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Let X be an algebraic curve of genus g > 2 defined over a field Fq of characteristic p > 0. From X , under
certain conditions, we can construct an algebraic geometry code C. If the code C is self-orthogonal under
the symplectic product then we can construct a quantum code Q, called a QAG-code. In this paper we study
the construction of such codes from curves with automorphisms and the relation between the automorphism
group of the curve X and the codes C and Q.
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1. Introduction

In recent years there is an increased interest on the use of algebraic geometry in the theory
of quantum cryptography and quantum coding. In this survey we study the way of constructing
quantum codes from algebraic geometry codes (AG-codes). We call such codes quantum algebraic
geometry codes (QAG-codes). Furthermore, we discuss the relation between the automorphism
group of the algebraic curve, the automorphism group of the AG-code, and the automorphism
group of the corresponding quantum code.

Throughout this paper X denotes a genus g irreducible, algebraic curve defined over a finite
field Fq. Under certain conditions, starting with X one can construct an algebraic geometry code
which we denote by CX . If CX is self-orthogonal then from CX we can construct a quantum
code QX , which will be called a QAG-code. The goal of this paper is to explore when the above
constructions are possible. There are several papers in this area and a few algorithms, some of
which have been implemented on some computer algebra systems. To our surprise the current
versions of such algorithms have many weaknesses and their capabilities are quite limited. Also,
their implementations are very inefficient when the size of the field increases. Our goal is to study
how one can broaden the scope of these algorithms and improve their implementations. Such
implementations will be discussed in detail in a subsequent paper.

In classical coding theory AG-codes with a large group of automorphisms have good error-
correcting properties. Under certain conditions the automorphism group of the curve is embedded
in the automorphism group of the corresponding code. Hence, AG-codes which come from algebraic
curves with a large group of automorphisms are of special interest. Very little is known how
the automorphism group of the quantum code QX relates to the automorphism group of X and
CX . The second goal of this paper is to study the relation among such groups. Furthermore, we
discuss this problem from the computational viewpoint. The existing algorithms for computing the
automorphism group of curves and codes have some limitations.

It is interesting to note that our method of constructing QAG-codes is based on the existence
of an automorphism of the curve X . We focus on the algebraic curves with cyclic automorphism
group, but other curves may be used as well. Hence, curves with non-trivial automorphism groups
are of interest in this construction. In the last section we give a complete table of groups which
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occur as automorphism groups of curves of genus 3 and 4 over a field of characteristic 2. This paper
is organized as follows:

In section 2 we give a brief description of the main definitions of algebraic geometry codes and
stabilizer codes. This prepares for the construction of quantum codes when an algebraic curve X
defined over a finite field Fq is given. Given a linear code C in a vector space V , using the properties
of stabilizer codes we can construct a quantum code if C is self-dual under some symplectic form.

In section 3 we study the construction of quantum algebraic codes based on the existence of
the rational points on the curve X and the existence of an involution σ ∈ Aut F(X ). We use
this method to construct QAG-codes from hyperelliptic and non-hyperelliptic curves as well. In
section 4 we illustrate this construction for hyperelliptic curves. We are able to easily construct
many QAG-codes over small size fields and give an algorithm how this can be done in general.

In the last section we study the automorphism group of quantum codes. We compare the
automorphism group Aut (X ) of the curve X with the automorphism group of the corresponding
quantum AG-code.

Notation: Throughout the paper Fq denotes a finite field of q elements where q is a prime power.
The notation [n, k, d] denotes a classical code of length n, dimension k, and minimum distance
d. [[n, k, d]] will denote a quantum code. A cyclic group of order n is denoted by Cn. In general,
given a genus g > 2 algebraic curve X defined over F, the automorphism group of X is denoted by
Aut (X ) and is defined to be the group of automorphisms of X defined over the algebraic closure
of F. The group of automorphisms defined over F is denoted by Aut F(X ).

The permutation automorphism group of the code C ⊆ F
n
q is the subgroup of Sn (acting on

F
n
q by coordinate permutation) which preserves C. We denote such group by PAut (C). The set

of monomial matrices that map C to itself forms the monomial automorphism group, denoted by
MAut (C). Every monomial matrix M can be written as M = DP where D is a diagonal matrix
and P a permutation matrix. Let γ be a field automorphism of Fq and M be a monomial matrix.
Denote by Mγ the map Mγ : C → C such that ∀x ∈ C we have Mγ(x) = γ(Mx). The set of all
maps Mγ forms the automorphism group of C, denoted by ΓAut (C).

2. Algebraic geometry codes and stabilizer codes

There are many ways of constructing quantum codes from the existing algebraic geometry
codes. In this section we give a brief description of algebraic geometry codes, stabilizer codes, and
quantum algebraic codes.

Let X be an algebraic curve defined over a finite field Fq with characteristic p > 0. By F = Fq(X )
we will denote the function field of X .

2.1. Algebraic geometry codes

Let P1, . . . , Pn be places of degree one and let D = P1 + · · · + Pn. Furthermore let G be a
divisor with supp(G)∩ supp(D) = ∅. Then the Goppa code (respectively AG code) CL ⊆ F

n
q is

defined by

CL(D,G) = {(f(P1), . . . , f(Pn)) | f ∈ L(G)} ⊆ F
n
q .

Define the following linear evaluation map

ϕ : L(G) → F
n
q , f 7→ (f(P1), . . . , f(Pn)). (1)

Then the Goppa Code is given by CL(D,G) = ϕ(L(G)). The code CL(D,G) is a linear [n, k, d]
code with parameters

k = dimG− dim(G−D), d > n− degG =: ddes.

The parameter ddes is called the designed distance of the Goppa code. Assume degG < n and
let g be the genus of F/Fq. Then we have:
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1. ϕ : L(G) → CL(D,G) is injective and CL(D,G) is an [n, k, d] code with

k = dimG > degG+ 1 − g,

d > n− degG.

2. If in addition 2g − 2 < degG < n, then

k = degG+ 1 − g.

3. If (f1, . . . , fk) is a basis of L(G), then

M =







f1(P1) · · · f1(Pn)
...

...
fk(P1) · · · fk(Pn)







is a generator matrix for CL(D,G).

Let D = P1 + · · · + Pn be a divisor, where the Pi’s are places of degree one of an algebraic
function field F/Fq, Furthermore, let G be a divisor with supp(G) ∩ supp(D) = ∅. Then we define
the code CΩ(D,G) by

CΩ(D,G) := {(resP1
(ω) , . . . , resPn

(ω)) | ω ∈ ΩF (G−D)} ⊆ F
n
q .

The following result is well known:

Lemma 1. The code CΩ(D,G), where D and G are as above, has the following properties:

1. CL(D,G)⊥ = CΩ(D,G).

2. CΩ(D,G) = a · CL(D,H) with H = D − G + (η) where η is a differential, vPi
(η) = −1 for

i = 1, . . . , n, and a = (resP1
(η) , . . . , resPn

(η)).

3. CL(D,G)⊥ = a · CL(D,H).

One common construction is the so-called one point code. We define as admissible a class of
curves which have some additional conditions on their divisors.

Definition 1. A genus g > 1 curve X/Fq is called admissible if it satisfies the condition:
i) there exists a rational point P∞ and two functions x, y ∈ F (X ) such that (x)∞ = kP∞, (y)∞ =

lP∞, and k, l > 1;
ii) for m > 0, the elements xiyj with 0 6 i, 0 6 j 6 k − 1, and ki+ lj 6 m form a basis of the

space L(mP∞).

Next we define

Aut D,G(X ) := {σ ∈ Aut (X )|σ(D) = D and σ(G) = G}.

Let X/Fq be an admissible curve over Fq of genus g where l > k. Assume that m > l. Let
D =

∑

P∈J P where J ⊆ P\{P∞}, P is the set of all rational points of X . The one point code of
level m is the code

L(D,mP∞).

With the above notation we have the following:

Lemma 2. Let X/Fq be an admissible curve over Fq of genus g where l > k. Assume that m > l.
Let D =

∑

P∈J P where J ⊆ P\{P∞}, P is the set of all rational points of X . If

n > max{2g + 2, 2m, k(l +
k − 1

β
), lk(1 +

k − 1

m− k + 1
)},

where n = |J |, β = min{k − 1, r|yr ∈ L(mP∞)} then

Aut (CL(D,mP∞)) ∼= Aut D,mP∞
(X ).
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Proof. See [18] for details.

Next we give a brief introduction to the way of constructing quantum codes from algebraic
geometry codes.

2.2. Stabilizer codes

Stabilizer codes are helpful devices that make possible the construction of quantum codes from
classical codes. Let V denote the qubit state space and Gn the Pauli group on n qubits. Let H 6 Gn

and denote by VH the subspace of V fixed by H;

VH := {v ∈ V | gv = v,∀g ∈ Gn}.

The proof of the following lemma is elementary.

Lemma 3. VH is non-trivial if and only if H is Abelian and −I 6∈ H.

From now on we will assume that H is Abelian and −I 6∈ H. The subspace VH is called the
stabilizer code C(H) of H. For a proof of the following see [2].

Proposition 1. Let {Ei} be a set of operators in Gn such that E†
jEk 6∈ N(H) \H for all j and

k, where E† denotes the adjoint of E. Then {Ej} is a correctable set of errors for the code C(H).

Corollary 1. Let H be an Abelian subgroup of Gn. If a state |ψ〉 is in the +1 eigenspace of a set
of generators {g1, . . . , gl} of H, it is an eigenstate of all elements in H.

Since we have seen that it suffices to look at a set of generators, we can represent a stabilizer
code in an easier way. A generator matrix G of a stabilizer code is an l × 2n-matrix G(X|Z)
where the first n components represent the X errors, the second n components represent the Z
errors. This matrix defines a [[n, k, d]] quantum error correcting code with k = n− l.

The weight wt of an operator U1 ⊗ · · · ⊗ Un is the number of elements Ui that are not equal
to the identity.

Let E ∈ Gn be an error operator. Then:

1. If E ∈ H then E is a codeword.

2. If E ∈ Gn\N(H) the error is detectable and can be corrected.

3. If E ∈ N(H)\H the error cannot be detected and therefore is not correctable.

The above allows us to introduce the distance of a stabilizer code. The distance d of a quantum
stabilizer code C is the minimum weight of all normalizer elements that are not in the stabilizer.

d = min {wt(x) | x ∈ N(H)\H}.

Let x = (x1, . . . , x2n), y = (y1, . . . , y2n) ∈ F 2n
q . We call 〈x, y〉s the standard symplectic inner

product,

〈x, y〉s =

n
∑

i=1

xiyn+i − xn+iyi .

The stabilizer code of the normalizer N(H) is equal to the dual code C⊥s with respect to the
symplectic inner product 〈 , 〉s. We obtain that

d = min
{

wt(x) | x ∈ C⊥s\C
}

.

The next proposition gives a way of constructing quantum codes from classical codes; see [2] for
details.

Proposition 2. Let C ⊂ F 2n
q be a (n+ k)-dimensional subspace such that C⊥s ⊂ C. Then, there

exists a quantum code Q ⊂ H⊗n of dimension qk and minimum distance d := dimC \ C⊥s .

Hence, in order to construct quantum AG-codes we need to construct AG-codes which are
self-orthogonal.
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3. Quantum algebraic geometry codes from algebraic curves w ith automor-
phisms

We continue with the notation of the previous session; X is a genus g curve defined over a finite
field Fq and F is its function field. The following lemma is cited from [11, Prop. VII.1.2]. It permits
to construct differentials with special properties that help to construct a self-orthogonal code.

Lemma 4. Let x and y be elements of F such that vPi
(y) = 1, vPi

(x) = 0 and x(Pi) = 1 for
i = 1, . . . , n. Then the differential η := x· dy

y satisfies vPi
(η) = −1 and resPi

(η) = 1 for i = 1, . . . , n.

First, we show under which circumstances a quantum stabilizer code can be obtained from an
algebraic geometric construction.

Theorem 1. Let X be a genus g irreducible algebraic curve defined over Fq and P1, . . . , Pn degree
one rational points on X . Let σ ∈ Aut F(X ) be an involution such that σPi 6= Pj , ∀ i, j = 1, . . . , n.
Further assume that we have a divisor G such that σG = G, vPi

(G) = vσPi
(G) = 0 for all i. Then,

there exists a quantum code QX = [[n, k, d]] such that

k = dimG− dim (G− P1 − · · ·Pn − σ(P1) − · · ·σ(Pn)) − n, d > n−

⌊

deg G

2

⌋

.

Proof. Let F = Fq(X ) be the function field of X . Let P1, . . . , Pn be pairwise distinct places of
degree one such that σPi 6= Pj , ∀ i, j = 1, . . . , n. Then, by a strong approximation theorem there
is a differential η such that







vPi
(η) = vσPi

(η) = −1,
resPi

(η) = 1,
resσPi

(η) = −1.
(2)

Further assume that we have a divisor G such that σG = G, vPi
(G) = vσPi

(G) = 0 for all i. Define

C(G) = {(f(P1), . . . , f(Pn), f(σP1), . . . , f(σPn)) | f ∈ L(G)} ⊆ F
2n
q .

Let

H = (P1 + · · · + Pn + σP1 + · · · + σPn) −G+ (η),

where η is as in equation (2). Then, we have C(G)⊥s = C(H).
Let us assume that H 6 G. Then, L(H) ⊂ L(G). Hence, C(D,G)⊥s ⊂ C(D,G). We have

k = dimC(D,G) − n which implies the result.
Let f ∈ L(G) such that wt (f(P1), . . . , f(σ(Pn)) = δ 6= 0. Hence, there exists a set of coordi-

nates f(P1), . . . , f(Pi−δ) which are all zero. Thus, we have f ∈ L
(

G−
∑n−δ

j=1 (Pi,j + σPi,j)
)

. The

dimension of this space is > 0, which implies the result.

Next, we should like to construct quantum codes starting from algebraic curves which have non-
trivial automorphisms. The most common class of curves are obviously the hyperelliptic curves.
However, we start in a more general setting. Our first class of curves are the curves that have a
cyclic group embedded in the automorphism group of the curve. The hyperelliptic curves will be
studied more in detail in the next section.

3.1. Codes on the cyclic covers of the projective line

Let k be a field of characteristic p > 0 and F0 = k(x) a function field of the projective line
P

1(k). We consider a degree r cyclic extension F := k(x, y), where

yr = f(x) =

s
∏

i=1

(x− αi)
di , 0 < di < m
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for some fixed m ∈ Z
+. The only places of F0 that ramify are the places that correspond to the

points x = αi. We denote such places by Q1, . . . , Qs and by B := {Q1, . . . , Q} the set of these
places. The ramification indexes are e(Qi) = r

(r,di)
.

Let X denote the algebraic curve with affine equation

yr = f(x)

defined over k, and let G := Aut (X ) be the automorphism group. Then, there is a cyclic group
Cr = Gal(F/F0) of order r such that Cr ↪→ Aut (X ). Fix a generator σ ∈ Cr.

Lemma 5. Let τ ∈ Aut (X ) such that τ 6∈ Cr, s be the number of ramified places of the extension
F/F0, and d = deg f(x). Then, the equation of the curve is given by

yr = f(xδ)

for some δ|d. Moreover, f(xδ) is a monic polynomial with constant coefficient 1.

Proof. It can be easily obtained from [1, Lemma 2.3] or from the results in [13], [6] that the defining
equation of F is

y2 =

d/δ
∑

i=0

aix
δ·i.

Since X is a smooth algebraic curve, the discriminant of the right hand side should be non-zero.
Hence, all di = 1, i = 1, . . . , s. Hence, s = d. The rest follows.

Let X be an algebraic curve defined over a field Fq of characteristic p > 0 given by an equation

yr = f(xδ),

where d = deg f(x). Let Cr ↪→ Aut (X ) such that Cr = 〈σ〉. The corresponding cover ψ := X →
X σ has d branch points. Let B be the branch set. For a given rational point P ∈ X we define
Orbα(P ) = {σ(P ) ∈ X}. If ψ(P ) 6∈ B then |Orbσ(P )| = r.

Let P1, . . . , Pn be rational points on X such that ψ(Pi) 6∈ B for all i = 1, . . . , n. Define the
divisor

D =

n
∑

i=1

(

Pi + σ(Pi) + · · · + σr−1(Pi)
)

=

n
∑

i=1

Orb(Pi) .

Then degD = rn. For some P ∈ X such that ψ(P ) ∈ B we define G = mP for some integer m.
Then σ(G) = G. We can take infinity to be one of the branch points in B. In that case the point
P is the fiber is denoted by P∞. It is common in coding theory to take G to be mP∞.

We define an algebraic geometry code as previously CX = L(G,D). The proof of the following
theorem is similar to that of Theorem 1.

Theorem 2. Let X be an algebraic curve defined over a field Fq of characteristic p > 0 such
that Cr = 〈σ〉 ↪→ Aut (X ). Let P1, . . . , Pn be rational points on X such that |Orbσ(Pi)| = r and
Orbσ(Pi) ∩Orbσ(Pj) = ∅ for all i, j. Further assume that we have a divisor G such that σG = G,
vPi

(G) = vσPi
(G) = 0 for all i. Then, there exists a quantum code QX = [[nr, k, d]] such that

k = dimG− dim(G−D) − n r, d > n r −

⌊

deg G

2

⌋

.

Example 1. Let X be the curve
y3 − y = x4

defined over Fq. For characteristic p > 7, Aut (X ) is a group of order 96 with Gap identity (96, 64).
Denote the set of affine rational points of X over Fq by {P1, . . . , Pn}. Let C = CL(D,G), where
n+ 1 is the number of rational points of X and

G = mP∞, D = P1 + · · ·Pn .
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The permutation automorphism group PAut (C) is as follows:

i) If 0 6 m < 3 or m > n+ 4 then PAut (C) ∼= Sn.

ii) If n > 24 and 4 6 m < n/2 then PAut (C) ∼= AutD,mP∞
(X ).

For a proof of the above statement see [15].

Let X be defined over F4. Take m = 6. By computation using GAP, we find that CL(D,G) is
a [4, 4, 1] code with a generator matrix









α α2 0 0
α2 α 0 0
α α2 1 0
1 1 1 1









,

where α is a primitive element of F4. The permutation automorphism group is isomorphic to the
group with GAP identity [24, 12]. In this case

PAut (C) ↪→ Aut (X ).

This code is clearly an MDS code. The automorphism group ΓAut (C) has Gap identity (1944, 3876).
Next we construct a quantum code from this curve. One can check that this code is self-orthogonal
with respect to the inner product. Hence, there is a quantum code Q which has parameters [[4, 4]].
Its automorphism group is of the order 31104 and is a degree 2 extension of ΓAut (C).

It is obvious from the above theorem that to construct quantum codes from algebraic geometry
codes we have to start with algebraic curves having many rational points. Hence, we have to
look at classes of curves which are normally used to construct AG-codes. Thus, Hermitian curves,
hyperelliptic curves, and more generally Cab curves, seem to be good candidate curves. From the
above construction, we also need to have algebraic curves with at least one involution. Hence, we
want curves with automorphisms and with many rational points. An obvious class of curves which
assures the existence of an involution are of course the hyperelliptic curves. They will be the focus
of the next section. However, we should mention that there are many other classes of curves that
have an involution. Many questions remain unanswered about the choice of the involution. Does
the choice of the involution determine any of the parameters of the code? Does the size of the
automorphism group of the curve have any effect on the corresponding algebraic geometry code
or the corresponding quantum code. Very little is known in this field. In the next section we will
see how the hyperelliptic involution can be used to construct quantum algebraic geometry codes.
However, other involutions can be used as well.

4. Hyperelliptic quantum codes

The goal of this section is to construct quantum stabilizer codes starting with AG-codes which
come from hyperelliptic curves. We focus on odd characteristic. Let K := Fpm be a finite field of
characteristic p > 2, and Xg a genus g hyperelliptic curve given by the equation y2 = f(x). Let
F := K(x, y) be the function field and σ denotes the hyperelliptic involution of Xg. Then F has a
set of rational places which are not fixed by the hyperelliptic involution. Choose a set of distinct
places in F such that

SP = {P1, . . . , Pn, σ(P1), . . . , σ(Pn)},

such that π(Pi) = αi, where π is the hyperelliptic projection.

Let P∞ denote the place at infinity and D,G ∈ Jac (Xg) be as follows:

D :=

n
∑

i=1

Pi +

n
∑

i=1

σ(Pi) and G := (n+ g − 1 − r)P∞,
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where 0 6 r 6 n − g. Then D has degree 2n. By the Riemann’s theorem there exists η ∈ F such
that

η =
1

y
∏n

i=1(x− αi)
dx .

Hence, (η) = (2n+ 2g − 2)P∞ −D. We denote

W := (η) = (2n+ 2g − 2)P∞ −D, and H := D −G+W.

Then W is a canonical divisor. and the residues of η at the places P1, . . . , Pn, σ(P1), . . . , σ(Pn)
satisfy

ai := resPi
(η) = −resσ(Pi) (η) .

for i = 1, . . . , n.
Now we can construct a Goppa codes C(D,G) and C(D,H). The weighted symplectic inner

product is defined as below

〈x, y〉as =

C
∑

i=0

4nai (xiyn+i − xn+iyi)

for all x, y ∈ C and all ai 6= 0.

Lemma 6. Let C(D,G) and C(D,H) be as above. Then

C(D,G)⊥s = C(D,H) · diag(a1, . . . , an, 1, . . . , 1).

Moreover, C(D,G) ⊆ C(D,G)⊥
a

s with respect to the symplectic inner product 〈 , 〉as .

Proof. Since G = (n+ g− 1− r)P∞ then we replace (η) to get H = (n+ g− 1+ r)P∞ > G. Hence,
L(G) ⊂ L(H) and C(D,G) ⊂ C(D,H). From the above lemma we have that C(D,G)〈a, s〉as =
C(D,H).

We transform C(D,G) to a self-orthogonal code C ′(D,G) with respect to the standard sym-
plectic inner product by multiplying each component xi of every codeword by the corresponding
ai, for 1 6 i 6 n.

Then, we have the following:

Proposition 3. C ′(D,G) is a stabilizer code with parameters [[n, k, d]], where k = g + r − 1 and
d >

n−k
2 .

Proof. We can construct a stabilizer code since C ′(D,G) is self-orthogonal; see Theorem 1. The
new code has the same parameters with C ′(D,G). So it is left to compute k and d. From the
Riemman-Roth theorem we have that

k = dimH − dim(H −D) − n = (n+ g − 1 + r) − n = g + r − 1,

since dim(H −D) = 0. For d we have d > n− bdeg H
2 c >

n−k
2 .

We summarize in the following theorem.

Theorem 3. Let X be a genus g irreducible hyperelliptic curve defined over Fq and P1, . . . , Pn be
degree one rational points on X . Let σ ∈ Aut F(X ) be an involution such that σPi 6= Pj , ∀ i, j =
1, . . . , n. Further assume that we have a divisor G such that σG = G, vPi

(G) = vσPi
(G) = 0 for

all i. Then, there exists a quantum code QX = [[n, k, d]] such that

k = dimG− dim (G− P1 − · · ·Pn − σ(P1) − · · ·σ(Pn)) − n, d > n−

⌊

deg G

2

⌋

.

In the next section we study the relation between the automorphism groups of the curve Xg,
and the codes CX and QX .
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4.1. Explicit construction of quantum AG-codes

Next we describe an algorithm which would create a hyperelliptic quantum code.

Algorithm 1. Hyperelliptic quantum codes

Input: A genus g hyperelliptic curve over a finite field Fq.
Output: A quantum code Q

i) Find all rational places of degree 1 of Xg which are not fixed by the hyperelliptic invo-

lution, say S = {P1, . . . , Pn, σ(P1), . . . , σ(Pn)}.

ii) Let

D :=
∑

P∈S

(P + σ(P )) , G := (n+ g − 1 − r)P∞ , (η) := −D + (2n+ 2g − 2)P∞ .

iii) Create a list A = [a1, . . . , an], where ai := resPi
(η) = −resσ(Pi)(η).

iv) Construct the AG code C = L(D,G) and let the generator matrix of C be G.

v) Transform C to a self-orthogonal symplectic code Q by multiplying each coordinate xi

by ai,
(. . . , xi, . . . ) → (. . . , aixi, . . . ).

vi) Return Q.

5. Automorphism groups

In this section we give a brief survey of automorphism groups of curves over finite fields,
automorphism groups of codes, and automorphism groups of quantum codes.

5.1. Automorphism groups of curves

It has been known since Hurwitz (1892) that a Riemann surface of genus g > 1 has at most
84(g− 1) automorphisms. This estimate is optimal; there are Riemann surfaces of arbitrarily high
genus with 84(g − 1) automorphisms (Hurwitz’ bound in characteristic 0), the Klein curve most
notable of them. The Hurwitz estimate is not valid in prime characteristic. Roquette (1970) found
that the estimate

|G| 6 84(g − 1),

on the order of the automorphism group G, holds under the additional assumption p > g + 1,
with one exception: the function field F = K(x, y) with yp − y = x2 has genus g = 1

2 (p − 1) and
8g(g + 1)(2g + 1) automorphisms.

Stichtenoth (1973) gives a general estimate for the number of automorphisms of a smooth
projective curve in characteristic p > 0. He proves the inequality

|G| < 16 · g4,

but also with one series of exceptions: the function field F = K(x, y) with ypn

+ y = xpn+1

has
genus g = 1

2p
n(pn−1) and |G| = p3n(p3n +1)(p2n−1) automorphisms, so |G| is in this case slightly

larger than 16g4.
Let X denote a smooth, genus g algebraic curve defined over k, char k = p > 0. A theorem of

Blichfeld on invariants (in char 0) of subgroups of PGL3(k) implies that the genus g curve lifts to
characteristic 0 for p > 2g + 1; see [?, pg. 236-254]. Hence, for large enough p (i.e., p > 2g + 1),
methods described in [?] can be used to determine such groups. Thus, to determine the list of
groups that occur as automorphism groups of genus g curves we have to classify the groups that
occur for all primes p 6 2g + 1.
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5.1.1. Automorphisms groups over finite fields of characteri stic 2

Let C be a hyperelliptic curve of genus g over an algebraically closed field K of characteristic 2.
We use an Artin-Schreier generation y2 + y = g(x) such that g(x) ∈ K(x). We can find a rational

function h(x) ∈ K(x) such that the rational function g(x) + h(x) + h(x)
2

has no poles of even

order. Let f(x) := g(x) + h(x) + h(x)
2

and use the normalized form y2 + y = f(x). Then, y is
unique up to transformations of the form y 7−→ y +B(x), where B(x) is a rational function of x.

Let Σna(a) be the polar divisor of f(x) on the projective line, P1. C is ramified at each a and
if Pa is the unique point of C over a then the curve y2 + y = f(x) has the different

Diff(C/P1) = Σ(na + 1)Pa ,

where the na are odd ([10], Prop III.7.8)

2g − 2 = −2[F : K(x)] + deg(Diff(C/P1)) =⇒ deg(Diff(C/P1)) = 2g + 2.

Take two hyperelliptic curves, C : y2 + y = f(x) and C ′ : y2 + y = h(x). Then there are finite
morphisms f1 : C 7−→ P1, and f2 : C ′ 7−→ P1 of degree 2, and there exists a unique automorphism
σ of P1 such that f2 = σ ◦ f1. Any isomorphism between these curves has the form

(x, y) 7−→ (
ax+ b

cx+ d
, y +B(x))

for some B(x) ∈ K(x). Hence, these curves are isomorphic if and only if

h(x) = f(
ax+ b

cx+ d
) + s(x) + s(x)

2

for some s(x) ∈ K(x). The ramification types determine the isomorphism classes of the hyperelliptic
curves. The solutions of the equation Σ(na +1) = 2g+2 in the unknown odd positive integers give
us the following ramification types:

(1, 1, 1, 1), (3, 1, 1), (3, 3), (5, 1), (7) for genus 3,

(1, 1, 1, 1, 1), (3, 1, 1, 1), (3, 3, 1), (5, 1, 1), (5, 3), (7, 1), (9) for genus 4.
(3)

Therefore, we get the following normal forms for genus 3 and 4 respectively.

y2 + y =























α1x+ α2x
−1 + α3(x− 1)−1 + α4(x− λ)−1

x3 + αx+ βx−1 + γ(x− 1)−1

x3 + αx+ βx−3 + γx−1

x5 + αx3 + βx−1

x7 + αx5 + βx3

y2 + y =







































α1x+ α2x
−1 + α3(x− 1)−1 + α4(x− λ)−1 + α5(x− µ)−1

x3 + αx+ β1x
−1 + β2(x− 1)−1 + β3(x− λ)−1

x3 + αx+ βx−3 + γx−1 + σ(x− 1)−1

x5 + αx3 + βx−1 + γ(x− 1)−1

x5 + αx3 + βx−3 + γx−1

x7 + αx5 + βx3 + γx−1

x9 + α1x
7 + α2x

5 + α3x
3

(4)

These are plane curves given in inhomogeneous form, birational to the given nonsingular curves(
i.e. the function fields are isomorphic). We will use the above normal forms to determine Ḡ, the
reduced group of automorphisms, namely the quotient of the group of automorphisms, G by 〈ι〉
which is contained in the center of G. And then we will compute G.
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Proposition 4. Let C be a genus g hyperelliptic curve defined over an algebraically closed field K
of characteristic 2.

i) If g = 3 then the automorphism group of C is one of the following: C2, C4, V4, C2×C2×C2,
C6, C14, D12.

ii) If g = 4 then the automorphism group of C is one of the following: C2, V4, C4, C2×C2×C2,
C6, C18, D20.

Proof. See [3] for details.
Furthermore, the parametric equation of the curve in each case is given by equation in table 1.

Table 1. Automorphism groups of hyperelliptic curves of genus 3 and 4 over fields of charac-
teristic 2.

Curve Condition G

g=3

y2 + y = α1x + α2x
−1 α1 = α2λ

−1, α3 = α4λ
−1, α1 6= α3λ V4

+α3(x − 1)−1 + α4(x − λ)−1 α1 = α3λ, α2 = α4λ, α1 6= α2λ
−1 V4

α1 = α4, α2 = α3λ
2, α1 6= α2λ

−1 V4

α1 = α2λ
−1, α3 = α4λ

−1, α1 = α3λ C2
3

y2 + y = x3 + αx α 6= 0, or β 6= γ C2

+βx−1 + γ(x − 1)−1 α = 0, and β = γ V4

y2 + y = x3 + αx none C2

+x−3 + βx−1 β 6= 1, α = γ = 0 C6

β = 1, α = γ 6= 0 V4

β = 1, α = γζ 6= 0 V4

β = 1, α = γζ2 6= 0 V4

β = 1, α = γ = 0 D12

y2 + y = x5 + αx3 + βx−1 none C2

y2 + y = x7 + αx5 + βx3 α = β = 0 C14

α = 0, β 6= 0 C2

α 6= 0, β = c3 = 0 C2

α 6= 0, β = 0, c3 6= 0 C14

α 6= 0, β 6= 0, c3 = 0 C2

α 6= 0, β 6= 0, c3 6= 0 C14

g =4

y2 + y = α1x + α2x
−1 + α3(x − 1)−1 α2 = α3, α4 = α5, α2 6= α4 V4

+α4(x − λ1)
−1 + α5(x − λ2)

−1 α2 = α4, α3 = α5, α2 6= α3 V4

α2 = α5, α3 = α4, α2 6= α3 V4

α2 = α3 = α4 = α5 C2
3

α1 = α2 = α3λ = α4λ = α5 D20

α1 = α2 = α3λ
−1 = α4 = α5λ

−1 D20

· · · · · ·

· · · · · ·

y2 + y = x3 + αx + β1x
−1 α 6= 0 C2

+β2(x − 1)−1 + β3(x − λ)−1 α = 0, β = γλ, γ = σλ, σ = βλ C6

y2 + y = x3 + αx none C2

+x−3 + βx−1 + γ(x − 1)−1 β = 1, α = γ V4

y2 + y = x5 + αx3 α 6= 0, or1 C2

+βx−1 + γ(x − 1)−1 α = 0 V4

α = 1 C4

y2 + y = x5 + αx3 + x−3 + βx−1 none C2

y2 + y = x7 + αx5 + βx3 + γx−1 none C2

y2 + y = x9 + α1x
7 + α2x

5 + α3x
3 α1 6= 0 C2

α1 = 0 C18

393



T.Shaska

Determining complete lists of full automorphism groups for a given genus g > 3 is still an
open problem with tremendous applications in theoretical mathematics and computer science and
electrical engineering. For more details on this problem see [12].

5.2. Automorphism groups of codes

The permutation automorphism group of the code C ⊆ F
n
q is the subgroup of Sn (acting

on F
n
q by coordinate permutation) which preserves C. We denote this group by PAut (C). The set

of monomial matrices that map C to itself forms the monomial automorphism group, denoted
by MAut (C). Every monomial matrix M can be written as M = DP where D is a diagonal matrix
and P a permutation matrix. Let γ be a field automorphism of Fq and M a monomial matrix.
Denote by Mγ the map Mγ : C → C such that ∀x ∈ C we have Mγ(x) = γ(Mx). The set of all
maps Mγ forms the automorphism group of C, denoted by ΓAut (C). It is well known that

PAut (C) 6 MAut (C) 6 ΓAut (C).

Recall that for binary codes PAut (C) = MAut (C) = ΓAut (C), which we simply denote by
Aut (C). If the code C is defined over a prime field then MAut (C) = ΓAut (C). Two codes C
and C ′ are called permutation equivalent, monomially equivalent, or equivalent if there
is an element σ in the respective automorphism group such that σ(C) = C ′. In classical coding
theory these automorphism groups of codes play an important role in classifying codes. There is a
weight preserving linear transformation between [n, k] codes C and C ′ over Fq if and only if Cand
C ′ are monomially equivalent. Furthermore, the linear transformation agrees with the associated
monomial transformation on every codeword in C; see [4, Thm. 7.9.4].

If X is a genus g > 2 algebraic curve defined over Fq then Aut (X ) is the group of automorphisms
of X over the algebraic closure of Fq. There have been published many papers studying the relation
between the automorphism group of the algebraic curve X and the automorphism groups as defined
above of the corresponding AG-code CX ; see [15] among others. Let us assume that CX is a self-
orthogonal code such that we can construct a quantum code QX as in the previous section. If Q
is a symplectic quantum code, then the group of equivalences of the code is the complex Clifford
group.

5.3. Some computational remarks on the automorphism groups of codes

In this section we want to make a few remarks concerning the efficiency of computing the
automorphism group of a given code. There are several open questions related to automorphism
groups of algebraic curves, AG-codes, and naturally quantum codes. We suggest some problems
and point some inefficiencies regarding some existing programs.

Problem 1. Let X be a genus g curve defined over a finite field Fq. Determine the list of groups
that occur as full groups of automorphisms of X over the algebraic closure of Fq.

Problem 2. Let X be a genus g curve defined over a finite field Fq. Design and implement a
program that computes the automorphism group of X over Fq.

Let CX and QX be the codes constructed as in sections 2 and 3. In GAP, the package GUAVA
which is specifically written for coding theory, creates such codes (with some simple implementati-
ons of our algorithms) and computes groups of such codes using an algorithm of Leon [5]. Similar
capabilities are also available in Magma. Both MAGMA and GAP come short when it comes to
computing the automorphism group of a code over a relatively large size field Fq. Magma only
computes automorphism groups of codes over a field Fq where q = p or p2.

Problem 3. Design and implement an algorithm which computes the automorphism groups
PAut (C),MAut (C),ΓAut (C) of a given code C (including quantum codes) over any field Fq.
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The existing algorithms in Magma and GAP/GUAVA (both are based on the algorithm of Leon)
are slow. It is unclear whether this is because of poor implementations or due to the limitations
of the algorithm. Furthermore, it seems that extending such algorithms and implementations to
larger size fields should be the next step. We intend to pursue such questions in further work.
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Квантовi коди за алгебраїчними кривими з автоморфiзмами
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Отримано 31 сiчня 2008 р.

Нехай χ – алгебраїчна крива типу g > 2, що визначена над полем Fq характеристики p. При

деяких умовах на χ ми можемо будувати алгебраїчно-геометричний код C. Якщо код C є само-
ортогональним вiдповiдно до симплектичного добутку, то будується квантовий код Q, який будемо

називати QAC кодом. В статтi вивчаються конструкцiї таких кодiв за кривими з автоморфiзнами i
зв’язки мiж групами автоморфiзмiв кривої χ та кодiв C та Q.

Ключовi слова: алгебраїчнi кривi, алгебраїчно-геометричнi коди, квантовi алгебраїчнi коди

PACS: 03.67.Dd
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