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The theory based on the “operator” two-time Green functions formalism
applied for the construction of the polarizability operators entering the gen-
eral expression for the effective cross-section of Raman scattering is de-
veloped. The presented microscopic scheme is applied to the investigation
of the ferroelectrics with hydrogen bonds.
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1. Raman scattering tensor

The main characteristics of Raman scattering is the effective cross-section which
can be expressed by Raman tensor [1]
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is the polarizability operator; ω1, ω2 are frequencies; ~k1, ~k2 are wave vectors of the
incident and the scattered light, respectively; α, β, α ′, β ′ are coordinate indices.

Here, M̂β(~k) =
∑

n
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n are the Fourier transforms of the dipole momenta

operators of the unit crystal cell (n is the cell number).
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where ~̂Dnk are the electronic operators; ~Unk are the ionic displacements. The sum-
mation in (1.3) is fulfilled over ionic species in the cell (z k is the ionic charge, k is
the ionic type index); in (1.2) the operators are given in Heisenberg representation.
In the semiphenomenological description of the Raman scattering the polarizability
operators are presented as the expansions in vectors of ionic displacements. Equa-
tion (1.2) enables us to obtain the explicit form for the operator P̂

βα

−~k2,~k1
; its specific

features are determined by the Hamiltonian of the system. In the following we use
the polarizability operator presented in terms of the “operator” Green functions [2]:
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where Â(t), B̂(s) are the operators written in Heisenberg representation. The sta-
tistical averaging of the ĜÂB̂(t, s) operator leads to the retarded two-time Green
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〈〈
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.

After the Fourier transformation we have
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Â, Ĥ
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In the presence of small parameters, the equation of the (1.5) type makes it possi-

ble to construct the operator expansions for the Fourier transformants
{{
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.

By means of (1.3) and (1.4) the expression (1.2) for the polarizability operator
may be presented as follows
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Thus, the problem of the explicit expression for the polarizability operator is
reduced to determining the Fourier transformant

{{

M̂ |M̂
}}

ω′

1
,−ω1

.

2. Raman scattering on internal vibrations of ionic groups in
crystals of KH2PO4

In the problem of Raman scattering by the crystals with a complicated structure,
we dwell upon the scattering by the internal vibrations of ionic groups which can
be in different configurations. Configurations are considered to mean different loca-
tion of the structural elements which form an ionic group including the structural
elements which can be ordered at phase transition. In the case when the vibrations
of internal and external (translational and librational) modes differ essentially they
may be considered independently.

Consider the case when characteristics of vibrations and related electron states
depend on the configurations of some of the ionic complexes in the unit cell. Then
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the Hamiltonian is written:
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Here, N ii
nk is the occupation number of the i-th configuration of the complex (n,k);

X̂
sis

′

i

nk are the Hubbard operators (see [3]) acting based on the electron states of the

groups; λ
(i)
ksi

denotes energy of the state si of the group k. We confine ourselves to
the account of electron-vibrational interaction within individual ionic groups; U ′

nkv

are the vectors of ion displacement from equilibrium positions (ν is the number of

the ion in a group); θ
sis

′

i

kνα is the interaction matrix. Beside the terms in (2.1) the
total Hamiltonian includes the interaction energy of ionic groups (dependent on
their configurations) which is responsible for the transition to the order state (in the
case of the crystal possessing the order-disorder type phase transition).

Expression for the scattering cross-section can be written in terms of the Green
function constructed of the polarizability operators [4].

In order to describe the one phonon Raman scattering by internal vibrations of
ionic groups in the ferroelectric crystals with hydrogen bonds we apply configura-
tional averaging and the approach of mean field type. As an example we consider
the crystals of KH2PO4 (KDP)-type. In such crystals the various configurations of
HnPO4 groups (n=0, 1,...,4) can be realized depending on the character of proton
location in the double potential wells on the hydrogen bonds. The most probable
between them are the configurations with two protons in the neighbourhood of the
given complex PO4 [5,6]. Confine ourselves to the account for such configurations
only; their number is six, more preferable energetically are two of them with protons
near the upper or lower (with respect to the crystal c-axis) oxygen atoms (figure 1).
We consider the case T > Tc.

i=1 i=2 i=3 i=5i=4

i=7

i=6

i=8 i=12i=11i=10i=9

l=2

l=1

Figure 1. H2PO4 configurations for two sublattices of PO4 groups in KDP crystal
(projection to xy-plane).
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For isolated PO4 complex of the point symmetry Td the internal vibrations are
classified in terms of irreducible representations A1 (ν1 frequency); E (ν2 frequency);
F2 (ν3 and ν4 frequencies). In the case of configurations i=1,2 (l=1), i=7,8 (l=2)
they reduce to the modes of the symmetry A1, B1, B2; 2A1, 2B1, 2B2; A1, B1,
B2, 4E respectively, and for configurations i=3,...,6 (l=1) and i=9,...,12 (l=2) into
the modes with symmetry A1, B1, B2, 2E; 2A1, 2B1, 2B2, 4E; 3A1, 3B1, 3B2, 6E.
Splitting of the frequencies ν2, ν3, ν4 is insignificant when symmetry lowers and its
value is not established experimentally, although it is quite possible that the splitting
of the mode ν3 observed in [7] is configurational. The electronic spectrum of PO4

groups is more sensitive to the location of the nearest proton.

The configurationally averaged expression for the effective Raman scattering
cross-section contains contributions from different configurations of HnPO4 groups.
If the correlation corrections are neglected the specific weights of such contributions
are proportional to the mean occupation numbers 〈N ii

l 〉 and to the scattering tensor
elements and are determined by the proton distribution on the hydrogen bonds [8].

The possible situations for H2PO4 groups with account of the contributions of
different configurations are presented on table 1; the symmetry of phonon modes
arising due to both configurational and Davydov splitting is shown.

Since H2PO4 configurations possess lower symmetry as compared to the S4 sym-
metry of the position of PO4 groups in the crystal, it is possible that the lines may
appear which are forbidden by the site symmetry. In particular, such a situation
takes place at the (zz) - scattering (e1oz, e2oz) [9]. As it follows from table 1, at
a given scattering geometry, besides the lines with ν1 and ν2 frequencies, the lines
ν3 and ν4 should appear too (that are missing both for Td symmetry and for S4).
This result agrees with experimental data [10]; ν3 and ν4 lines that are observed in
Raman scattering spectra are considerably weaker in comparison with the principal
ones and appear at the temperatures near Tc only.

The lines forbidden by the symmetry of PO4 groups may appear also in the
cases of (xy) – scattering (ν1 and ν2 frequencies), of (xz) – or (yz) – scattering
(ν1 and ν2 frequencies) and of (xx) – or (yy) – scattering (ν3, ν4 frequencies). The
former of these cases for ν1 frequency is investigated experimentally in [10]. The
second one is of interest, because “lateral” H2PO4 configurations contribution are
only (i=3,...6, 9,...,12). This is investigated experimentally in [11]. One of the peaks
of Raman intensity, observed in this work, may correspond to the frequency ν1.
However authors of this work connect this peak to the splitted mode ν3 and think,
that these “lateral” configurations of the symmetry C1 do not manifest itself in the
Raman scattering spectra.

As to the possible usage of the proton ordering model for describing the ferro-
electric phase transition in crystals of KDP group the attention should be paid to a
more thorough experimental investigation of the cases (see table 1) when “lateral”
configurations of protons, possessing C1 symmetry, appear in the scattering since the
model given allows for the existence of this kind of configuration (and configurations
with different proton number). This problem is of importance in connection with
the possibility of another interpretation of the phase transition in KH2PO4 which
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Table 1. Scattering geometry of the configurationally splitted modes (T > Tc

case). First column is the Davydov splitting. Fourth column is the configurational
splitting. Symbols * denote the presence of non-zero components of scattering
tensors;

⊗

correspond to the scattering in the case of isolated PO4 complexes
of Td symmetry. Two last columns show the symmetry of modes arising from
different configurations.

D2α S4 Tα D2α (xx) (yy) (zz) (xy) (xz) (yz) i=1, i=3,...,
{

k

x̄

}

{x̄} {x̄}
{

k(i)
x̄i

}

2,7,8 6,9,

...,12

A1 A A1 2A1
⊗ ⊗ ⊗

A1 A1

+ 2A2 A2 A2

A2 2B1 * * B1 B1

2B2 * B2 B2

2E * * 2E

2E E F2 2A1 * * * 2A1

2A2 2A2

2B1 * * 2B1

2B2 * 2B2

8E
⊗ ⊗

4E 4E

B1 B F2 2A1 * * * A1 A1

+ 2A2 A2 A2

B2 2B1 * * B1 B1

2B2
⊗

B2 B2

2E * * 2E

A1 A E 2A1
⊗ ⊗ ⊗

A1 A1

+ 2A2 A2 A2

A2 2B1 * * B1 B1

2B2 * B2 B2

2E * * 2E

B1 B E 2A1 * * * A1 A1

+ 2A2 A2 A2

B2 2B1
⊗ ⊗

B1 B1

2B2 * B2 B2

2E * * 2E
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has been discussed recently – as a transition related with ordering of H2PO4 groups
with protons near the “upper” or the “lower” oxygen ions (with C2 symmetry). This
point of view is presented in [10, 12]. We note that practical realization of such a
model causes some difficulties due to the violations in the case of disordered state
of the “ice rule” (one proton on the bond and two protons near PO4 group). On
the other hand, the idea of ordering H2PO4 groups was not confirmed in the experi-
ments for investigating the nuclear quadrupole resonance in KH2PO4 [13] as well as
the isotopic frequency shift in K(DxH1−x)2PO4 [14]; the data obtained support the
proton ordering model.

Finally, the approach proposed in this paper may be applied in the analysis of
Raman scattering in other ferroelectric crystals with hydrogen bonds as well as in
the crystals of another type with the phase transition of the order-disorder type.
In the framework of the theory developed the interactions between electrons and
lattice anharmonisms [15] may be taken into account. More detailed investigation
of phonon spectrum of the crystals considered is of interest.

In particular, the systems of equations for the averaged phonon Green functions
determining the shapes of the lines in Raman scattering spectra are obtained in
the coherent potential approximation [4]. Configurationally splitted components of
the Raman scattering lines are studied using a simple model. For KH 2PO4 and
CsH2PO4 type ferroelectrics, the possibility to observe experimentally the configu-
rational splitting is discussed.
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Раманівське розсіяння у кристалах з фазовими

переходами типу лад-безлад

Я.Іванків

Інститут фізики конденсованих систем НАН Укpаїни,

79011 Львів, вул. Свєнціцького, 1

Отримано 14 жовтня 1998 р.

На основі формалізму двочасових функцій Гріна розвинуто теорію

побудови оператора поляризованості, що входить у загальний ви-

раз для ефективного поперечного перерізу раманівського розсіян-

ня. Представлена мікроскопічна схема використовується для до-

слідження сегнетоелектриків з водневими зв’язками.

Ключові слова: раманівське розсіяння, фазові переходи типу

лад-безлад

PACS: 77.84.Fa, 78.30.Ly
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