
Condensed Matter Physics 2008, Vol. 11, No 1(53), pp. 155–168

Microscopic dynamics in liquid binary alloys:
orbital-free ab-initio molecular dynamics studies
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We report an ab-initio molecular dynamics study on the collective excitations in several s-p bonded liquid
binary alloys. Results are reported for the Li–Na, Li–Mg, K–Cs and Li–Ba liquid alloys at different concentrati-
ons, which display mass ratios ranging from ≈ 3 for Li–Na to ≈ 20 for Li–Ba, and varying ordering tendencies,
ranging from strong homocoordinating in Li–Na to mildly heterocoordinating for one concentration of Li–Ba.
The study has been carried out using the orbital free ab-initio molecular dynamics method, combined with
local ionic pseudopotentials constructed within the same framework. We analyze the dependence of the col-
lective modes on the concentration and the mass ratio of the alloy, finding a common behaviour for all systems
notwithstanding the different ordering tendencies.
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1. Introduction

Molecular dynamics (MD) has become a basic tool in the study of liquid systems. Classical
molecular dynamics (CMD) methods require interatomic potentials to calculate the forces on the
atoms/ions whereas the ab-initio molecular dynamics (AIMD) methods compute those forces from
electronic structure calculations which are performed as the MD trajectory is generated.

Density Functional Theory (DFT) [1,2] underlies most AIMD methods. Starting with a collec-
tion of atoms/ions at given nuclear positions, DFT makes it possible to calculate the ground state
electronic energy and, via the Hellmann-Feynman theorem, the forces acting on the atoms/ions.
Within DFT, most methods use the Kohn-Sham (KS) orbital representation of DFT (KS-AIMD
methods) [2] which is computationally demanding, whereby allowing the study of small sample
sizes (one or two hundreds of particles) during short simulation times (few tens of ps). However,
these constraints may be somewhat overcome by the so-called orbital-free ab initio molecular dy-
namics (OF-AIMD) method, which uses the Hohenberg-Kohn (HK) representation of the DFT [1],
eliminates the electronic orbitals and permits to perform simulations with large samples (up to a
few thousands of particles) and for long times (hundreds of ps).

Research into the dynamical properties of liquid metals has already produced a considerable
amount of both experimental and theoretical work [3]. Inelastic neutron scattering (INS) has been
the usual experimental technique for studying the dynamics of liquids at the kinetic region. Re-
cently, it has been supplemented by the advent of high resolution inelastic X-ray scattering (IXS)
techniques, which skip some restrictions posed by the INS techniques, such as the kinematic li-
mitations as well as the presence of both coherent and incoherent contributions to the inelastic
scattering cross section. On the other hand, the development of microscopic theories such as the
memory function formalism or the kinetic theory, along with the realization that the decay of sev-
eral time-dependent properties can be linked to the interplay of two different dynamical processes,
has created a theoretical framework whose application to simple liquids has led to good qualitative
results for several dynamical magnitudes [3–5].

Comparatively less effort has been devoted to the dynamical properties in liquid binary alloys.
Most developments have occurred for the last twenty five years, starting with the pionering CMD
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studies on liquid Na–K [6]. It was followed by the CMD results for liquid Li4Pb [7], where a new,
high-frequency mode, allegedly supported by the light Li atoms only, (the so-called “fast sound”)
was found. This finding spurred a wealth of experimental [8–13], computer simulation [8,14–17] and
theoretical [18–22] works focused on the investigation of the nature and properties of the collective
excitations in liquid binary systems.

Evidence for the fast sound has already been obtained for systems such as H2–Ar, H2–Xe and
He–Xe mixtures by light scattering [13], and He–Ne, He–Ar and Li4Pb by INS [8,15,20]. Excepting
Li4Pb which is a pseudoionic mixture, all the other systems are gas mixtures, where the mass ratio
varies from around 5 for He–Ne to approximately 33 for He–Xe. A controversial point has been the
way in which the two collective modes connect with the hydrodynamic one when qh (which denotes
the upper limit of the hydrodynamic limit) is approached from high q-values. Several theoretical
and CMD results for He–Ar and He–Ne mixtures have suggested that either the fast and slow sound
merge into the hydrodynamic sound [8,14], or that the fast sound disappears at qh and the slow
sound merges into the hydrodynamic one with a predicted value [19,20] of qh ≈ 0.07 Å−1. A similar
value for qh has recently been obtained for liquid Li4Pb by both INS and by CMD calculations
[11,15]. Recent CMD calculations [16], which followed the INS measurements of Bafile et al. [12],
for the He0.77Ne0.23 gas mixture at two densities, showed a clear crossover from hydrodynamics
to fast and slow modes at 0.2 6 q/ Å−1 6 0.5; moreover, it was obtained that qh ≈ 0.2, which is
substantially greater than previous estimates.

On the theoretical side, kinetic theory calculations [18] for two-component fluids with large
atomic mass difference, have confirmed the appearance of a collective mode at high frequencies
and wave numbers q > qh. Moreover, this mode propagated with a phase velocity close to that
of the pure light component, which was clearly greater than the hydrodynamic sound velocity,
ch, of the two-component system. Subsequently, calculations based on the revised Enskog theory
(RET) for binary mixtures of hard spheres with a large mass difference [19] have predicted two
propagating collective modes, in addition to hydrodynamic sound. One of these was identified with
the fast sound while the other mode, which had a propagating phase velocity below ch, was named
“slow sound”.

The transverse dynamics has been much less investigated, mainly because it is not visible in
scattering experiments and only MD simulations can provide insight into the transverse excitations.
The recent application of the generalized collective model (GCM) approach [21], which combines
CMD simulations with the memory function formalism, to binary Lennard-Jones fluids and liquid
alloys has unveiled the existence of transverse optic modes, which arise in connection with the
concentration fluctuations.

This paper reports ab-initio studies on the longitudinal and transverse collective dynamics in
several liquid binary alloys. The study has focused on s-p bonded liquid binary alloys for which the
OF-AIMD method has already proved its capability to tackle a wide range of static and dynamic
properties.

2. Theory

A simple liquid metallic alloy, A1−xBx, can be regarded as an assembly of NA, A-type, and NB,
B-type, bare ions with charges ZA

v and ZB
v respectively, interacting with Ne = NA ZA

v + NB ZB
v

valence electrons through electron-ion potentials vA(r) and vB(r). Therefore, the total potential
energy of the system can be written, within the Born-Oppenheimer approximation, as the sum
of the direct ion-ion coulombic interaction energy, and the ground state energy of the electronic
system on the external potential created by the ions, Vext(~r, {~Rl}) =

∑

i=A,B

∑

l(i) vi(|~r − ~Rl|),

E
(

{~Rl}
)

=
1

2

∑

i,j=A,B

∑

l(i) 6=m(j)

ZiZj

|~Rl − ~Rm|
+ Eg

[

ρg(~r), Vext(~r, {~Rl})
]

, (1)

where ~Rl are the ionic positions, the sum over l(i) extends over the sites occupied by the i-type
ions and ρg(~r) is the ground state electronic density which, according to DFT, is obtained by
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minimizing the energy functional

E[ρ(~r)] = Ts[ρ] + Eext[ρ] + EH[ρ] + Exc[ρ], (2)

where the terms represent, respectively, the electronic kinetic energy, Ts[ρ], of a non-interacting
system with density ρ(~r), the energy of interaction with the external potential due to the ions,
Eext[ρ], the classical electrostatic energy (Hartree term), EH[ρ] and the exchange-correlation energy,
Exc[ρ], for which we have used the local density approximation. Within the KS-AIMD approach [2]
Ts[ρ] is calculated exactly by using single particle orbitals whereas the OF-AIMD approach [1,23]
uses an explicit albeit approximate expression. Specifically, the functional Ts[ρ] includes the von
Weizsäcker term plus further terms chosen in order to correctly reproduce some exactly known
limits [23].

Another key ingredient is the local ionic pseudopotentials describing the ion-electron interaction.
Its construction is fully described in [23] and we just mention that the pseudopotentials have been
constructed from first principles by fitting to a model an ion immersed in metallic medium.

Concerning the simulation method, we just briefly mention the main details. We consider NA +
NB ≡ N ions in a cubic cell with periodic boundary conditions. Given the ionic positions at time t,
the electronic energy functional is minimized with respect to ρ(~r) represented by a single effective

orbital, ψ(~r), defined as ρ(~r) = ψ(~r)2. The orbital is expanded in plane waves truncated at a certain
cutoff energy. The energy minimization with respect to the Fourier coefficients of the expansion is
performed every time step using a quenching method which results in the ground state electronic
density and energy. The forces on the ions are obtained from the electronic ground state via the
Hellman-Feynman theorem, and the ionic positions and velocities are updated by solving Newton’s
equations, with the Verlet leapfrog algorithm. In these studies, N ranged from 600 atoms (Li–Mg)
to 2000 atoms (Li–Na), the equilibration time usually lasted between 4 and 5 ps and the calculation
of properties was made by averaging over a time interval of 50–90 ps.

2.1. Collective dynamics

The density fluctuations in an A1−xBx liquid alloy are usually described by the partial Ashcroft-
Langreth (AL) intermediate scattering functions, Fij(~q, t) = 〈ρi(~q, t) · ρ∗j (~q, 0)〉, where (i, j = A,B)

ρi(~q, t) =
1√
Ni

Ni
∑

l(i)=1

exp
[

i~q · ~Rl(i)(t)
]

(3)

is the Fourier transform (FT) of the i-type component partial number density, Ni is the number

of i-type particles, ~Rl(i)(t) is the position of the i-type particle l and 〈. . . 〉 stands for the ensemble
average. The time FT of the Fij(~q, t) into the frequency domain gives the AL partial dynamic
structure factors Sij(~q, ω) which are directly connected with the INS data, namely,

Sij(~q, ω) =
1

2π

∫

dt eiωt
〈

ρi(~q, t) · ρ∗j (~q, 0)
〉

(4)

the asterisk denoting complex conjugation. At some stage, use will be made of the Bhatia-Thornton
(BT) concentration-concentration, SCC(~q, ω) and number-number, SNN(~q, ω) partial dynamic struc-
ture factors [24], which are linear combinations, weighted by the concentrations, of the AL ones.
Another important dynamical magnitude is the i-type component particle current

~ji(~q, t) =
1√
Ni

Ni
∑

l(i)=1

~ul(i)(t) exp
[

i~q · ~Rl(i)(t)
]

(5)

(with ~u denoting velocity), which is usually split into a longitudinal component, jLi (~q, t), parallel
to ~q, and a transverse component, jTi (~q, t), perpendicular to ~q. Therefrom, the partial longitudinal,
CL

ij(~q, t), and transverse, CT
ij(~q, t), current correlation functions are defined

CL
ij(~q, t) =

〈

jLi (~q, t) · jL ∗
j (~q, 0)

〉

, CT
ij(~q, t) = (1/2)

〈

jTi (~q, t) · jT ∗
j (~q, 0)

〉

(6)
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and their time FT’s give the respective spectra, CL
ij(~q, ω) and CT

ij(~q, ω). This study will consider
isotropic systems, and therefore all the previous correlation functions depend on q = | ~q | only.

The partial longitudinal current correlation functions are related to the corresponding dynamic
structure factors by CL

ij(q, ω) ≡ ω2Sij(q, ω), and therefore they also provide information on the
longitudinal collective modes in liquids. Sometimes, it occurs that the diffusive contributions to
the partial intermediate scattering functions, Fij(~q, t), play a dominant role, with the consequence
of concealing the oscillations in the associated Sij(q, ω), which can then be exposed by resorting
to the respective CL

ij(q, ω). For instance, it frequently happens that the SCC(q, ω) shows neither

side peaks nor shoulders at any q-value but they are exposed in the CL
CC(q, ω).

The partial transverse current correlation functions, CT
ij(q, ω), inform about the existence of

shear modes in the system. These modes are not connected with any measurable magnitude and
can only be analyzed within a theoretical model or by resorting to MD simulations. Among the
scant studies on transverse currents in liquids, most have addressed one-component systems. As
for binary systems we just mention that CMD simulations have been performed on molten salts,
liquid Li–Mg, Li–Na and Li4Pb alloys and binary Lennard-Jones systems, where optic-like modes
have been found [17,21,25].

3. Results

3.1. Li–Na alloy

The Li1−xNax liquid alloy has been simulated at T = 590 K and concentrations xNa = 0.2, 0.39
and 0.60 with respective ionic number densities 0.0368, 0.0322 and 0.0282 (in Å−3 units); further
details concerning the input data are given in [26]. The mass ratio for this system is ≈ 3.3, and it
shows strong homocoordinating tendencies.

0 0.4
0

2

S
ij(q

, ω
)

0 5 10

3

0 0.4

0 5 10

3

0 0.4 0.8

ω (ps
-1

)

0 5 10

3

6

xNa=0.20 xNa=0.39 xNa=0.60

Figure 1. Partial dynamic structure factors, Sij(q, ω), at q = 0.23 Å−1, for the liquid Li–Na
alloy at T = 590 K and three concentrations. Full line: SLiLi(q, ω), dashed line: SNaNa(q, ω),
circles: SNN(q, ω). The insets show 103Sij(q, ω).

Figure 1 depicts, for q ≈ 0.23 Å−1, the calculated SLiLi(q, ω), SNaNa(q, ω) and SNN(q, ω) which
exhibit clear side peaks at very similar frequencies; this is the expected behaviour in the hydro-
dynamic regime and represents a propagating acoustic mode. The SNN(q, ω) reflects the average
behaviour of the system and at the hydrodynamic regime exhibits a clear Rayleigh-Brillouin struc-
ture [3]. From the position, ωB, of the observed Brillouin (side) peaks in the SNN(q, ω) at the small-
est q-value attained by the simulations, (qmin ≈ 0.151, 0.158 and 0.165 Å−1 for xNa = 0.60, 0.39 and
0.20 respectively) we can estimate its adiabatic velocity of propagation, cs = ωB/q. The OF-AIMD
calculations give cs = 3100, 3000 and 2530 m/s for xNa = 0.20, 0.39 and 0.60 respectively. There are
no experimental data to compare with, but data are available (at T = 590 K) for the limits xNa = 1
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(pure Na) and xNa = 0 (pure Li), where the OF-AIMD calculations give cs = 2330 ± 80 m/s and
cs = 4640 ± 150 m/s which are close to the respective experimental values [33] of ≈ 2410 and
4450 m/s. Whereas for the three concentrations SLiLi(q, ω) shows side peaks up to q ≈ 1.30 Å−1,
those of SNN(q, ω) and SNaNa(q, ω) depend on the concentration. The maximum q value for which
side peaks appear in SNN(q, ω) changes from q ≈ 1.30 Å−1 at xNa = 0.20 to q ≈ 0.85 Å−1 at
xNa = 0.60; in the case of SNaNa(q, ω) the maximum q for which peaks are present ranges from
q ≈ 0.40 Å−1 at xNa = 0.20 to q ≈ 1.1 Å−1 at xNa = 0.60.
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Figure 2. OF-AIMD results for the dispersion curves of the collective modes in SLiLi(q, ω),
SNaNa(q, ω) and SNN(q, ω) (full circles, full squares and open triangles respectively) for the
liquid Li–Na alloy at T = 590 K and three concentrations. The dashed line stands for the
corresponding hydrodynamic adiabatic sound velocities.

From the positions of the side peaks, the associated dispersion curves, ωLiLi(q), ωNaNa(q) and
ωNN(q), are obtained (see figure 2). Up to q ≈ 0.25 Å−1, ωLiLi(q) and ωNaNa(q) show for the three
concentrations, the same linear behaviour of hydrodynamic collective excitations propagating with
the respective adiabatic velocities cs. However, above this q-value, each dispersion curve splits
into two branches exposing two non-hydrodynamic modes, namely the fast and slow sound modes,
which signal the onset of a dynamic decoupling between the Li and Na particles. The fast mode
involves the Li particles only and has a phase velocity, cfast ≈ 3800± 200 m/s, which is practically
the same for the three concentrations. According to the RET [19,20], the phase velocity of the fast
mode should be close to the adiabatic sound velocity of the corresponding light particle fluid. We
have asserted it by performing OF-AIMD simulations for pure Li at 590 K at the same ionic number
density as that of the Li0.61Na0.39 alloy and the adiabatic sound velocity obtained was 3900 m/s,
which is very close to that of the fast mode. Moreover, these results clearly show that as q decreases
towards qh, the fast sound mode undergoes a continuous transition into the hydrodynamic sound
mode and the process takes place at 0.2 6 q 6 0.4 Å−1 which coincides with the range hinted by
the CMD calculations [16], and the INS measurements of Bafile et al. [12], for the He0.77Ne0.23

system. Also, Campa and Cohen [19] have suggested that when the concentration of the light
component is increased the fast mode disappears, being overcome by the (extended) sound mode.
This can be observed in figure 2 where at xNa = 0.20, the dispersion curve ωLiLi(q) is rather close
to the (extended) hydrodynamic sound mode.

Further information is provided by the longitudinal current correlation functions, CL
ij(q, ω),

which were evaluated according to equation (6). The CL
LiLi(q, ω), CL

NaNa(q, ω) and CL
NN(q, ω) ex-

hibit, for all q-values, at least one peak although when the hydrodynamic region is approached
both CL

LiLi(q, ω) and CL
NN(q, ω) exhibit another, low-frequency peak. At the lower q-values attained

by the simulations, the positions of the peak in CL
NaNa(q, ω) as well as the low frequency peaks of

CL
LiLi(q, ω) and CL

NN(q, ω) coincide respectively with the Brillouin peaks in SNaNa(q, ω), SLiLi(q, ω)
and SNN(q, ω) which stand virtually at the same position; this is another indication of the hy-
drodynamic behaviour of the Li and Na particles for these small q-values. On the other hand, for
xNa = 0.39 and 0.60, the high frequency peak of CL

LiLi(q, ω) is located at the minimum of the
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CL
LiNa(q, ω) which suggests that the Li and Na particles oscillate out of phase, i.e. indicates an

optic-like mode. From the positions of the previous peaks, the longitudinal dispersion relations,
ωL

LiLi(q), ω
L
NaNa(q) and ωL

NN(q) are obtained (see figure 3). The ωL
NaNa(q) takes smaller values than

those of ωL
LiLi(q) due to the difference between their respective atomic masses. For all concentra-

tions, the ωL
NaNa(q) has one branch whereas the ωL

LiLi(q) and ωL
NN(q) exhibit for xNa = 0.39 and

0.60 two branches, with the low-frequency branch, which has a limited extent, located near the
hydrodynamic region. This indicates that in the binary alloy the heavier Na ions keep their char-
acteristic low frequencies whereas the lighter Li ions have a much higher frequency which changes
smoothly when approaching the hydrodynamic regime; nevertheless as q decreases some Li ions
start catching the low frequency of the heavy Na ions. Obviously, in the hydrodynamic (q → 0)
limit, all the particles should oscillate with the same frequency and therefore the CL

LiLi(q, ω) (and
CL

NN(q, ω)) will only show the low-frequency peak as the high-frequency one vanishes. At low q-
values, the ωL

NaNa(q) has an initial linear increase up to a maximum followed by a minimum located
at q ≈ 2.0 Å−1 which corresponds to the main peak position of SNaNa(q). Similar pattern is exhib-
ited by the high-frequency branch of ωL

LiLi(q), with a maximum and minimum at ≈ 1.5 Å−1 and
2.3 Å−1 respectively, which coincide with the first minimum and maximum of SLiLi(q).

0 1 2
0

20

40

ω
ij

L
(q

) 
(p

s-1
)

0 1 2 3

q (Å
-1

)

0 1 2

xNa=0.20 xNa=0.39 xNa=0.60

Figure 3. Longitudinal dispersion relation of the partials, ωL
LiLi(q) (open and full circles),

ωL
NaNa(q) (open squares), ωL

NN(q) (open and full triangles) and ωL
CC(q) (pluses) longitudinal

modes for the Li–Na liquid alloy at T = 590 K and three concentrations. The dashed lines show
the longitudinal dispersion relations of pure Li (upper curve) and Na (lower curve) at T = 590 K.

At xNa = 0.39 and 0.60, two branches are exhibited by the ωL
NN(q) dispersion curve, although

the high-frequency branch has a very limited extent, not far from the hydrodynamic region (see
figure 3). At these low-q values, the high-frequency branch is induced by the Li particles only,
whereas the low-frequency branch comes from both the Li and Na particles. As q is increased,
the CL

LiLi(q, ω) becomes the main contributor to the CL
NN(q, ω), and when Li is the majoritary

component, the ωL
LiLi(q) and ωL

NN(q) are rather close. On the other hand, when Na becomes the
majoritary component, the ωL

NN(q) stands between both ωL
NaNa(q) and ωL

LiLi(q). Two branches are
also exhibited by the ωL

CC(q) dispersion curve which may be connected with propagating concen-
tration modes. The high frequency branch of ωL

CC(q) exists for all q values, closely follows the high
frequency ωL

NN(q) and takes a finite value when q → 0 which is the typical trend of kinetic modes.
The low frequency branch of ωL

CC(q) appears just outside the hydrodynamic regime and closely
follows ωL

NaNa(q). Figure 3 includes the dispersion relations for pure Li and Na at T = 590 K.
Note that the dispersion relation of the majoritary component in the alloy is very close to that of
the pure component whereas that of the minoritary component has a more diffuse structure (less
marked maxima and minima) in comparison with the pure component.
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3.2. Li–Mg alloy

The liquid Li1−xMgx alloy has been studied at three thermodynamic states characterized by
T = 887 K, concentrations xMg = 0.30, 0.50 and 0.70 and ionic number densities 0.0407, 0.0404
and 0.0401 (in Å−3 units) respectively; further details are provided in [29]. The mass ratio for this
system is ≈ 3.4, and it behaves almost as an ideal mixture in relation to ordering properties.

The calculated SLiLi(q, ω), SMgMg(q, ω) and SNN(q, ω) exhibit clear side peaks which for small
q values are located at very similar frequencies; this is the usual behaviour in the hydrodynamic
regime, and represents a propagating sound mode. SNN(q, ω) exhibits, for q 6 qh, a Rayleigh-
Brillouin structure, [3] and from the position, ωB, of its Brillouin peak at the smallest q value
reached by the simulations, (qmin ≈ 0.23 Å−1) we obtain cs = 2400, 4000 and 4550 m/s for xMg =
0.30, 0.50 and 0.70 respectively. For comparison we note that OF-AIMD calculations for both pure
Li and Mg near their triple point gave cs = 5000± 150 m/s and cs = 4200± 150 m/s respectively,
whereas its experimental values [27,28] are ≈ 4550 and 4100 m/s.
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Figure 4. OF-AIMD results for the dispersion curves of the collective modes in SLiLi(q, ω) and
SMgMg(q, ω) and SNN(q, ω) (full circles, full squares and open triangles respectively) for the
liquid Li–Mg alloy at T = 887 K and three concentrations. The dashed line stands for the
corresponding hydrodynamic adiabatic sound velocities.

The range of appearance of the side peaks depends on the concentration, as depicted in fig-
ure 4 which shows the associated dispersion curves, ωLiLi(q), ωMgMg(q) and ωNN(q). At qmin, the
ωLiLi(q), ωMgMg(q) and ωNN(q) virtually coincide, which means that for q 6 qmin the Li and Mg
particles oscillate at the same frequency. But for greater q’s and xMg = 0.50 and 0.70, the dis-
persion curve splits into the fast and slow sound modes. The fast mode, involving the Li particles
only, has a phase velocity, cfast ≈ 4600 ± 200 m/s, which is virtually the same at both concen-
trations. Again as q decreases towards qh, the fast sound mode undergoes a continuous transition
into the hydrodynamic sound mode and the merging occurs at 0.2 6 q 6 0.3 Å−1. Once more, and
according with the RET predictions, when the concentration of the light component is increased
the fast mode fades away, being overcome by the (extended) sound mode; this is precisely what
we observe at xMg = 0.30, where the dispersion curve ωLiLi(q) is rather close to the (extended)
hydrodynamic sound mode. Additional collective modes can be found by turning to the partial
longitudinal currents, CL

LiLi(q, ω), CL
MgMg(q, ω), CL

NN(q, ω) and CL
CC(q, ω), from which the corre-

sponding longitudinal dispersion relations ωL
LiLi(q), ω

L
MgMg(q), ω

L
NN(q) and ωL

CC(q) can be derived.
However, these dispersion curves are not plotted here since they show no significant departure from
the main features already observed for the Li–Na alloy, even though the ordering tendencies are
very different. We can conclude that the mass ratio is much more important in determining the
behaviour of the collective modes than the particular ordering tendencies in the alloy.

We refer now to the transverse collective modes which have been computed for this alloy. As
before, from the peak positions of the partial transverse currents, CT

ij(q, ω), the corresponding

transverse dispersion relations, ωT
ij(q), have been obtained (figure 5). ωT

MgMg(q) has one branch
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D.J.González, L.E.González
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Figure 5. Transverse dispersion relation of the partials, ωT
LiLi(q) (open and full circles),

ωT
MgMg(q) (open squares), number-number, ωT

NN(q) (open and full triangles) and concentration-
concentration, ωT

CC(q) (pluses) transverse modes for the Li–Mg liquid alloy at T = 887 K and
three concentrations.

whereas both ωT
LiLi(q) and ωT

NN(q) evolve from one to two branches as xMg increases; this is the same
trend as already observed in the longitudinal dispersion relation. Moreover, the peak in CT

MgMg(q, ω)

and the low frequency peak in the CT
LiLi(q, ω) coincide with a maximum in the CT

LiMg(q, ω) which

points to in-phase motion of some Li ions with the Mg ions. The low-frequency branch, ωT
NN(q)

shows typical features of the one-component system, namely it starts at a non-zero value qc,
exhibits a linear behaviour for low q-values, approaching zero as q → qc. In this linear region
the low-frequency branch ωT

NN(q) remains close to both ωT
MgMg(q) and the low-frequency branch

ωT
LiLi(q), which implies that the propagation of shear modes involves both species.

The small magnitude of the CT
CC(q, ω), particularly at small q’s, also underlines a weak con-

tribution to the collective transverse dynamics. However, for the three concentrations we observe
clear peaks in the CT

CC(q, ω) which already exist at qc, leading to an ωT
CC(q) branch which takes

a finite value as q → 0. The peaks in CT
CC(q, ω) are a result of both the peak in the CT

LiLi(q, ω)
and a minimum in CT

LiMg(q, ω) which is related to out-of-phase motion of particles of different
species. Similar behaviour in molten salts has been associated with transverse optic modes of
kinetic character [21,25].

3.3. K–Cs alloy

The longitudinal collective excitations in the liquid K0.52Cs0.48 alloy have recently been studied
using INS experiments [30]. This has prompted us to perform an OF-AIMD study of this system
at the same thermodynamic state, namely at T = 300 K and ionic number density 0.0151 (in Å−3

units) The calculated SKK(q, ω), SCsCs(q, ω) and SNN(q, ω) show clear side peaks within a limited
q-range. Now qmin = 0.167 Å−1, which clearly stands within the hydrodynamic region, and the
above partials show side peaks at ωB ≈ 3.05 ps−1 leading to a value cs ≈ 1820 ± 150 m/s.

The associated dispersion curves ωKK(q), ωCsCs(q) and ωNN(q), are plotted in figure 6. Now,
qh ≈ 0.20 Å−1 and for greater q-values the dispersion curve splits into the fast and slow sound
modes. As q decreases towards qh, the fast sound mode undergoes a continuous transition into the
hydrodynamic sound mode at 0.2 6 q 6 0.3 Å−1. Note that the mass ratio is now ≈ 3.4 and the
ordering tendencies are almost ideal.

From their INS data Bove et al. [30] derived a dispersion relation for collective excitations
by locating the positions of the side peaks in the coherent total dynamic structure factor. Their
results are depicted in figure 6 along with the corresponding dispersion relation obtained by the
OF-AIMD method, which shows an excellent agreement with experiment.
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Figure 6. (a) Dispersion curves of the collective modes in SKK(q, ω), SCsCs(q, ω) and SNN(q, ω)
(full circles, full squares and open triangles respectively) for the liquid K0.52Cs0.48 alloy at
T = 300 K. The dashed line is the hydrodynamic adiabatic sound velocity. (b) Dispersion rela-
tion of the longitudinal collective excitations appearing in the coherent total S(q, ω). Asterisks:
experimental data [30]. Lonzenges: OF-AIMD results.

3.4. Li–Ba alloy

OF-AIMD simulations were performed for the liquid Li1−xBax alloy at xBa = 0.12, 0.30 for T =
575 K and xBa = 0.59 for T = 775 K. These specific thermodynamic states were chosen due to the
availability of experimental data for the static structure and several thermodynamic magnitudes.
More details are provided in [29]. The mass ratio for this system is the highest considered, ≈ 20. For
xBa = 0.12 and 0.30 the alloy shows weak homocoordinating tendencies, while for Ba concentration
0.59 it has a mild heterocoordinating tendency.

The calculated SLiLi(q, ω), SBaBa(q, ω) and SNN(q, ω) show clear side peaks in a limited q-
range. Now qmin = 0.19, 0.22 and 0.20 Å−1 for xBa = 0.12, 0.30 and 0.59 respectively. Interestingly
at these qmin the hydrodynamic region has not yet been reached. Whereas at xBa =0.30 and 0.59 the
small difference between the peak positions of the corresponding Sij(q, ω) suggest that qmin should
be close to qh, however for xBa = 0.12 there is still an appreciable mismatch between the peak
positions of SLiLi(q, ω) and SBaBa(q, ω) (located at ≈ 5.1 and 3.7 ps−1 respectively). Therefore, the
transition towards the hydrodynamic regime takes place at q values which are clearly smaller than
those found in all previous alloys. Thereby the hydrodynamic regime comprises a smaller range
of wavevectors, as the increased mass difference makes it harder for the light Li ions to oscillate
with the same frequency as the much heavier Ba ions due to the increased difference between their
oscillation frequencies. From the position of the side peaks in SNN(q, ω), we have estimated the
adiabatic sound velocity in the alloy, i.e. cs = 2500, 2000 and 1700 m/s for xBa =0.12, 0.30 and
0.59 which compare well with the experimental [32] values of 2550, 1900 and 1500 m/s respectively.

Figure 7 shows the dispersion relations derived from the peak positions. For the three concen-
trations there appears a splitting into fast and slow modes and the difference in slopes between
both modes is substantially greater than in the previous alloys. This is a consequence of the greater
mass difference (and therefore, the oscillation frequencies) between the Li and Ba ions. Notice that
the fast sound mode still exists at the smallest concentration of the heavy Ba particles, namely
xBa = 0.12; these findings confirm the RET predictions that the increase of the mass ratio and/or
the decrease of the number density widens the concentration range for the existence of both modes.

From the calculated partial longitudinal current correlation functions and the positions of their
respective peaks we have obtained the corresponding longitudinal dispersion relations which are
plotted in figure 8. These dispersion relations show the same basic trends already found for the
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Figure 7. OF-AIMD results for the dispersion curves of the collective modes in SLiLi(q, ω) and
SBaBa(q, ω) and SNN(q, ω) (full circles, full squares and open triangles respectively) for the liquid
Li–Ba alloy at the three concentrations considered in this work. The dashed line stands for the
corresponding hydrodynamic adiabatic sound velocities.

other liquid alloys, namely (i) the heavier component has one dispersion branch, ωL
BaBa(q), which

hardly changes with concentration, (ii) both the lighter component, ωL
LiLi(q), and ωL

NN(q) evolve
from one to two branches as the concentration of the heavier component increases, and (iii) the
ωL

CC(q) always has a high-frequency branch which takes a finite value when q → 0, as well as a
low-frequency one which disappears when the concentration of the heavier component increases.
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Figure 8. Longitudinal dispersion relation of the partials, ωL
LiLi(q) (open and full circles),

ωL
BaBa(q) (open squares), number-number, ωL

NN(q) (open and full triangles) and concentration-
concentration, ωL

CC(q) (pluses) longitudinal modes for the Li–Ba liquid alloy at the three con-
centrations considered in this work.

The transverse currents, CT
ij(q, ω), have been calculated and the associated transverse dispersion

relations, ωT
ij(q), are plotted in figure 9. ωT

BaBa(q) always has one branch whereas both ωT
LiLi(q)

and ωT
NN(q) develop a second branch as the concentration of the heavier component increases.

However, at xBa = 0.12, the ωT
LiLi(q) and ωT

NN(q) have only one branch which virtually coincides
with the high-frequency ωT

CC(q) and they take a finite value as q → 0, which signals the absence
of propagating shear modes. The ωT

CC(q) always has one branch connected with the minoritary
component whereas at xBa = 0.12, 0.30 a second branch appears. Moreover, the low frequency,
ωT

CC(q) branch starts well outside the linear region and this suppression of the CC modes in the
long wavelength limit is predicted by the GCM model [21] for those systems with a high mutual
diffusion and a tendency towards homocoordination.
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Figure 9. Transverse dispersion relation of the partials, ωT
LiLi(q) (open and full circles),

ωT
BaBa(q) (open squares), number-number, ωT

NN(q) (open and full triangles) and concentration-
concentration, ωT

CC(q) (pluses) transverse modes for the Li–Ba liquid alloy.

4. Conclusions

We have shown that ab initio MD simulations can be used in order to study the collective
dynamical properties of liquid binary alloys. The advantage of using orbital free methods lies in
the ability to study large simulation systems so that the hydrodynamic region of wavevectors can
be reached from above to study the evolution of the collective modes in this region. This method
has been applied for the specific case of several s-p bonded liquid alloys for which the previous
studies on several static structural properties showed a good agreement with experimental data.
Now, several collective longitudinal and transversal properties have been evaluated for various
compositions. Although the scant experimental data available for the dynamical properties do not
allow a thorough comparison theory/experiment, we do find good agreement where experiments
are available (K–Cs dispersion relation, and Li–Ba adiabatic sound velocity). Nonetheless, it must
be stressed that similar OF-AIMD calculations performed for the pure components (for which a
wider range of experimental data is available) showed a good agreement with experiment.

For all alloys, the calculated partial dynamic structure factors, SAA(q, ω) and SBB(q, ω)
(A = light element and B = heavy element), show clear side peaks which extend far beyond
the hydrodynamic regime and represent two non-hydrodynamic modes known as the fast and slow
sound modes. This phenomenon had already been predicted by the RET when applied to a binary
mixture of hard spheres [19], but it had also been concluded that a mass ratio larger than 10 was
required in order to expose the non-hydrodynamic modes. The present ab initio calculations show
that those modes may also appear in systems with a significant smaller mass ratio, ≈ 3. Investi-
gation of alloys with even smaller mass ratios, like Na–K or Ga-In (where it is ≈ 1.7), would be
of interest in order to discern the possible disappearance of this type of modes. Furthermore, for
all the systems studied we have found that as the wavevector q is decreased towards the hydrody-
namic region, the fast and slow sound modes smoothly merge into the hydrodynamic sound mode.
We should stress that, in contrast with some rare gas mixtures [20] or hard-spheres mixtures [19],
we have never found an abrupt disappearance of one of the modes while the other goes into the
hydrodynamic one, but in all cases a smooth merging has been observed, and this is so irrespective
of the mass ratio and of the ordering tendencies. This process takes place at a range of q values
which becomes smaller as the mass ratio increases. In this way, whereas for the Li–Na and Li–Mg
alloys it occurs at around 0.2 6 q 6 0.4 Å−1, for the Li–Ba alloy the range moves towards smaller
values, which in the Li0.88Ba0.12 alloy happens at q 6 0.2 Å−1.

Another remarkable feature is the appearance of two branches for ωL,T
NN (q), ωL,T

AA (q) and ωL,T
CC (q),

in both the longitudinal and transverse dispersion relations, with the high-frequency branches
representing kinetic modes which are overdamped. However, there is only one branch for ωL

BB(q)
which just weakly depends on the concentration.
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The low-frequency ωL
NN(q) and ωL

AA(q), along with the ωL
BB(q), go linearly to zero at q = 0 and

they represent acoustic modes. On the other hand, the low-frequency ωT
NN(q) and ωT

AA(q), along
with the ωT

HH(q), go linearly to zero at a finite q-value, qc, and they represent propagating shear
modes. However, the low-frequency ωT

CC(q) branch does not exist for low q-values as it appears
just outside the linear region; this behaviour is consistent with the predictions of the GCM model.
Moreover, we find that by increasing the concentration of the lighter component, the range of the
low-frequency ωT

NN(q) branch is diminished.
Summing up, our results show that the basic difference among the (longitudinal and transverse)

dispersion relations of the liquid alloys considered in this work, is just a quantitative one, stemming
from the greater atomic mass difference between the alloy components. For instance, it shows up
in a wider gap between the ωL,T

BaBa(q) and the high-frequency ωL,T
LiLi(q) curves, a shrinkage of the

hydrodynamic regime, i. e., a decrease of qh, as well as in the fact that the collective motions
(acoustic and shear waves) are progressively hindered with increasing atomic mass mismatch.
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Мiкроскопiчна динамiка у рiдких бiнарних сплавах:
дослiдження методом безорбiтальної першопринципної
молекулярної динамiки

Д.Х.Ґонзалез, Л.Е.Ґонзалез

Вiддiл теоретичної фiзики, Унiверситет Вальядолiда, Вальядолiд, Iспанiя

Отримано 30 жовтня 2007 р.

Ми повiдомляємо дослiдження методом першопринципної молекулярної динамiки колективних збу-
джень у декiлькох рiдких бiнарних сплавах з ���-зв’язком. Результати подано для Li–Na, Li–Mg, K-Cs
та Li–Ba рiдких сплавiв з рiзними концентрацiями, для яких спiввiдношення мас є в областi вiд ≈ 3

для Li–Na до ≈ 20 для Li–Ba, та змiнними тенденцiями впорядкування, вiд сильної гомокоординацiї у
Li–Na до помiрної гетерокоординацiї для одної концентрацiї Li–Ba. Дослiдження було проведено ме-
тодом безорбiтальної першопринципної молекулярної динамiки у комбiнацiї з локальними iонними
псевдопотенцiалами, побудованими в рамках цього ж пiдходу. Ми аналiзуємо залежнiсть колектив-
них мод вiд концентрацiї та спiввiдношення мас компонент сплаву, та знаходимо спiльну поведiнку
для всiх систем незважаючи на рiзнi тенденцiї впорядкування.

Ключовi слова: першопринципне моделювання, бiнарнi сплави, колективна динамiка, повздовжнi
колективнi збудження, поперечнi колективнi збудження

PACS: 61.25.Mv, 61.55.Hg, 61.20.Ja
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