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A two-stage layer by layer integration of the ferroelectric two-particle cluster
system partition function functional is made in the quartic basic distribution
of the dipole momentum fluctuation approximation. The shape of the layers
of integration is determined by peculiarities of fluctuation processes (of the
Gaussian and the non-Gaussian types) for separate subsets of collective
variables. The minimization procedure of the partition function functional
unintegrated over one variable (with quasimomentum and Matsubara’s fre-
quency equal to zero) gives an equation for the order parameter (i.e., the
spontaneous polarization) of the system. Solutions of this equation at var-
ious values of system parameters and external field are found in the Tc

neighbourhood.
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Among various problems of investigating the real physical systems close to the
phase transition point, namely calculating their universal and non-universal char-
acteristics, the problem of the equation of state is a unique one. This is due to the
fundamental role of such an equation for a complete description of thermodynamic
properties of the system.

The method of collective variables applied in the Ising model theory [1] has
opened new possibilities in this area. The method enables us to provide a direct
calculation of characteristic functions based on the equilibrium statistical physics.

In the papers [2,3] an essential approach was made to obtain a free energy of the
ferroelectric cluster system in the phase transition point neighbourhood. In order
to obtain an equation of state (i.e., an equation for spontaneous polarization) it is
necessary to integrate over all collective variables in the partition function functional
with the exception of only one variable with momentum and Matsubara’s frequency
equal to zero. The mean value of this variable is, in fact, the order parameter of the
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system.
We shall regard a two-particle cluster ferroelectric system in the external electric

field ~h parallel to the z-axis. The short-range intracluster interactions V and the
transverse electric field Γ will be taken as a reference system. Using generalized
transition operators

Yλ(~Rq) =
∑

m

UλmX
m(~Rq), (1)

where Xm(~Rq) are well-known Hubbard-Stasyuk operators [4,5], for the quartic form
of the partition function functional in the collective variables representation we
obtain:

Z = ZN
0

∫

(dρλ(~k, ν))
N exp

{

∑

λ=1,5

∑

k,ν

[

β

2
Φλ(~k)ρλ(~k, ν)ρλ(−~k,−ν)−

−2β
√
Nhρλ(~k, ν)δλ1δ(~k)δ(ν)

]

}

×
∫

(dωλ(~k, ν))
N exp

{

−(2π)2

2

∑

λ=1,5

∑

k,ν

Mλλ(~k, ν,−~k,−ν) ωλ(~k, ν)ωλ(−~k,−ν)

+
(2π)4

4!

∑

λ=1,5

∑

k1,...,k4
ν1,...,ν4

Mλλλλ(~k1, ν1, . . .~k4, ν4)ωλ(~k1, ν1) . . . ωλ(~k4, ν4)

}

. (2)

Here

Z0 =

4
∑

i=1

exp(−βEi) = 2
(

cosh βV + cosh β
√
V 2 + 4Γ2

)

(3)

is the non-interacting clusters partition function;

E1 =
√
V 2 + 4Γ2, E2 = −

√
V 2 + 4Γ2, E3 = −V, E4 = V (4)

is the reference system energy spectrum; ρλ(~k, ν) are the collective variables (corre-

sponding to generalized transition operators Yλ(~Rq) (1) in a frequency-momentum

representation); ωλ(~k, ν) are the variables conjugated to ρλ(~k, ν); Φλ(~k) are the
Fourier transforms of the λ-th eigenvalue of the intercluster dipole-dipole poten-
tial. Summation in (2) over ~k must be done inside the first Brillouin zone and over
ν from zero to infinity. We would like to note that expression (2) differs from the

one presented in [2] by the presence of the term proportional to an external field ~h.
In [6] such a field was taken into the reference system, but here we shall regard it
in the framework of the collective variables method.

With the accuracy up to the fourth order inclusive the non-equal to zero coeffi-
cients (i.e., cluster cumulants) Mλ...λ(~k1, ν1 . . .~kn, νn) are:

Mλλ(~k1, ν1, ~k2, ν2) =
E2

1 − E2
3

2βE1Z0

[

e∓βE3 − e−βE1

(E1 ∓E3)2 + ν2
+

e−βE2 − e∓βE3

(E2 ∓ E3)2 + ν2

]

×δ(~k1 + ~k2)δ(ν1 + ν2),
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Mλλλλ(~k1, ν1, . . . , ~k4, ν4) =
E2

1 − E2
3

4β3E2
1Z0

[

e∓βE3 − e−βE1

(E1 ∓ E3)2 + ν2
+

e−βE2 − e∓βE3

(E2 ∓ E3)2 + ν2

]

×
[

(E1 ∓ E3)(cosh β(E2 ∓E3)− 1)

(E2 ∓E3)2 + ν2
− (E1 ∓ E3)(cosh β(E1 ∓E3)− 1)

(E1 ∓E3)2 + ν2

]

×δ(~k1 + . . .+ ~k4)δ(ν1 + . . .+ ν4)− 3M2
λλ; (5)

the upper sign in (5) corresponds to λ = 1 and the lower one corresponds to λ = 5,
respectively, and for simplification we put ν 2

i = ν2. It must be emphasized that
complete Matsubara’s frequency dependent expressions (5) for a two-particle cluster
ferroelectric system are found here for the first.

When Γ = 0,

Mλλ(~k1, ν1, ~k2, ν2) =

{ exp(±βV )
4 cosh βV

δ(~k1 + ~k2)δ(ν1 + ν2), ν = 0,

0, ν 6= 0;
(6)

Mλλλλ(~k1, ν1, . . . , ~k4, ν4) =

{

1−2e(±2βV )

16 cosh2 βV
δ(~k1 + . . .+ ~k4)δ(ν1 + . . .+ ν4), ν = 0,

0, ν 6= 0.

When V = 0,

Mλλ(~k1, ν1, ~k2, ν2) =
Γ sinh 2βΓ

β(4Γ2 + ν2)(cosh 2βΓ + 1)
δ(~k1 + ~k2)δ(ν1 + ν2),

Mλλλλ(~k1, ν1, . . . , ~k4, ν4) =
Γ sinh2 2βΓ(sinh 2βΓ− 3βΓ)

β3(4Γ2 + ν2)(cosh 2βΓ + 1)2

× δ(~k1 + . . .+ ~k4)δ(ν1 + . . .+ ν4) (7)

both for λ = 1 and λ = 5.
Among two branches of the collective vibrations in (2) there is only one (λ = 1)

responsible for the ferroelectric phase transition [2]. So, 〈Y1(~Rq)〉 is really an order
parameter of the ferroelectric cluster system.

As far as variables ρ5(~k, ν) are non-active in the phase transition process, the
curve of their distribution is insensitive to the temperature, remaining the Gaussian
one. So, integration (2) over ρ5(~k, ν) must be done using Gaussian measure density:

fG(ω5) = exp

{

−(2π)2

2
M55(~k, ν,−~k,−ν)ω5(~k, ν)ω5(−~k,−ν)

}

. (8)

Quite different measure density is adequate with reference to ρ1(~k, ν) variables. Due
to their role in the ferroelectric phase transition, those variables are distributed
according to non-Gaussian law, and change the form of their distribution when
temperature passes Tc. We shall use quartic measure density, the simplest one which
correctly describes the order parameter fluctuations near phase transition point:

f q(ω1) = exp

{

−(2π)2

2
M11(~k, ν,−~k,−ν)ω1(~k, ν)ω1(−~k,−ν))

+
(2π)4

4!
M1111(~k1, ν1, . . . , ~k4, ν4)ω1(~k1, ν1) . . . ω1(~k4, ν4)

}

. (9)
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Because ferroelectric order parameter is determined at zero Matsubara’s frequency,
it was shown [2] that measure density (9) may be taken at νi = 0. The discrete
spectrum of ν and gap between ν = 0 and ν = 2π

β
n at any n = ±1,±2, . . . , confirm

this statement.
It is well known that integration with the Gaussian measure density doesn’t

demand the use of analytic expressions for Fourier transforms Φλ(~k). But for inte-
gration with the non-Gaussian measure density such an expression is necessary. So,
we shall use the following representations [2]:

Φ1(~k) = J11(~k) + J12(~k) = ϕ0 − λ cos2 ϑ−A|~k|2,
Φ5(~k) = J11(~k)− J12(~k), (10)

where ϑ is a polar angle in the ellipsoid of revolution coordinate system, ϕ 0, λ, A
are some constants.

After expanding the exponent containing M5555(~k1, ν1, . . . , ~k4, ν4) and integrat-

ing every addendum with Gaussian measure density (8) over ρ5(~k, ν), for a non-active
transition branch of the system in the ferroelectric phase, we obtain:

ZG
5 =

∏

~k,ν

{

√

1− βΦ5(0)M55(0, ν)
(

1− βΦ5(~k)M55(~k, ν)
)}−1

(11)

× exp

{

1

8

∑

k,ν,k′,ν′

M5555(~k, ν,−~k,−ν,~k′, ν ′,−~k′,−ν ′)g5(~k, ν)g5(~k
′, ν ′)

}

,

where

g5(~k, ν) = βΦ5(~k)
(

1− βΦ5(~k)M55(~k, ν)
)−1

(12)

is a Fourier transform of the screened potential of the λ = 5 branch.
Integration of (2) over ρ1(~k, ν) at ν 6= 0, in principle, may be performed using

the Gaussian measure density (expression (9) at M1111(~k1, ν1, . . . , ~k4, ν4) = 0). It
brings into the total Z an additional factor ZG

1 similar to (11), in which 5 → 1 and
ν 6= 0. So, it remains to integrate (2), using quartic measure density, only over the
collective variables

ρk ≡ ρ1(~k, ν = 0). (13)

For factorization of the integrand in (2) with respect to variables ρk let’s intro-
duce the node variables:

ρl =
1√
N

∑

k

ρke
i~k~l, (14)

ωl =
1√
N

∑

k

ωke
−i~k~l, (dωk)

N = dω0

∏

k>0

dωs
kdω

c
k =

√
2
N−1
∏

l

dωl.

The (2) expression takes the following form:

Z = ZN
0 ZG

5 Z
G
1 Z1, (15)
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where

Z1 =
√
2
N−1

QN

∫

(dρk)
N exp

{

β

2
Φ1(~k)ρkρ−k − 2

√
Nβhρkδ(~k)

}

×
√
2
N−1

Q
∏

l

{

−1

2
a2ρ

2
l −

1

4!
a4ρ

4
l

}

, (16)

Q = 2

∫ ∞

0

f q(ω)dω,

a2 = (2π)2Q−1

∫ ∞

−∞

ω2f q(ω)dω,

a4 = −(2π)4Q−1

∫ ∞

−∞

ω4f q(ω)dω + 3a22. (17)

The method of integration of the partition function functional critical part (16)
was developed in [3,7]. The main peculiarity of this method is a twofold character
of integration process with the use of the Gaussian and the non-Gaussian measure
densities. Due to the unisotropic dipole-dipole potential Φ1(~k) (10) one may find

in the first Brillouin zone such a set of wave vectors ~k, for which variables ρk are
distributed with the Gaussian measure density. Corresponding coefficient in (16)

d2(~k) = a2 − βΦ1(~k) (18)

for those ~k is positive. The rest of variables ρ~k should be considered in accordance
with the non-Gaussian form of their distribution. We had proposed to perform this
two-stage integration in every layer of Brillouin zone when layer by layer integration
method is used [1,7].

As a result, after (n− 1) stage of integration the Z1 takes the following form:

Z1 =
√
2
N−1

QN
n−1
∏

m=1







√
2
−Nm

Cm

[

Q

(

d
(m)
2 (Bm

s
, Bm)

(2π)2
,
a
(m)
4

(2π)4

)]Nm−NG
m

×
[

Q(P
(m)
2 , P

(m)
4 )

]Nm+1
}
∫

(dρk)
Nn exp

{

−1

2

∑

k∈Bn

d
(n)
2 (~k)ρkρ−k

− 1

4!Nn

∑

k1,...,k4∈Bn

a
(n)
4 ρk1 . . . ρk4δ(

~k1 + . . .+ ~k4)− 2
√
Nβhρkδ(~k)

}

.(19)

Here Q

(

d
(m)
2 (Bm

s
,Bm)

(2π)2
,
a
(m)
4

(2π)4

)

, Q(P
(m)
2 , P

(m)
4 ) are certain combinations of modified

Bessel functions of zm argument [3].

zm =
3
[

d
(m)
2

(

Bm

s
, Bm

)

]2

a
(m)
4

, d
(m)
2

(

Bm

s
, Bm

)

= 〈d(m)
2 (~k)〉Bm

s
,Bm

,
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Cm =
∏

k∈BG
m

{

π

d
(m)
2 (~k)

}

exp







−a
(m)
4

8N

∑

k1,k2∈BG
m

1 + δk1k2

d
(m)
2 (~k1)d

(m)
2 (~k2)







,

P
(m)
2 =

√

12

a
(m)
4

K(zm), P
(m)
4 =

Nm+1

Nm −NG
m

6

a
(m)
4

L(zm),

K(zm) =
√
zm

(

K3/4(zm)

K1/4(zm)
− 1

)

, L(zm) = 6K2(zm) + 4
√
zmK(zm)− 1,

Nm =
N

s3(m−1)

√

1

βλ
(βϕ0 − a

(m−1)
2 ), (20)

NG
m =

N

s3(m−1)

[
√

1

βλ
(βϕ0 − a

(m−1)
2 )−

√

1

βλ
(βϕ0 − a

(m)
2 )

]

,

s = |Bn|/|Bn+1|, |Bn| is an effective “Brillouin zone” radius at the n-th step of layer
by layer integration.

Quantities d
(m)
2

(

Bm

s
, Bm

)

and a
(m)
4 satisfy certain recursion relations, which com-

pletely characterizes the ferroelectric cluster system behaviour in the phase transi-
tion point neighbourhood. Linearization of those relations near fixed point allows us
to obtain the expressions for d

(m)
2

(

Bm

s
, Bm

)

, a
(m)
4 in the evident form:

d
(m)
2

(

Bm

s
, Bm

)

=
c1E

m−1
1 − c2REm−1

2 + q

s2(m−1)
,

a
(m)
4 =

c1R
′Em−1

1 + c2E
m−1
2

s4(m−1)
, (21)

where c1 = c̃1τ ln
−1/3 |τ |; E1, E2 are the eigenvalues of the linear transformation ma-

trix of the above mentioned recursion relations (E1 = s2, E2 = 1); q = 3
5
1−s−5

1−s−3βAπ
2;

c̃1, c2, R, R′ are constants, which are determined by the linear transformation matrix;
τ = T − Tc/Tc [7].

At T < Tc integration in (19) is performed up to n = µτ , which may be deter-
mined from the relation

d
(µτ )
2 (|~k| = |Bµτ |) = 0, (22)

and

µτ = 1 + ln
c2R− q

c1

/

lnE1. (23)

Assuming that layer by layer integration in (19) has been performed over all ρk

with |~k| > |Bµτ |, let’s pass to the last stage of integration (over ρk with |~k| < |Bµτ |).
It may be proved that in this region of collective variables ρk are distributed accord-
ing to Gaussian law, but with non-analytic coefficient, so-called, inverse Gaussian
regime. In order to show this fact, we should take into account the shift of the
fluctuation center of the ρk in the ordered phase:

ρk = ρk′ +
√
N〈σ〉δ(~k). (24)
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As a result, the quartic form (19) changes and becomes as follows:

Eµτ (ρ) = −1

2

∑

k

d
(µτ )
2 (~k)ρ~kρ−~k −

a
(µτ )
4

4!Nµτ

∑′

ki

ρk1ρk2ρk3ρk4

− a
(µτ )
4

3!Nµτ

(ρ0 +
√
N〈σ〉)

∑′

ki

ρk1ρk2ρk3

− a
(µτ )
4

4!Nµτ

(ρ20 + 2
√
Nρ0〈σ〉+N〈σ〉2)

∑′

ki

ρkρ−k

− a
(µτ )
4

4!Nµτ

ρ40 −
a
(µτ )
4

3!Nµτ

√
N〈σ〉ρ30 −

a
(µτ )
4

4!Nµτ

√
N〈σ〉2ρ20

−
√
N

(

2βh+ d
(µτ )
2 (0)〈σ〉+ a

(µτ )
4

3!Nµτ

N〈σ〉3
)

ρ0

−N

(

2βh〈σ〉+ d
(µτ )
2 (0)

2
〈σ〉2 + a

(µτ )
4

4!Nµτ

N〈σ〉4
)

. (25)

Here
∑′

k means summation over all |~k| 6 |Bµτ | with the exception of k = 0.
The last term in (25) is a macroscopic part of the “Hamiltonian” Eµτ (ρ). The

shift parameter 〈σ〉 is to be determined from the condition of minimum of this part.
With the accuracy up to the first order of h we obtained:

〈σ〉 =
(

3!|d(µτ )
2 (0)|Nµτ

a
(µτ )
4 N

)1/2

− βh

|d(µτ )
2 (0)|

. (26)

Inserting 〈σ〉 into (25), we obtain the following expression for Eµτ (ρ):

Eµτ (ρ) = −1

2

∑′

k

d̄2(~k)ρ~kρ−~k −
a
(µτ )
4

4!Nµτ

∑′

k

ρk1ρk2ρk3ρk4

−





a
(µτ )
4

3!Nµτ

ρ0 +

(

d̄2(0)a
(µτ )
4

2 · 3!Nµτ

)1/2




∑′

k

ρk1ρk2ρk3

− 1

2





a
(µτ )
4

2Nµτ

ρ20 +

(

3d̄2(0)a
(µτ )
4

Nµτ

)1/2

ρ0





∑′

k

ρkρ−k

− a
(µτ )
4

4!Nµτ

ρ40 −
(

d̄2(0)a
(µτ )
4

2 · 3!Nµτ

)1/2

ρ30 −
d̄2(0)

2
ρ20 − 2

√
Nβhρ0 +Mmac.(27)

Here

Mmac =
3

8a
(µτ )
4

(

d̄2(0)
)2

Nµτ −
(

2 · 3!d̄2(0)NµτN

a
(µτ )
4

)1/2

βh, (28)
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d̄2(~k) = 3|d(µτ )
2 (0)|+ d

(µτ )
2 (~k) = 2|d(µτ )

2 (0)|+ qk2. (29)

So, the functional exp{Eµτ (ρ)} will now be integrated with the well-defined Gaus-
sian form:

exp

{

−1

2

∑′

k

d̄2(~k)ρkρ−k

}

(30)

and d̄2(0), due to the previous integration, is a non-analytic function of τ (see (21)).
With the accuracy up to the first order of the inverse Bessel function argument
z−1
µ after integration of the exp{Eµτ (ρ)} over all variables, with the exception ρ0, we
obtained:

Zµ = exp {−β(Fmac + FRPA +∆Fµτ + Fg)}

×
∫

exp
{

−N [Dρ4 − Bρ2 − Aρ]
}

dρ. (31)

Here

−βFmac =
3

8

d̄22(0)Nµτ

a
(µτ )
4

−
(

2 · 3!d̄2(0)NµτN

a
(µτ )
4

)1/2

βh,

−βFRPA = −1

2

∑′

k

ln
d̄2(~k)

π
,

−β∆Fµτ = 〈ρ0〉+
1

2

(

〈ρ20〉 − 〈ρ0〉2
)

,

〈ρ0〉 =
1

8
a
(µτ )
4

(

1

Nµτ

∑′

k

1

d̄2(~k)

)2

,

〈ρ20〉 =
1

2
d̄2(0)a

(µτ )
4

1

Nµτ

(

∑′

k

ei
~k~r

d̄2(~k)

)3

,

−βFg =

√

2 · 3!d̄2(0)NµτN

a
(µτ )
4

βh;

A = 2βh, B =
1

4

(

d̄2(0)−
a
(µτ )
4

Nµτ

∑′

k

1

d̄2(~k)

)

, D =
a
(µτ )
4

4!

N

Nµτ

;

ρ =
√
Nρ0. (32)

We would like to note that the way of integration over ρk with ~k smaller Bµτ ,
presented here, for the other types of interacting many-particle systems, was used
in [6,8].

The minimization procedure of integrand in (31) gives an equation for determin-
ing the order parameter (spontaneous polarization):

4Dρ3 − 2Bρ− A = 0. (33)
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Before solving this equation we should determine the temperature dependence
of A,B,D coefficients. Using expressions (32) and (21) one may find:

A = 2βh,

B =
c̃1
2

(

1− c2R

c2R − q
+

3

4

c2(RR′ + 1)− qR′

(c2R− q)q

t− arctan t

t3

)

τ ln−1/3 |τ |,

D =
1

4!
(c2(RR′ + 1)− qR′) ln−2/3 |τ |, t =

π

b

√

βϕ0

2c2R
, (34)

b is a cubic lattice constant. It should be noted that to calculate the quantity
N
Nµ

= s4(µτ−1) in D (see formulae (2), (21), (23) and (32)), the d
(µτ )
2 (0) coefficient

non-renormalized by integration with the Gaussian measure density was used. So,

s4(µτ−1) =
(

c2R−q
c̃1

)2

|τ |−2 in this case.

Introducing new coefficients:

v =
9c̃1

2q(c2R− q)

(

t− arctan t

t3
− 4q2

3(c2(RR′ + 1)− qR′)

)

,

w =
12

c2(RR′ + 1)− qR′
, (35)

we have obtained the final expression for a spontaneous polarization equation of the
ferroelectric cluster system:

ρ3 − vτ ln1/3 |τ |ρ− w ln2/3 |τ |βh = 0. (36)

According to the Cardan formula [9], the equation (36) has the following roots:

ρ1 = A +B, ρ2,3 = −A +B

2
± i

√
3
A−B

2
, (37)

where

A =3

√

3w ln2/3 |τ |βh+
√
R, B =3

√

3w ln2/3 |τ |βh−
√
R,

R = −
(v

3

)3

τ 3 ln |τ |+ w2 ln4/3 |τ |β
2h2

2
. (38)

At T < Tc:
a) the external field is missing (h = 0, R < 0). Equation (37) has three different

roots:
ρ1 = v1/2|τ |1/2 ln1/6 |τ |, ρ2 = −v1/2|τ |1/2 ln1/6 |τ |, ρ3 = 0. (39)

b) the external field is small (h 6= 0, R < 0). Equation (37) has three roots
non-equal to zero.

c) the external field is large (h 6= 0, R > 0). Equation (37) has one real and two
complex-conjugated roots. Real root is approximately equal to

ρ = w1/3 ln2/9 |τ |(βh)1/3. (40)
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At T > Tc:
a) the external field is missing (h = 0, R > 0). Equation (37) has one real:

ρ = 0 (41)

and two complex-conjugated roots.
b) the external field non-equal to zero (h 6= 0, R > 0). Equation (37) has got a

real root and two complex-conjugated roots as in (40).
The precise analysis of the spontaneous polarization behaviour near the phase

transition point will be done with the help of derivations ∂ρ/∂τ and ∂ρ/∂βh. Dif-
ferentiating equation (36) with respect to τ and βh, we obtain:

∂ρ

∂τ
=

vρ(1 + 1
3
ln−1 |τ |) + 2w

3τ
ln−2/3 |τ |βh

3ρ2 ln−1/3 |τ | − vτ
,

∂ρ

∂βh
=

w ln1/3| τ |
3ρ2 ln−1/3 |τ | − vτ

. (42)

It has been seen that logarithmic corrections help to attain a sharper behaviour
of the ρ(τ) near τ = 0, both at h = 0 and h 6= 0. But at h = 0 the ρ(τ) increases
more rapidly as compared with the case h 6= 0. This is due to the fact that ρ(0) = 0
at h = 0 and ρ(0) 6= 0 at h 6= 0.

The peculiarities of the ρ(τ) behaviour near Tc are connected with the quantity
of the dielectric susceptibility χ in this region. Using the expressions (39), (42) the
formula for χ is easy to obtain:

χ = β

(

∂ρ

∂βh

)

h=0

=







χ+ = −βw ln1/3 |τ |
vτ

, τ > 0,

χ− = βw ln1/3 |τ |
2vτ

, τ < 0.
(43)

In (43) we have kept the terms containing only the leading power of τ .
One may verify that qualitatively (43) and the corresponding expression, ob-

tained phenomenologically based on the Gaussian summation in [10], are similar.
The “law of double” (χ+ = 2χ−) is also fulfilled.
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Спонтанна поляризація в кластерній

сегнетоелектричній системі поблизу точки

фазового переходу

М.А.Кориневський

Інститут фізики конденсованих систем НАН Укpаїни,

79011 Львів, вул. Свєнціцького, 1

Отримано 22 квітня 1999 р.

В наближенні четвірного базисного розподілу фаз флуктуацій ди-

польного моменту сегнетоелектричної двочастинкової кластерної

системи виконано двоетапне пошарове інтегрування функціонала

статистичної суми. Форма шарів інтегрування визначається особли-

востями флуктуаційних процесів (гаусового і негаусового типу) окре-

мих підмножин колективних змінних. Мінімізація недоінтегровано-

го за однією змінною (яка характеризується нульовими значення-

ми квазіімпульса і мацубарівської частоти) функціонала статистичної

суми визначає рівняння для параметра порядку (спонтанної поляри-

зації) системи. Знайдено розв’язки цього рівняння при різних зна-

ченнях температури (в околі Tc ), параметрів системи і зовнішнього

поля.

Ключові слова: функціонал, кластерні сегнетоелектрики, фазовий

перехід, поляризація

PACS: 75.40.Cx

641



642


