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The macroion-macroion correlation function and structure factor are stud-
ied within the Ornstein-Zernike (OZ) integral equation closed by hypernett-
ed-chain approximation using the method of critical modes. Developing the
results which have recently been received in [1–3] for a case of a model
system consisting of a mixture of charged hard spheres, the role of detal-
ization in describing the compound characters is investigated. In particular,
it is shown that adding the uncharged particles to the model of the solu-
tion of macroparticles and counterions significantly affects the structural
parameter of ordering extracted within the critical modes method providing
close theoretical and relating experimental results.
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1. Introduction

A colloidal suspension is a dispersion of microscopic particles in a liquid. Parti-
cles can be regarded as colloids if they are first of all significantly larger than solvent
molecules and secondly, if they have a typical linear dimension R small enough to
show a significant Brownian motion, i.e., approximately 1 nm < R < 1 µm. The in-
vestigation of model colloids (particles with well defined size, shape and interactions)
in recent decades has proved to be a source of intriguing phenomena, crystallisation
of colloidal component into Wigner lattice being an example. The equilibrium ther-
modynamic properties of an assembly of colloids are formally the same as those of an
assembly of atoms with an inter-atomic potential of the same form. Statistical me-
chanics combined with theories developed for simple liquids and solids, can then be
used to calculate the phase behaviour and structure of colloidal suspensions. Thus,
in some sense, a suspension of colloidal particles can be regarded as an assembly
of s.c. super-atoms. For example, for a suspension of equal-sized (monodispersive)
spherical colloids, under suitable conditions we may find the existence of colloidal
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gas, liquid (fluids including) or crystal phases, similar to a simple atomic substance
such as argon (for a general reference see [4,5]). We shall pay most attention to the
all-round charge stabilised colloidal suspensions. Note, charged colloidal particles
can be regarded as macroions. On their surfaces there are ionisable groups, at least
some of which dissociate when the particles are dispersed in a polar liquid such as
water. The particles themselves acquire a charge q0, typically 102 to 105 elementary
charges e. The counterions discharged into the liquid move away from the macroion
in Brownian motion, but nevertheless they remain in its field of force. This results in
an electric double layer surrounding the particle, composed of the counterions and
the ions of any electrolyte present in the suspension. When two macroions approach
each other, the overlap of their double layers causes a repulsive force which can sta-
bilize the particles against aggregation. At present, it is experimentally proved that
ionic colloidal suspensions display the extraordinary structures, in particle distribu-
tion, such as gas-like, liquid-like and solid-like (crystal-like and amorphous solid-like
or glass-like) distributions [5]. The suspensions showing the crystal-like structures are
ideal systems for model studies of metals, since the colloidal structures are analyzed
using the optical techniques and their forces are readily manipulated by controlling
the composition of the suspension. Furthermore, phase transition phenomena such
as crystallization and melting occur sharply. A study of the extraordinary struc-
tures of colloidal particles is also helpful in understanding fundamental properties
of the state of the substance and electrostatic interactions of macro-ionic system. Of
course, both of the two essentially important factors in the characteristic properties
for colloidal systems (i.e. an electrostatic interparticle repulsion and an expanded
electrical double layers around the particle in the deionized state) are quite different
from the features of real metals. Observation of the effect of ordering in colloidal
systems is possible even with the naked eye of the iridescent colours and single crys-
tals (or crystallites). Colloidal crystals are surrounded by grain boundaries and are
quite similar to the morphology of metals. Iridescent colours of the crystal-like sus-
pension are ascribed to the Bragg diffraction of visible light by the arrayed lattice
planes. Lattice spacing of the colloidal crystals is by several thousand times longer
compared with that of metals being in the range of light wavelengths. As it was
mentioned above, ionic groups on the colloidal surfaces leave their counterions in
the suspension, and these excess charges accumulate near the surfaces forming an
electrical double layer. The double layer consists of two regions; an inner region com-
posed of adsorbed counterions and a diffusive region containing the remainder of the
excess counterions. The counterions in the diffuse region are distributed according
to a balance between their thermal motion and the force of electrical attraction with
the colloidal spheres. The thickness of the diffuse double layer is approximated by
the Debye-screening length λDH,

λDH = (
4πe2n

εkBT
)−

1

2 (1)

where e is the electronic charge, ε is the dielectric constant of the solvent, kB is the
Boltzman constant and n is the concentration of the free state cations (and anions)
in suspension.
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According to the effective hard sphere model for the deionized colloidal suspen-
sion, crystal like ordering is formed when the effective diameter d eff of the spheres
containing the Debye-screening length is close to or larger than average intersphere
distance l, i.e.

d+ 2λDH > l (2)

where d is the diameter of the sphere.
Introducing the energy parameter kBT

V
, and ionic parameter l:

kBT

V
=

kBT
(Zeff )2

εl
exp(−Zeff)

, λ =
l

λDH
(3)

where Zeff is the effective charge number. One can plot kBT/V which gives rise
to the impression regarding the phase diagram between crystal-like and liquid-like
structures. The mentioned typical phase diagram plotted for colloidal silica spheres
with a diameter d = 109 nm, s : s

d
= 0.028 is shown on figure 1 data from [6].

Figure 1. The typical phase diagram between crystal-like and liquid-like struc-
tures.

The phase behaviour and structure of suspensions of charge-stabilised colloids
has been reviewed in many papers, see for example [4–6]. The common conclusion is
the following. At low electrolyte concentrations (deionised suspensions) the double
layers can be extensive. The energy of electrostatic repulsion between two particles
can then be comparable to the thermal energy kBT for interparticle spacing of ten
or more particle diameters. Such a suspension shows both marked fluid-like ordering
and freezing transition at volume fractions Φ = π

6
d3n as low as 10−4. The structure

of the very dilute crystals can be either body-centred cubic (bcc) or face-centred
cubic (fcc) and frequently near perfect single structures are observed.

2. Short review of the problem

Interactions between charged macroparticles in an aqueous environment play
an important role in many physical systems (colloidal suspensions, colloid-polymer
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mixtures, solutions of proteins and organic ions in solutions of polymers, solutions
of charged micelles and viruses, dusted plasma, etc.) [4,5,7–11]. In the theory of col-
loidal solutions, there is a well-known controversy concerning the neglect of certain
interactions in the solution [12–20]. It seems self-evident that the complete statisti-
cal mechanical theory contains all interactions between all species in the solutions,
macroions, counterions and coins, and solvent, and hence all correlation functions
between all species must be considered. Any approximation to this complete the-
ory must necessarily replace true potential energies by potentials of a mean force.
The most successful theories of electrolyte solutions are those based on the Ornstein-
Zernike (OZ) equation [21] with appropriate closure relations [22]. The hypernetted-
chain (HNC) closure is regarded as the best closure relation for ionic systems such
as electrolyte solutions over a wide range of thermodynamic state points, molten
salts, and one component plasma. The hypernetted-chain approximation has got
the advantage of its accounting for the size of ions directly and of its being suit-
able for treating the highly asymmetric electrolytes. One of the earliest analysis of
the crystallisation phenomena in the macroionic solutions was made by Kirkwood
and Hastings [24]. The theory [24] was based on the model of aqueous solution of
macroions in the presence of both the counterions and the added salt. It was shown
that the theory exhibits a mean field phase transition which was interpreted as a
transition to the crystalline phase. The lower bound on the macroion charge neces-
sary for crystallisation was estimated. There are some recent studies of the macroion
mixtures based on the HNC integral equation. In [25] the OZ equation was solved
in the HNC approximation for several mixtures of electrolytes and uncharged hard
spheres. The mixtures that were studied range from a primitive model of simple re-
stricts plus hard spheres of the same size to highly asymmetric electrolytes plus hard
spheres of different sizes. The radial distribution functions and thermodynamic prop-
erties were monitored. It was found that the presence of neutral particles changes
the nature of the interaction between the charged particles. However, no indications
of a phase transition was found for any cases analyzed in this work. Adopting the
same technique V.Vlachy [26] presented the radial distribution functions for systems
containing mono- or divalent counterions for a range of macroion concentrations. A
qualitative and a good enough coincidence of the results obtained in the above men-
tioned works [25,26] is observed. However, both works ignore the molecular nature of
the solvent. D.Duh and A.Haymet [13] applied the HNC approximation to reanalyze
the small angle neutron scattering (SANS) data of Kunz et al [27] for bulky ions in
solution. The pair correlation function was obtained from the potential model via
the HNC approximation. The partial structure factor and the coherent intensity of
neutrons scattered elastically from an ionic solution was related, as usual, to the
Fourier transform of the pair correlation function. By exhibiting an alternate set
of fitting parameters they have shown conclusively that fitting SANS data with a
model potential may not be unique even within a given integral equation approxi-
mation. Hence the solvent− averaged pair correlation function obtained using this
method does not necessarily represent the real structure of the electrolyte and thus
the conclusions drawn from the fitted pair correlation functions, rather than di-
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rectly from the experimental data, are inconclusive. The authors pointed out that
in colloidal solutions, the treatment of the solvent as a continuum may be possibly
justified by the fact that the diameter of colloidal particle is usually orders of mag-
nitude larger than that of the solvent molecule, and hence the solvent contribution
to the structure factor will appear in a different (high) range of the wave-vector
values. However, for example the studies [28] seem to cost doubt even in this case,
hence the justification of the above approximation is open. Besides the problem of
justification of the solvent averaged model, in the integral equation theory of ionic
solutions a problem arises of the validity of the HNC approximation by itself [22,29–
31]. It is known that, for the short-ranged repulsive forces the Percus-Yevick (PY)
approximation works effectively, despite the fact that it includes fewer diagrams in a
pair correlation function and in a direct correlation function. The HNC closure has
been found to be effective for systems with long-range forces. However, for model
electrolytes in the strong coupling and in the low concentration regime, where the
charge association occurs, the HNC approximation begins to break down and yields
unphysical predictions for the structure and critical behaviour, apparently because
the HNC cannot account for ion association [32]. Presumably, the short-range forces
which are better handled by the PY closure become more important, resulting in
the breakdown of the HNC approximation. There are at least two routs for im-
proving the HNC approximation. One is the direct inclusion of association effects
addressed in [29]. The other is adding the bridgefunction contribution to the cluster
expansion for the pair correlation function (see for example [29] and references there-
in), although ion association is not addressed explicitly. A.Vompe and G.Martynov
[31] proposed self-consistent solutions to the Ornstein-Zernike equation where the
approximate closure is completely replaced by a bridge function expansion, whose
main advantage is the improvement of correlation functions. Unknown coefficients
of this expansion were found from the principle of total thermodynamic consistency.
The used form of expansion performed a fast convergence and presented an efficient
and universal solution of closure problem that is of special importance for a problem
of phase transitions [24]. Subsequently, in our further consideration we will adopt
the HNC closure. We hope that the HNC closure should be valid for a number of
experimentally studied colloidal suspensions [4–8], since the distances between col-
loidal particles are usually orders of magnitude some times larger than the diameter
of colloidal particle.

3. Models and methods

Let us consider a water suspension of polystyrene colloidal particles with a size
of order of a ≈ 0.1µm. We note that in recent experiments [4–8] the crystalline
phase formed by colloidal particles with the lattice constant R0 ≈ 1µm could be
generated. Hereinafter we restrict our consideration by the three main cases. At first
we shall suppose that the system under consideration can be described as a one-
component plasma of finite size ions, the counterions and solvent molecules being
treated as a uniform neutralizing background which determines the screening in the
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system. Secondly we shall consider a two component model (colloidal particles plus
counterions), where the solvent is treated as a continuum, and specific ion-solvent
interactions are neglected. Finally, all interactions between all species in the solution,
macroions, counterions and solvent (water) molecules are present explicitly in our
calculation. The HNC approximation belongs to a family of integral equations which
are rooted in the OZ equation. The OZ equation is a general relationship between
the static correlation function Gσσ′

(~R1, ~R2) = F σσ′

2 (~R1, ~R2)− 1, where F σσ′

2 (~R1, ~R2)

is the binary distribution function, and the direct Gσσ′

2 (~R1, ~R2) correlation function.
For a mixture of r species the OZ equation is

Gσσ′

(~R1, ~R2) = Gσσ′

2 (~R1, ~R2), (4)

where nσ is the number density of σ-species and the sum of integrals represent the
indirect contribution to the static correlation function. The superscript σ denotes
neutral solvent molecules (s = 1), microions (s = 2) and colloidal particles (s = 3).

Following [1–3], note that in the equilibrium state the problem of calculating the
static correlation function is reduced to determining the effective potentials for the
particles of species σ and σ ′ located at the points ~R1 and ~R2 respectively

F σσ′

2 (~R1, ~R2) = exp



−V σσ′

eff (~R1, ~R2)

T



 , (5)

where T is the absolute temperature in the energy units. Using the hypernetted
chain approximation [17] one can obtain:

V σσ′

eff (~R1, ~R2) = V σσ′

(~R1, ~R2)−
r
∑

σ′′=1

nσ′′T (6)

×


exp



−V σσ′

eff (~R1, ~R3)

T



− 1 +
1

T
V σσ′

eff (~R1, ~R3)−
1

T
V σσ′

(~R1, ~R3)





×


exp



−V σ′′σ′

eff (~R3, ~R2)

T



− 1



 ,

where V σσ′

(R) is the direct pair potential.

We assume that V σσ′

(R) and V σσ′

eff (~R) can be divided into a universal short-range

part V σσ′

0 (~R) and long-range part νσσ′

(~R) and Ṽ σσ′

(~R) , respectively, according to

V σσ′

(~R) = V σσ′

0 (~R) + νσσ′

(~R), (7)

V σσ′

eff (~R) = V σσ′

0 (~R) + Ṽ σσ′

(~R), (8)

V σσ′

0 (~R) =

{

∞, R < aσσ′

0, R < aσσ′

. (9)

where aσσ′ = aσ + aσ′ , being the radius of the solid core for the particles of species
σ, ~R = ~R1 + ~R2 .
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Substituting equation (7) into equation (6), one obtains the equation

Ṽ σσ′

(~R) = νσσ′

(~R)−
r
∑

σ′′=1

nσ′′T (10)

×
∫

d ~R′







exp



−V σσ′

(~R)

T



+ frac1Tνσσ′

(~R′)



Θ(R′ − aσσ′)− 1





×


Θ(|~R− ~R′| − aσ′′σ′) exp



− Ṽ σσ′

(~R− ~R′)

T



− 1





which is valid only at R > aσσ′ .
Linearizing equation (9) with respect to V σσ′

/T we find the equation describing
the behaviour of the effective potentials far from the critical point

Ṽ σσ′

(~R) = νσσ′

(~R)−
r
∑

σ′′=1

nσ′′T (11)

×
∫

d ~R′

[

Θ(aσσ′ − R′) +
1

T
νσσ′

(R′)Θ(R′ − aσσ′)
]

×
[

Θ(aσ′′σ′ − |~R− ~R′|) + 1

T
Ṽ σ′′σ′

(~R− ~R′)Θ(|~R− ~R′| − aσ′′σ′)
]

.

Equation (10) can be solved by the Fourier method. The Fourier representation
of equation (7) may be written as

Ṽ σσ′

k +
r
∑

σ′′=1

nσ′′Λσσ′′

(~k)Ṽ σ′′σ′

k = νσσ′

k − T
r
∑

σ′′=1

nσ′′Λσσ′′

(~k)Θσ′′σ′

k , (12)

where
Ṽ σσ′

k =
∫

R>a
σσ

′

d~R exp(−i~k ~R)Ṽ σσ′

(~R), (13)

νσσ′

k =
∫

R>a
σσ

′

d~R exp(−i~k ~R)νσσ′

(~R),

Λσσ′

(~k) = Θσσ′

k +
1

T
νσσ′

k ,

Θσσ′

k =
∫

R>a
σσ

′

d~R exp(−i~k ~R) =
4π

k3
(sin kaσσ′ − kaσσ′ cos kaσσ′).

The equation (11) can be formally simply solved.
Static structure factors can be defined by the relation

Sσσ′

(~k) = δσσ′ +
√
nσnσ′

∫

d~R exp(−i~k ~R)



exp(−V σσ′

eff (~R)

T
)− 1



 . (14)
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4. One-, two- and three-component model for colloidal
suspensions

One can assume as a model that the structural properties of a colloidal suspen-
sion are governed only by a finite ion screened Coulomb interparticle pair potential.
It is known that for dilute suspensions the effective macroion interaction poten-
tial could be approximately described by the Derjaguin-Landau-Verwey-Overbeek
(DLVO) potential (see for example [33]):

ν(R) =
Z2

effe
2

εR
exp

(

− R

RD

)

, Zeff =
Z exp(a/RD)

1 + a/RD

, R2
D =

Tε

4πnce2
, (15)

where RD – Debye radius, a ≡ a3 is the radius of a macroion with charge Ze (Z ≡
Z3), nc ≡ n2 is the number density of the counterions, is the relative permittivity
of water. This potential leads directly to an effective Yukawa pair potential with a
rescaled macroion charge Zeff .

The Ornstein-Zernike equation (4) in this case is reduced to those for the one
component mixture (r = 1) . Taking into account notation adopted above, one can
obtain the following results

Ṽ 33
k =

T

n3

(1− n3Θ
33
k )− T

n3

1

1 + n3(Θ33
k + 1

T
ν33
k )

, (16)

S33
k (~k) =

1

1 + n3(Θ33
k + 1

T
ν33
k )

, (17)

where ν33
k is determined by the result of the substitution (14) in (12) :

ν33
k =

4πZ2
effe

2

εk2

exp(−a33

RD
)

( 1
RDk

)2 + 1

(

1

RDk
sin ka33 + cos ka33

)

. (18)

We will attribute the generation of the s.c. critical modes (singularities) in S 33
k (~k) to

the emerging of instabilities which could lead to structural (phase) transitions. The
reciprocal of the wave vector k0 when such a singularity occurs, could be treated as an
estimate for the structural parameter of ordering for example lattice constant R0 =
2π
k0

of colloidal system [1–3,23,24]. In our case the positions of possible singularities
of the structure factor (15) are determined by the equation:

1 + n3(Θ
33
k +

1

T
ν33
k ) = 0, (19)

which under the parameters, valued for the respective experiments [7,8], namely:
N3 = 3.3 · 1012cm−3, a3=5.5 · 10−6cm, T = 293◦K, have been solved numerically.
It was shown that the structure factor S33(~k) has got two types of singularities
corresponding the close-packed structure and ordered colloidal (crystal-like) packed
structure of the considered model system. As the charge of colloidal particle de-
creases, we observe at |Z3| = 170 the lost of singularities of the structure factor

S33(~k) and the coexistence point of the close-packed and crystal-like packed phases.
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The colloidal suspension could be also considered as a mixture of charged hard-
sphere particles (counterions – σ = 2, and colloidal particles – σ = 3 ) immersed
in a continuous dielectric with the relative permittivity ε. The discrete structure of
the solvent in this model could be neglected. The long-range part of the potential
energy between particles of species σ and σ ′, νσσ′

(R) is

νσσ′

(R) =
ZσZσ′e2

εR
, R > aσσ′ , (20)

where σ, σ′ = 2, 3. In the case of the interparticle potential having the form (18), we
derive, using equation (13) with respect to equation (12), the following expression

for the structure factor S33(~k):

S33(~k) = Π22(~k)
/

det
∣

∣

∣Π22(~k)
∣

∣

∣ , Π22(~k) = δσσ′ + nσ′Λσσ′

(~k), (21)

where νσσ′

k in equation (12) is taken in the form:

νσσ′

k =
4πZσZσ′e2

ε

cos kaσσ′

k2
, σ, σ′ = 2, 3. (22)

Equation
det

∣

∣

∣Π22(~k)
∣

∣

∣ = 0 (23)

determines the singularities of the structure factor S 33(~k) the emerging of which
indicates, accordingly, the critical mode behaviour of the system. It is possible to
show that the character of the singularities of the structure factor S33(~k) of the
two-component model is qualitatively the same but quantitatively different from
the one-component model.

Finally, consider the a model where all the macroion, counterion, and solvent
molecule interactions are present explicitly in calculation. The long range part of
the potential of interaction between the species σ, σ ′ = 1, 2, 3 is defined by

ν11(R) = −3(~d~lR)(~dm~lR)− (~d~dm)

R3
, (24)

ν1σ(R) =
Zσe(~d~lR)

R
, σ = 2, 3, (25)

νσσ′

(R) =
ZσZσ′e2

R
, σ, σ′ = 2, 3, (26)

where ~d ~, dm(|~d| = |~dm|) are the dipole moments of the two water molecules, ~R is the
radius vector which connect the centers of mass of the two water molecules σ = 1
(equation (22)) and the center of mass of the water molecule and particle of species

σ = 2, 3, ~lR is the unit vector directed parallel to ~R . The structure factor S33(~k),
which is of interest to us, in this case takes the form:

S33(~k, ~d, ~dm) = Π−1
33 (

~k) =
Π11(~k)Π22(~k)− Π12(~k)Π21(~k)

det
∣

∣

∣Π22(~k)
∣

∣

∣

, (27)
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where the elements of the matrix Πσσ′(~k) are determined by the equation (19). The
Fourier transformation of equation (22) has the form

ν1σ
k = −4πieZσ

~k~d

k2

sin ka1σ
ka1σ

, σ = 2, 3, (28)

νσi

k = −ν1σ
k , (29)

νσσ′

k =
4πZσZσ′e2

k2
cos kaσσ′ , σ, σ′ = 2, 3. (30)

One can divide the consideration of the three component model into the two
cases. First consider the situation when the dipole moments of the water molecules
are strongly correlated to each other ~d = ~dm.

Using equation (12) and equation (22) we obtain the Fourier transform of ν 11(R):

ν11
k =

4πd2

(ka11)2

(

sin ka11
ka11

− cos ka11

)





3





~k~d

kd





2

− 1





 , (31)

where d = |~d|.
The average value of the S33(~k, ~d) is determined by the integral:

〈

S33(~k, ~d)
〉

=
∫

S33(~k, ~d)dΩ, (32)

where dΩ = sinϑ dϑ dϕ is the element of the spherical angle (the wave vector ~k is
directed along the Z-axis). Numerical analysis of equation (26) shows that under
the certain values of the wave vector k for the fixed charge number Z3, the integrand
has singularities over a domain of integration.

In this case we obtain the definitive increase of the estimated value for the lattice
parameter that suggests the emerging of the instabilities in the existing phase.

At last, supposing that the dipole moments of the water molecules have got
arbitrary chaotic orientations in space, we have the following:

ν11
k =

4π

(ka11)2

(

sin ka11
ka11

− cos ka11

)



3
(~k~d)(~k~dm)

k2
− ~d~dm



 . (33)

The respective structure factor S33(~k, ~d, ~dm) is given by

〈

S33(~k, ~d, ~dm)
〉

=
1

(4π)3

∫

S33(~k, ~d, ~dm)dΩdΩmdΩ0 , (34)

where dΩi = sin ϑi dϑi dϕi; ϑ, ϑm, ϑ0 are spherical angles between ~k and ~d, ~k and ~dm,
~d and ~dm vectors, respectively. The distribution function of the orientations of the
dipole moments in equation (29) is assumed to be equal to unity. Carrying out the
integration in equation (29) by the variables dΩ and dΩm, and making the numerical
analysis of the retaining integral with respect to ϑ0, one can obtain the definitive
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values of the wave vector ~k ≡ ~k0, under which the structure factor 〈S33(~k, ~d, ~dm)〉 has
got singularities. Adopted model demonstrates qualitatively similar behaviour with
respect to the three- (with correlated dipole moments) component model. Quantita-
tive discrepancy lies (see simultaneous representation on figure 1) in the magnitudes

of the critical values of the wave vector ~k0 under which critical mode generates.

5. Discussion and conclusions

In summary, we have solved the HNC equation in linear approximation for the
macroionic water solution. The procedure for simulation of the ordering tendency
in such a system is proposed and implemented based on the singularities of the
structure factor in terms of critical modes approach. Applying this method, the
structural properties of the water suspensions of polystyrene colloidal particles are
analysed. First we considered the simplest case: one-component plasma of finite size
ions with the pair-wise additive DLVO interparticle interaction potential. The model
neglects the discrete nature of suspending fluid as well as the counterion degrees of
freedom imposed only effectively. We analysed the character of singularities of the
structure factor S33(~k) and estimated the parameter of ordering lattice constant of
colloidal crystal for the different values of the charge number of colloidal particles.
We found that under the experimentally reported values from [7,8] of the charge
number Z3 = −360, the number density n3 = 3.3 · 1012cm−3, the temperature
T = 293◦ K, and the diameter of colloidal particles a33 = 1.11 · 10−5 cm, the
estimated value for the lattice constant of colloidal crystal is R 0 = 3.73 · 10−5cm,
which is approximately 2.7 times smaller than the experimental one (∼= 10−4cm) from
[7,8]. As the charge number |Z3| decreases, we observe the effect of the existence of
the minimal charge for the critical mode generation method which is well consistent
with other theoretical [34] and experimental [4–8] predictions, that are operated by
the approaches in describing the order-disorder transitions which are different from
the one proposed above. Thereafter, we explore a two component model (colloidal
particles plus counterions), where the solvent is treated as a continuum, and specific
ion-solvent interactions are neglected. We obtain, that with the above mentioned
parameters of colloidal suspension, the estimated value of the lattice constant of
the possible colloidal crystal is R0 = 4.29 · 10−5 cm, which is in a better agreement
with the experimental value. As the charge of colloidal particles decreases, the system
again exhibits the effect of minimal charge. As the charge number |Z3| reaches the

value |Z3| = 146, we observe the loss of singularities in the structure factor S 33(~k).
We also conclude that the two-component model leads to a more precise mag-

nitude for the lattice constant of colloidal crystal than the one-component model.
However, note that qualitatively DLVO potential works well enough as an initial
potential to predict the character of singularities in the structure factor S 33(~k).

Finally we explore the most complicated case of a three-component model when
all interactions between all species in the solution, macroions, counterions and sol-
vent (water) molecules are present explicitly in calculation. We divided consider-
ation of the three component model into the two cases. First, we considered the
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case when the dipole moments of the water molecules are strongly correlated to
each other. Averaging the structure factor S33(~k, ~d), we obtained that, with the
accepted values of parameters of colloidal suspension, the lattice constant of the
possible colloidal crystal is R0 = 5.56 · 10−5 cm. The minimum charge number again
exists and quails. Finally we consider the case when the dipole moments of the wa-
ter molecules are noncorrelated. In this case we find the magnitude of the lattice
constant R0 = 6.73 · 10−5 cm, the respective minimal charge |Z3| = 140. Here we
conclude that the three component model gives a better agreement with the exper-
imental value of the lattice constant R0 than it was in the case of one- and two
component models.

Authors acknowledge INTAS for financial support of the research.
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Отримано 29 грудня 1998 р.

У рамках гіперланцюжкового наближення інтегрального рівняння

Орнштейна-Церніке, використовуючи метод критичних мод, вивча-

ються макроіон-макроіон кореляційна функція і структурний фак-

тор. На основі недавно отриманих результатів у [1–3] для випадку

модельної системи, яка складається з суміші заряджених твердих

сфер, досліджено роль деталізації при описі властивостей сполук.

Зокрема показано, що додавання незаряджених частинок до мо-

делі розчину макрочастинок і контріонів значно впливає на структур-

ний параметр впорядкування, отриманого в рамках методу критич-

них мод, забезпечуючи близькість теоретичних і відповідних експе-

риментальних результатів.

Ключові слова: кореляції, структурний фактор, суспензії

PACS: 61.20.Gy, 82.40.-g
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