-temperature asymptotics shown in table 1.

Table 1. Low-temperature and high-temperature asymptotics of the thermodynamic averages, equa-
tion (2.3), and for the order parameters, equation (2.7).

𝛽 → ∞ `𝑖 = 1 a1𝑖 = 0 a2𝑖 = 0
𝛽 → 0 `𝑖 = 1/(𝑞 + 𝑟) a1𝑖 = 1/(𝑞 + 𝑟) a2𝑖 = 1/(𝑞 + 𝑟)

1The exactness of the mean-field results for the Potts model with invisible states was analysed in reference [17].
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Assuming that the deviations from the averages are small, we neglect quadratic deviation terms to
obtain the mean-field Hamiltonian:

−𝐻 (𝑞, 𝑟) =
∑︁
<𝑖, 𝑗>

𝐽𝑖 𝑗

[
`𝑖

(
2𝛿1,𝑆 𝑗

− ` 𝑗

)
+

𝑞∑︁
𝛼=2

(
2𝛿𝛼,𝑆𝑖 − a1𝑖

)
a1 𝑗

]
+ ℎ

∑︁
𝑖

𝛿𝑆𝑖 ,1. (2.5)

Taking into account the normalization condition for the averages:

`𝑖 + (𝑞 − 1)a1 + 𝑟a2 = 1, (2.6)

we define two local order parameters that satisfy low-temperature and high-temperature asymptotics:
they vanish for 𝛽 → 0 and are equal to one for 𝛽 → ∞:

𝑚1𝑖 = `𝑖 − a1𝑖 , 𝑚2𝑖 = `𝑖 − a2𝑖 . (2.7)

The Potts model with invisible states on a network is described by two global order parameters: 𝑚1
and 𝑚2. We introduce them as a linear combination of the local order parameters defined on each of the
nodes with weights proportional to the degree of a node (see [28] for more details):

𝑚1 =

∑
𝑖 𝑘𝑖𝑚1𝑖∑
𝑖 𝑘𝑖

, 𝑚2 =

∑
𝑖 𝑘𝑖𝑚2𝑖∑
𝑖 𝑘𝑖

. (2.8)

Considering the free energy per site in the thermodynamic limit (𝑁 → ∞) we obtain [28]:

𝑓 (𝑚1, 𝑚2) =
�̄�

(𝑞 + 𝑟)2

{
[𝑟𝑚2 + 1 + (𝑞 − 1)𝑚1]2 + (𝑞 − 1) [𝑟𝑚2 + 1 − (𝑟 + 1)𝑚1]2

}
− 1
𝛽

∞∫
2

d𝑘𝑃(𝑘) ln

(
exp

{
𝛽

[
ℎ + 𝑘

𝑞 + 𝑟
(𝑚1(𝑞 − 1) + 1 + 𝑟𝑚2)

]}
+(𝑞 − 1) exp

{
𝛽𝑘

𝑞 + 𝑟
[𝑚2𝑟 + 1 − (𝑟 + 1)𝑚1]

}
+ 𝑟

)
, (2.9)

where 𝑃(𝑘) is a node degree distribution (1.1); 𝑘 , �̄� are the node degree and an average node degree,
respectively2. The resulting expression for the free energy depends on two global order parameters 𝑚1
and 𝑚2, that describe the state of the system and model parameters, such as the numbers of states 𝑞 and 𝑟 ,
temperature 𝛽 and the decay exponent _ (which determines the topology of a system).

3. Results

In the limit 𝑟 → 0, our model reduces to the standard Potts model on a scale-free network, which
was already analysed within the MFA approach [10–12, 30]. In this case, the phase diagram in the
(𝑞, _)-plane is characterised by different criticality in different regions. For small _ (2 < _ ⩽ 3), the
network is strongly correlated and remains ordered at any finite temperature due to the fact that there
are too many nodes with high degrees, making the network too correlated for the occurance of the phase
transition to a paramagnetic state. For _ > 3, we can observe different scenarios depending on the value
of 𝑞. The region 1 ⩽ 𝑞 ⩽ 2 is characterized by the second order phase transition behaviour, although
with three different sets of critical exponents corresponding to the regions 𝑞 = 1, 1 < 𝑞 < 2, 𝑞 = 2. The
remaining case 𝑞 > 2 is the most interesting, since either the second or the first order phase transition
occurs depending on the value of _ [10–12, 30]. For an illustration see figure 1 where the phase diagram
of the standard Potts model is shown.

In contrast to the Ising model on a scale-free network, the Potts model obeys a richer phase diagram
and regulates the order of the phase transition. Thus, there is a marginal dimension _𝑐 (𝑞) separating the

2In order to have a giant connected component for a given scale-free network, the lower integration boundary should be set to
𝑘min = 2 [31].
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regions with different criticality. Our goal here is to investigate the role of the interplay of the parameter _
and the number of invisible states 𝑟 on the critical behaviour of the Potts model on a scale-free network
in different regions of 𝑞, 𝑟 and _. Since for the ordinary Potts model (𝑟 = 0), critical behaviour depends
on 𝑞, we expect the same situation when the invisible states are added. Within our analysis, we were
unable to consider the limit 𝑞 → 1. Therefore, we focus on a spontaneous (ℎ = 0) magnetization in three
regions: 1 < 𝑞 < 2, 𝑞 = 2 and 𝑞 > 2.

3.5 4.0 4.5 5.0
1

2

3

4

5

6

λ

q
r=0

Figure 1. (Colour online) Phase diagram of the standard Potts model (𝑟 = 0) on a scale-free network. The
system obeys either the first or the second order phase transition. For 1 < 𝑞 ⩽ 2, the second order phase
transition is observed, while for 𝑞 > 2, the critical value of _𝑐 should be taken into account. For each 𝑞 at
_ > _𝑐 (𝑞), the first order phase transition occurs, while for a smaller _ ⩽ _𝑐 (𝑞), the second order phase
transition occurs.

This is a nontrivial task to analyze the critical behaviour of the model using analytical methods
because the free energy of the system depends on a huge number of different parameters. To investigate
the critical behaviour, we adopt the simulated annealing minimization method [32]3 to numerically obtain
the values of the order parameters 𝑚1 and 𝑚2, that lead to the lowest free energy. To this end, we fix the
numbers of visible 𝑞 and invisible 𝑟 states, parameter _ and minimize the expression for the free energy
with respect to two global order parameters [𝑚1, 𝑚2 defined in (2.8)] while changing the temperature.
The obtained temperature dependencies of the order parameters allow us to distinguish between the first
and the second order phase transition regimes. However, only the order parameter 𝑚1 has a physical
interpretation as a quantity that appears below the transition point and breaks the system symmetry. The
second order parameter 𝑚2 disappears only if there are no invisible states 𝑟 = 0 [27, 28]. If 𝑚1 smoothly
vanishes as the temperature increases (𝛽 decreases), then the transition is of the second order. On the
contrary, if there are discontinuities in 𝑚1(𝛽), then the system undergoes the first order phase transition.

3.1. Strongly correlated networks: 2 < 𝝀 ⩽ 3
We start our analysis with strongly correlated networks, i.e., where_ ⩽ 3. For the ordinary Potts model

on a scale-free network, it was shown that in this case the system remains ordered at any temperature,
meaning that there is no phase transition. This happens because the degree distribution vanishes slowly
and many nodes in the network have high degrees forming a strongly connected and clustered structure.
This type of behaviour is also observed in the Potts model with invisible states: no large amount of
invisible states is capable of breaking the order. To illustrate this, in figure 2 we present the dependency
of both order parameters on the temperature at large 𝑟 . These smooth curves indicate that there is no

3Compared to our previous analysis in [28] we improved the algorithm for a better search for the global minima on the boundary
of the search region. This led to improvements in finding the minima at low values of 𝑚1 and consequently to better estimates for
𝑟𝑐1 and 𝑟𝑐2.
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phase transition for the network with a slow degree distribution decay, similar to what is observed for the
standard Potts model.
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m
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q=2, r=50, λ=2.9

Figure 2. (Colour online) Order parameter dependency on temperature for the Potts model with 𝑞 = 2
visible and 𝑟 = 50 invisible states on a scale-free network with degree distribution exponent _ = 2.9.
Both order parameters decay with temperature but never vanish. This signals the absence of the phase
transition.

3.2. Region 1 < 𝒒 ⩽ 2
In this subsection, we present the results for the 𝑞 = 1.5 and 𝑞 = 1.9 Potts model to illustrate how the

addition of invisible states affects the critical behaviour. This case in many aspects is similar to the Ising
case (𝑞 = 2) considered in [28]. We start by examining the critical temperature. In figure 3 we present
the values of critical temperature for different values of 𝑞, 𝑟 and _. We see that the addition of invisible
states as well as an increase in _ decreases the critical temperature. The reason for the former effect is
that the number of invisible states corresponds to the entropy. Therefore, with more entropy it is easier to
break the ordering. The increase in _ translates into a lower number of hubs that play a significant role in
the network connectivity and, therefore, in the ordering. We have already observed this in the previous
subsection.
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Figure 3. (Colour online) Critical temperature as a function of the number of invisible states 𝑟 for different
values of _. Similarly to the case 𝑞 = 2, critical temperature decreases with the increase in both 𝑟 and _.
In addition, an increase in 𝑞 lowers the critical temperature. We present only values 3 < _ ⩽ 4 to make
the plot less cluttered, although the trends are the same in the region _ > 4.

As we have already mentioned, the order parameter 𝑚2 stays finite for all finite temperatures and at
𝑟 = 0, 𝑚2 = 0, and we only have a single order parameter 𝑚1. Therefore, to detect the phase transition
we will only track the order parameter 𝑚1. However, both 𝑚1 and 𝑚2 can be used to distinguish between
the first and the second-order regimes as the plots demonstrate.

In figure 4 we show how the order parameter depends on temperature for two values of 𝑞 and
different 𝑟 . The plots are shown for _ = 3.5. We observe the same type of behaviour as was already
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Figure 4. (Colour online) The order parameter 𝑚1 dependency on a reduced temperature 𝜏 = 𝑇/𝑇𝑐 . The
left-hand plot shows data for 𝑞 = 1.5 while the right-hand one is for 𝑞 = 1.9. For low values of 𝑟, the
system undergoes the second order phase transition, while for large 𝑟 there is only the first order transition.
Models with an intermediate number of invisible states are characterized by two phase transitions: the
first order phase transition between two partially ordered states at a lower temperature and the second
order transition at a higher temperature.

reported in the Ising case (𝑞 = 2) [28]. For a small number of invisible states 𝑟 < 𝑟𝑐1, both order
parameters depend on temperature continuously, leading to the second order phase transition. On the
contrary, for large 𝑟 > 𝑟𝑐2, only the first order transition is observed, when the magnetisation drops
to zero at a particular temperature. Finally, for the intermediate values 𝑟𝑐1 < 𝑟 < 𝑟𝑐2, there are two
transitions: first order transition between two (partially) ordered states and a second order transition when
a magnetisation, that remained after the first order transition, vanishes. This leads to the existance of
two marginal values 𝑟𝑐1(𝑞, _) and 𝑟𝑐2(𝑞, _) that separate the regions with different criticality. The phase
diagrams of the 𝑞 = 1.5 and 𝑞 = 1.9 Potts model with invisible states are shown in figure 5. The structure
of the phase diagram is similar to the Ising case (𝑞 = 2), but the values of marginal dimensions 𝑟𝑐1(_)
and 𝑟𝑐2(_) are larger. This reflects the fact that as 𝑞 decreases the system moves closer to the percolation
case 𝑞 = 1, which is known as a very robust second order phase transition. Therefore, a larger number of
invisible states 𝑟 is needed to change the phase transition to the first order.
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Figure 5. (Colour online) Phase diagram of the Potts model with invisible states on a scale free network
for 𝑞 = 1.5 (the left-hand plot) and 𝑞 = 1.9 (the right-hand plot) at different 𝑟 and _ > 3. The three
regions, presented here, differ in critical behaviour. In the lower (blue) region the system undergoes only
the second order phase transition; in the region in-between the lines there are both the first and the second
order phase transitions at different temperatures; in the upper region (orange) only the first order phase
transition occurs.

3.3. Region 𝒒 > 2
In this region, even without the presence of invisible states, the critical behaviour of the system is

characterized by the marginal value _𝑐 (𝑞). Above this value, only the first order phase transition occurs
for the standard Potts model on a scale-free network, while for _ < _𝑐 (𝑞) there is only a second order
phase transition [30]. As in the previous subsection, we start by investigating critical temperature. In
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figure 6 we present critical temperature as a function of the number of invisible states 𝑟 for different
values of _. The same as in the region 𝑞 ⩽ 2, here for 𝑞 > 2 the critical temperature decreases with an
increase in both 𝑟 and _.
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Figure 6. (Colour online) Critical temperature as a function of the number of invisible states 𝑟 for different
values of _. Similarly to the case 𝑞 ⩽ 2, critical temperature decreases with an increase in both 𝑟 and _.

Since there are two different regions depending on the value of _, we examine how the addition of
invisible states will affect the critical behaviour in both of these cases. In figure 7 we show the order
parameter 𝑚1 dependency on the reduced temperature 𝜏 = 𝑇/𝑇𝑐 for 𝑞 = 3, 𝑟 = 0, 5, 15, 25, 100 and
two values of _ presenting the regions with different critical behaviour: _ = 3.5 < _𝑐 (𝑞 = 3) and
_ = 3.8 > _𝑐 (𝑞 = 3). Similarly to the case 𝑞 ⩽ 2 described in the previous subsection, we see that the
small number of invisible states does not change the order of the phase transition while a large number of
invisible states leads to the existence of only the first order phase transition. However, in the intermediate
region, the situation is different. It was shown that an increase of invisible states 𝑟 in the spin system
with the second order phase transition triggers the first order phase transition at a lower temperature.
In the previous papers, it was assumed that invisible states do not affect the existing first order phase
transition [13, 27].
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Figure 7. (Colour online) First order parameter dependency on reduced temperature 𝜏 = 𝑇/𝑇𝑐 . Left-hand
plot illustrates the case _ < _𝑐 (𝑞) with 𝑞 = 3, _ = 3.5, while on the right-hand plot _ > _𝑐 (𝑞) with 𝑞 = 3,
_ = 3.8. We see that in both of these cases gradual increase in the number of invisible states triggers a first
order phase transition between two partially ordered states, while the original phase transition remains
at 𝑇𝑐 . When the number of invisible states is high enough, only one first order transition remains.

Here, we see that in the first order regime _ > _𝑐 (𝑞) we also obtain an additional first order transition
at a lower temperature. From figure 7 it might be unclear what is happening with the initial first order
phase transition when invisible states are added. To illustrate this, in figure 8 we show the dependency
of both order parameters on temperature near the critical point 𝜏 = 1. Both order parameters experience
jumps signalling the existence of the first order phase transition. Therefore, the system is characterised by
two consecutive first order transitions. This type of critical behaviour had not been reported before for the
Potts model with invisible states. This phenomenon is observed only in the limited area of _. Apparently,
there is some _𝑢 that limits the region where two consecutive first order phase transitions occur. In figure 9
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Figure 8. (Colour online) First and second order parameters dependency on the reduced temperature
𝜏 = 𝑇/𝑇𝑐 near 𝜏 = 1 for 𝑞 = 3, 𝑟 = 15 and _ = 3.8. Both order parameters have jumps near the critical
temperature signalling the existence of the first order phase transition.

we demonstrate the first order parameter dependency on the reduced temperature for 𝑞 = 3, _ = 4.4
and 𝑟 ranging from 1 to 6. We see that with 𝑟 increasing, the existing first order phase transition only gets
sharper and no additional transition occurs. For 𝑞 = 3, we have found that 4.1 < _𝑢 < 4.2.
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Figure 9. (Colour online) First order parameter dependency on the reduced temperature 𝜏 = 𝑇/𝑇𝑐 for
𝑞 = 3, _ = 4.4 and 𝑟 ranging from 0 to 6. The increase in the number of invisible states does not trigger
an additional first order phase transition. However, it makes the transition sharper.

Summarizing the results on the phase diagram (see figure 10), we may conclude that even in the case
𝑞 > 2 the system is still characterised by two marginal dimensions 𝑟𝑐1(_) and 𝑟𝑐2(_), although the critical
behaviour in the regions into which these marginal dimensions split the phase diagram is _-dependent.
For _ < _𝑐 (𝑞) adding invisible states 𝑟 has the same effect as in the previous case, i.e., for small values
𝑟 < 𝑟𝑐1(_) there is only the second order phase transition; for 𝑟𝑐1(_) ⩽ 𝑟 ⩽ 𝑟𝑐2(_), there are both the first
and the second order phase transitions occurring at different temperatures; for 𝑟 > 𝑟𝑐2(_), only the first
order transition remains. For _𝑐 (𝑞) < _ < _𝑢 (𝑞), the behaviour is very similar with a sole difference that
the second order phase transition is replaced by the first order transition, but two marginal values 𝑟𝑐1(_)
and 𝑟𝑐2(_) remain. Finally, for _𝑢 (𝑞) < _, there is only the first order phase transition with the jump
in the order parameter dependent on the number of invisible states. The existence of the region where
two first order phase transitions occur suggests that the topological and entropic effects on the phase
transitions are to a certain extent independent of each other. Invisible states induce the corresponding
first order transition regardless of the nature of the transition observed at the critical point where the first
order parameter vanishes 𝑚1 = 0. On the other hand, when a large number of invisible states is added
to the model, the transition at the critical point is always a first order transition for all values of _ where
transition can occur.
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Figure 10. (Colour online) Phase diagram of the Potts model with invisible states on a scale free network
for 𝑞 = 3. For _ < _𝑐 (𝑞), the phase diagram is qualitatively the same as in the 𝑞 ⩽ 2 case. At a large
number of invisible states 𝑟 > 𝑟𝑐2 (dark yellow region), the first order phase transition occurs. If the
amount of invisible states is small, the system is described by the second order phase transition behaviour
(the blue region), and in between — white region — both the first and the second order phase transitions
occur at different temperatures. However, it is different for _ > _𝑐 (𝑞): two first order phase transitions
occur (green and dark yellow regions). In the region _ > _𝑢, any amount of invisible states is incapable
of affecting the critical behaviour, the single first order transition occurs (light yellow).

4. Conclusions

In this paper, we sum up the analysis of the critical behaviour of the Potts model with invisible states
on an annealed scale-free network. Using the inhomogeneous mean-field approximation, we confirmed
our previously obtained results and conclusions [28, 30, 33], namely that the number of invisible states
can change the universality class of the standard models on a complete graph or even on a scale-free
network [28] when the degree distribution decay exponent plays a similar role. After numerical analysis
of the free energy of the Potts model with invisible states on a scale-free network, we can conclude
that 𝑞, 𝑟 and _ play a role of global parameters that influence the critical behaviour of the system. We
investigated the interplay of the parameters in different regions of 𝑞, 𝑟 , _ and sum it up on the phase
diagrams. Depending on 𝑞 and _, the critical behaviour changes. Unlike in reference [21] we cannot
analyze the behaviour of the system for a negative number of invisible states. This is due to the method
we applied. Negative 𝑟 could lead to complex values of the free energy (2.9) that cannot be minimized.

For strongly correlated network region 2 < _ ⩽ 3 it was shown in subsection 3.1 that any large
number of invisible states is incapable of breaking the order, the system stays ordered at any temperature.
In section 3.2 for 1 < 𝑞 ⩽ 2, we obtained a phase diagram similar to the one for the Ising case (see
figure 5). The phase diagram in the (𝑟, _) plane is divided by two marginal values 𝑟𝑐1(_) and 𝑟𝑐2(_) into
three regions with different critical behaviour. In the lower region 𝑟 < 𝑟𝑐1(_) the system undergoes only
the second order phase transition; in the region in-between the lines there are both first and second order
phase transitions at different temperatures; for a large number of invisible states 𝑟 > 𝑟𝑐2(_), only the first
order phase transition occurs. The last region of 𝑞 > 2 (see subsection 3.3) is the most interesting. In this
region, two marginal values of _𝑐 and _𝑢 appear. For _ < _𝑐, the phase diagram (figure 10) is similar to
what is observed for the 𝑞 ⩽ 2 case in figure 5. In the region _𝑐 < _ < _𝑢, the phase diagram is also
characterized by two marginal values 𝑟𝑐1(_) and 𝑟𝑐2(_). For 𝑟 < 𝑟𝑐1(_), the system is characterized by
the first order phase transitions same as in 𝑟 = 0 case. In the region 𝑟𝑐1(_) < 𝑟 < 𝑟𝑐2(_), there are two
first order phase transitions at different temperatures. At a lower temperature, the transition is between
two partially ordered states, while at a higher temperature, the system becomes fully disordered 𝑚1 = 0.
Lastly, for 𝑟 > 𝑟𝑐2(_), there is only a single first order transition between an ordered and disordered state.
In the region _ > _𝑢 any amount of invisible states is incapable of affecting the critical behaviour. There
is only a single first order transition regardless of the value of 𝑟.

We observed that the addition of invisible states triggers an additional first order phase transition
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that, for a certain range of 𝑟, exists alongside the phase transition that existed at 𝑟 = 0. This implies that
the topological and entropic effects on the phase transition are independent. The presence of non-integer
marginal dimensions is ubiquitous in the criticality of complex systems. It should be mentioned that a
topology presented by the network structure determined by node degree distribution decay exponent _
dominates over the entropic influence, although the effect of an additional first order phase transition
should be analyzed more in detail.

The value of _𝑐 we observed in the 𝑞 > 2 case fully coincides with the value obtained in reference [30].
It was obtained from the condition that the coefficient of the_-dependent term in the free energy expansion
changes the sign and requires taking the next term of the expansion into consideration. In reference [30] it
was also shown that there are higher values of _ that can change the sign of the corresponding coefficient,
but since for such _ the expansion term is irrelevant for the phase diagram, these values are omitted.
Interestingly enough, the value _𝑢 that we observed in this paper is similar to the second lowest value
of _ that changes the sign of the leading _-dependent coefficient in the free energy expansion over the
order parameter for the standard Potts model on an annealed scale-free network with 𝑟 = 0. Whether this
is just a coincidence or has a deeper meaning needs an additional investigation.
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Модель Поттса з невидимими станами на безмасштабнiй
мережi

П. Сарканич1,2, М. Красницька1,2,3
1 Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, 79011 Львiв, Україна
2 Спiвпраця L4 i Коледж докторантiв зi статистичної фiзики складних систем,
Ляйпцiг–Лотарингiя–Львiв–Ковентрi, Європа

3 Лабораторiя фiзики та хiмiї, Унiверситет Лотарингiї, Вандурв-лє-Нансi, 54506, Францiя

Для пояснення магнiтних фазових переходiв через конкуренцiю енергiї та ентропiї було запропоновано
рiзнi моделi. Одна з них – 𝑞-станова модель Поттса з невидимими станами. В рамках цiєї моделi вво-
дять 𝑟 невидимих станiв таким чином, що спiн, який перебуває у будь-якому з них, не взаємодiє з iншими
спiнами у системi. Ми розглядаємомодель на вiдпаленiй безмасштабнiй мережi, де iмовiрнiсть, що випад-
ково обраний вузол має ступiнь 𝑘 описується степенево-спадним законом 𝑃(𝑘) ∝ 𝑘−_. Нашi результати
пiдтверджують, що 𝑞, 𝑟 та _ вiдiграють роль глобальних параметрiв, що визначають критичну поведiн-
ку системи. Залежно вiд їх значень, фазова дiаграма складається iз трьох областей з рiзною критичною
поведiнкою. Однак, слiд зауважити, що вплив топологiї, представлений граничними значеннями _𝑐 (𝑞),
домiнує над ентропiйним фактором, що визначається кiлькiстю невидимих станiв 𝑟 .

Ключовi слова: спiновi моделi, фазовi переходи, складнi мережi, безмасштабнi мережi, ентропiя,
надлишковi стани
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