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The effect of homogeneous electric field on the energy spectrum, wave functions of electron and oscillator
strengths of intra-band quantum transitions in a double cylindrical quantum ring (GaAs/Aly Gaj_As) is studied
within the approximations of effective mass and rectangular potentials. The calculations are performed using
the method of expansion of quasiparticle wave function over a complete set of cylindrical wave functions ob-
tained as exact solutions of Schrédinger equation for an electron in a nanostructure without electric field. It is
shown that the electric field essentially affects the electron localization in the rings of a nanostructure. Herein,
the electron energies and oscillator strengths of intra-band quantum transitions non-monotonously depend on
the intensity of electric field.
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1. Introduction

Multilayered semiconductor nanostructures are studied both theoretically and experimentally for
quite a long time. Unique properties of quasiparticles in such structures allow us to use them as the basic
elements of modern nanoelectronic devices, such as tunnel diodes, lasers and detectors [143]].

Semiconductor quantum rings occupy a separate place among various types of nanostructures. As a
rule, they have cylindrical symmetry as well as quantum wires [4]]. However, unlike the latter, their height
is finite and can be of several nanometers. Therefore, the current of charge carriers in such nanostructures
will be confined in all three dimensions and, in this respect, they are similar to quantum dots. Modern
experimental possibilities allow one to grow nanoheterostructures with double cylindrical quantum rings
on the basis of GaAs/Al,Ga;_,As semiconductors [547].

Cylindrical semiconductor quantum rings are intensively investigated theoretically [8-14]. Changing
the geometric sizes of the rings one can affect the energy spectra of quasiparticles and obtain the necessary
optical properties. The external fields also essentially influence the spectra. In [8 9], the influence of a
magnetic field on the energy spectrum of the electron and on the oscillator strengths of its intra-band
quantum transitions in GaAs/Al,Ga;_xAs rings was studied. It was shown that the electron energies and
the oscillator strength of intra-band quantum transitions non-monotonously depend on the induction of
the magnetic field. Besides, there was observed an anti-crossing of energy levels of the same symmetry
over the magnetic quantum number (the Aaronov-Bohm effect) and brightly expressed maxima and
minima in the dependences of oscillator strengths on induction.

In the papers [10-12], the authors investigated the effect of a homogeneous electric field on the
optical properties of quantum nanorings using the model of a parabolic potential. The wave function of
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an electron in an electric field was written as an expansion over a complete set of its wave functions in
an infinitely deep potential well with a further solution of the corresponding secular equation.

In the proposed paper, we are going to study the structure similar to that of [10H12]. However, an
optimal model of confined potential is to be used with an orthonormal basis of cylindrical wave functions
obtained in the model of finite potential. The oscillator strengths of intra-band quantum transitions as
functions of the electric field intensity in a double quantum ring GaAs/Al,Ga;_,As nanostructure are
analyzed.

2. Theory of electron energy spectrum and oscillator strengths of intra-
band quantum transitions in double quantum ring nanostructure
driven by electric field

The nanostructure consisting of two concentric rings (quantum wells GaAs) separated by a concentric
and tunnel transparent ring Al,Ga;_, As of the width A is studied. The heights of three constructing parts
are L. The inner and outer radii of the first ring are py and py, its width is A, while those of the second
ring are p, and ps3, respectively, its width is /,. The cross-section by the plane z = 0 and potential energy
scheme of the structure is shown in figure|l} A vector of electric field intensity F is directed along Ox
axis.

According to the symmetry considerations, the further calculations are performed in a cylindrical
coordinate system (p, ¢, z) with Oz axis directed along the axial axis of the rings. The electron effective
masses are fixed in all parts of the structure

Mo, lz| > L/2 or |z| <L/2 and O0<p<po, pr<p<p2, p>p3, 0

7) =
uer) {/41, |zl <L/2 and po<p<pi, p2<p<p;3.

AlGaAs |

Figure 1. Cross-section of nanostructure, at height L = 5 nm, by plane z = 0 and potential energy profile.
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In order to study the electron energy spectrum, there is solved the Schrodinger equation

HY¥(p,¢,z) = E¥(p, ¢, 2) 2)
with Hamiltonian

1
2u(7)

where e is the electron charge, F is the magnitude of the electric field intensity, U(F) is the potential of
size quantization.

Taking into account that the electric field does not influence the energy spectrum of the electron
moving along Oz axis and that the electron is mostly located in the quantum wells weakly penetrating
into the barriers, the potential energy U(F) is conveniently written as a sum

H=

2 19 19> 9 252
_2—+——+__+_ ]_ +U—>_ F ’ 3
(5P2 pop o T az)| T ez TV TllFpeose O

U(F) = U(z) + U(p), “)
where
_ ) Uo, Izl > LJ2, _ ) Uo, 0<p<po, p1<p<p2, p>p3,
U(Z)_{O, lz| < L/2, Ul =] o pPo<p<pi, p2<p<ps. )

In this case, z variable is separated in a Schrodinger equation with Hamiltonian (3), and the wave function
can be written as follows:

¥ (F) = @(p, ¢) f(2). (6)

The Schrodinger equation for the electron moving along Oz axis is easily solved [15]. The wave
functions f(z) are obtained in the form

AW cos(koz),
<z < .
@)= {AHﬁmmu Osesiiz ™
Bexp(—k;z), z>L/2.

Using the condition of continuity of the wave function f(z) and its density of current at the interface
z = L/2 together with the normality condition, the unknown coefficients (A®*), B) are found and the
dispersion equations too:

k L\ & k L k
20 tan (ko—) =2 Dot (ko—) =5 (8)
2 H1 Ho M1

where ko = [2u0E,_ /72, ki = \/Z,u 1(Up — E,_)/1?. The energy spectrum (E,_) of the electron moving
along Oz axis is obtained from equations (8) with quantum number 7, numerating their solutions.
If there is no electric field (F = 0), the Schrodinger equation with Hamiltonian (3)) is solved exactly

D) (0, 9) = ——=Ru,m(p)e"?. )

1
V2n
Here, n, and m are the radial and magnetic quantum number, respectively, and the radial wave functions
are written as follows:

Ry m(p) = Aff,lmij?(xp) + Bffgmnﬁf;)(xp), i=0,1,234, (10)
(i) Ln(xop), 1=0,2,4,
- , 11
Jm (xpP) {Jm()mp), i=13 (11
0) _ | Kulxop), =024,
"mum_{NMmm,i=L1 (12)
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where J,,,, N;,, are cylindrical Bessel functions of the first and second kind, 1,,;, K;,, are modified cylindrical
Bessel functions of the first and second kind, yo = \/ZMO(UO - E,?pm)/hz, X1 = A /2/11E,(,)pm/h2.

All unknown coeflicients Ag,“)) o Bﬁ,’gm (hence, the wave functions) and electron energies E,?pm are
obtained from the conditions of continuity of wave functions (I0)—(I2) and their densities of currents at
the interfaces of nanostructure and normality condition for the radial wave function. As far as the wave
function should be finite at p = 0 and p — oo, it means that the coefficients B,(f/),)m =0, Aii?m =0.

If the structure is driven by an outer electric field, the Schrédinger equation with Hamiltonian (3)
cannot be solved analytically. In order to find the electron spectrum at F' # 0, the unknown wave functions
are written as an expansion over a complete set of wave functions (9)

1 |
ulpg) = o= D> e R m(p)e ™. (13)

n, m

Setting the expansion (I3) into Schrodinger equation, the secular equation is obtained
ianm,n;)m’ - Enénp,n;,(sm,m/ = O’ (14)

where the matrix elements H,, pmonl,m Are of the form:

(o)

eF
anm,n;,m’ = Enpménp,n;,ém,m’ + (6m’,m+l + 6m’,m—l) 7 JRnpm(p)Rn;,m'(p)pzdp' (15)

0

We should note that, as it is clear from @]) and (@, the new states of electron at its transversal
movement are characterized by only one quantum number 7.

Thus, the problem of the energy spectrum E,, and wave functions ®,,(p, ¢) is reduced to the calculation
of eigenvalues and eigenvectors of the obtained matrix. Hence, the complete wave functions ¥,,,,_ (¥) (6)
of an electron and its energy E,, = E, + E,_become known. They make it possible to evaluate the
oscillator strengths of intra-band optical quantum transitions using the formula from [16]

’ o 1o 2
F:nzz ~ (En’n’Z - Ennz) M:nzz P (16)
where .,
nn 7
M= = (n'nl |\ u(p)ep cos g|nn. ) (17)

is the dipole momentum of the transition.

3. Analysis of the results

The electron energies and its oscillator strengths of intra-band quantum transitions are studied as
functions of the electric field intensity (F) for the double quantum ring GaAs/Aly 4Gag ¢As nanostructure
with the physical parameters py = 0.063my, p; = 0.096mg, Uy = 297 meV (my is mass of pure electron in
vacuum); dgaas = 5.65 A is GaAs lattice constant. All spectral parameters were calculated at a quantum
number n, = 1, that is why it is omitted further.

In figure [2] the distribution of probability of electron (in ground state) location in nanostructure
| D1 (p, (,o)lzp is shown at L = 5 nm, pg = 5agaas, 11 = 18agas, A = 3agas, hy = 17ag,s and at different
intensities of electric field: F = 0,1, 1.5,2.5 MV/m. It is clear that an increasing intensity changes the
location of electron in nanostructure. If F = 0, it is located in the inner ring with the width A, while the
angular distribution of probability is uniform. When intensity increases, the electron, in the ground state,
tunnels from the inner ring into the outer ring in such a way that at ' = 2.5 MV/m it completely locates
into the outer ring of the width /;. Herein, its angular distribution essentially changes. The obtained
result is in good qualitative agreement with the results of paper [14]. If the nanostructure studied is driven
by a homogeneous magnetic field with the induction B directed along Oz axis, then, an increasing B (at
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Figure 2. Probability density of electron (in ground state) location in a nanostructure |®;(p, ¢)|? p at

L = 5nm, pg = Sagaas. "1 = 18agas. A = 3agas, iy = 17ag,s and different electric field intensity:
F=0,1,1.52.5MV/m.

F = 0) causes an increasing localization of the electron (in ground state) in the inner ring. Herein, the
angular distribution of probability remains uniform [9]].

In figure E| (a) the electron energy (E,) as a function of electric field intensity (F) is shown at
L = 5nm, pg = 5agaas, "1 = 18acas, A = 3agas, ho = 17ag,s. The figure proves that the ground
state (|1)) energy only decreases when F increases. However, the energies of excited states demonstrate
a different behaviour. In particular, the energy of the state |5) increases at first and then decreases.
The energies of the states |6) and |8) increase in the whole interval of the intensity studied. Generally,
an increase or a decrease of electron energies is determined by the location of the electron, in the
corresponding state, in the particular ring and by the character of angular distribution of probability with
respect to the direction of the electric field (for the ground state, figure[2).

Since a potential barrier, which separates the rings, is of a finite height and width, then, the electron
can tunnel from one quantum well into the other. This leads to a complicated and non-monotonous
dependence of the electron energy spectrum on the intensity of the electric field. In particular, there
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Figure 3. Electron energy Ej, (a) and complete probability W,, of its location in the inner ring in quantum
states |3) and |4) (b) as functions of the electric field intensity (F) at L = 5nm, pg = 5dgaas, 1 = 18agas,
A= 3aGas, h2 = 17aGas.

are observed anti-crossings of energy levels [for example, |1) and |2) at F ~ 1.5 MV/m; |3) and |4)
at F ~ 1.4 MV/m; |5) and |6) at F ~ 0.8 MV/m in figure [3| (a)]. Anti-crossings appear depending on
whether the electron, being in the neighbouring quantum states, is located in the outer or in the inner
ring. This is well illustrated in figure [3] (b), which shows the dependence of the complete probability
W, = Lfol ;n | D, (o, <p)|2 pdpde) of electron location in the states |3) and |4) in the inner ring on the
electric field intensity at the same geometrical parameters of the structure.

Figure proves that if F' = 0, the electron in both states |3) and |4) is located in the outer ring with a big
probability. When the intensity increases, the probability of electron location in the inner ring increases

Figure 4. Oscillator strengths of intra-band quantum transitions as functions of the electric field inten-
sity (F) at L = 5 nm, pg = 5agaas, "1 = 18agas, A = 3agas, "o = 17agas.-
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for the state |3) and, at first, almost does not change for the state |4). At F ~ 1.1 MV/m, W5 approaches
the maximum and rapidly decreases while Wy rapidly increases. In the vicinity of F' ~ 1.4 MV/m, these
probabilities become equal and an exchange of localization of the electron between the rings occurs for
these states. Thus, the anti-crossing of energies E3 and E, as functions of F' is observed [figure |§| (a)].
We should note that such an effect is absent in a single nano-ring with one potential well. Moreover, it
should be mentioned that quite similar series of levels, with respect to n quantum number, will occur at
n, =2,3,..., but they will be located in the high-energy region of the spectrum.

The capability of an electron, in different states, to be located in the inner (/1) or the outer (/;) ring
causes a complicated and non-monotonous dependence of oscillator strengths of intra-band quantum
transitions on the intensity F with brightly expressed maxima and minima (figure d). Herein, it turns out
that such a non-monotonous behaviour of F,f" is, mainly, determined by overlapping wave functions of
the electron in the corresponding quantum states.

Let us observe, for example, the transition of an electron from the ground state |1) to the state |2)
(curve F12 in figure EI) and the dependence of the probability density of the electron location in a

nanostructure in these states (|©,(p, ¢)|* p) at F = 1.5 MV/m, where the oscillator strength is maximal,
and at F = 2.5 MV/m, where it is minimal (figure [3)). Figure shows that at F = 1.5 MV/m, the electron

E;=22.2 meV, F=1.5MV/m Ei=9.8 meV, F=2.5MV/m
E;=29.3meV, F=1.5MV/m E;=22.8 meV, F=2.5MV/m

Figure 5. Contour of probability distribution of the electron location in a nanostructure in the states |1)
and [2) at F = 1.5 MV/m and F = 2.5 MV/m, L = 5 nm, pg = Sagaas. 1 = 18agas, A = 3agas,
hy = 17agas-
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in the states |1) and |2) is mainly localized in the outer ring. Herein, the overlapping of the respective
wave functions in formula (17) is essential and the oscillator strength is maximal though the difference of
energies (E; — E1) is not big. When the electric field intensity increases, the difference of energies E; — E}
becomes bigger [figure 3| (a)]. However, the electron in the state |2), under the influence of an electric
field, begins to tunnel into the inner ring, which causes a smaller overlapping of the wave functions in
and, hence, a smaller oscillator strength of the respective transition. At F = 2.5 MV/m, the electron
in the state |1) is completely localized in the outer ring, while in the state |2) — mainly in the inner ring
(figure [5). The wave functions of the corresponding states weakly overlap and the oscillator strength of
the respective transition is small.

Quite similarly, due to the changes of location of the electron in the space of tunnel-connected quantum
rings driven by an electric field, one can explain the non-monotonous behaviour of the oscillator strengths
of quantum transitions between the other states.

Finally, we should note that an increasing nanostructure height L causes a decrease of the electron
energy E,_ at n; = 1. It tends to zero in the limit case (limz—c En =1 = 0) and the spectrum E,
completely corresponds to that in the structure consisting of two cylindrical nanotubes with an axial
quasimomentum k, = 0.

4. Conclusions

1. The electron energy spectrum and oscillator strengths of intra-band quantum transitions in a
double quantum ring GaAs/Al,Ga;_,As nanostructure are studied as functions of the electric field
intensity (F) within the approximations of effective mass and rectangular potentials.

2. To calculate the energy spectrum and probability densities of the electron location in nano-rings
driven by electric field, the stationary Schrédinger equation is solved using the method of expansion
of a quasiparticle wave function over a complete set of wave functions in a nanostructure without
the electric field.

3. It is shown that the electric field essentially changes the distribution of probability of the electron
location in a nanostructure. Thus, if the electron, in ground state, is located in the inner ring, then
at an increasing electric field intensity, the quasiparticle tunnels into the outer ring.

4. The electron energies and oscillator strengths of intra-band quantum transitions non-monotonously
depend on the intensity of the electric field. One can observe anti-crossings of energy levels and
brightly expressed minima and maxima in oscillator strengths as functions of F. Such a behaviour
is caused by the change of the location of an electron, in different quantum states, in the space of
two rings due to the varying electric field intensity.
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EHepreTUUYHMIA CNEKTP eNIeKTPOHa Ta CUN OCLUNATOPIB
BHYTPiLLUHbO30HHUX KBAaHTOBUX NepexoAiB y NoABiiHOMY
HaHOKIiNbLi B eNeKTPUYHOMY nosni

O0.M. MaxaHeup, B.I. l'yuyn, AL Kyyak

YepHiBeLbKunii HaLioHanbHWUIA yHiBepcuTeT iMeHi FOpia ®egbkoBuYa,
By/1. KoutobuHcbkoro, 2, 58012 YepHisui, YkpaiHa

Y mogeni edpekTUBHMX Mac Ta NPAMOKYTHUX NOTeHLianiB AOCNIAXKEHO BNANB OAHOPIAHOMO eNeKTPUYHOro noss
Ha eHepreTUYHWIA CNekTp, XBUALOBI GYHKLi enekTpoHa Ta CUAM OCLUAATOPIB BHYTPILLHBLO30HHMX KBAaHTOBMX
nepexoAiB y NoABiiHUX HaniBnpoBigHNKOBUX (GaAs/Aly Ga|_,As) LUAIHAPNYHUX KBAHTOBUKX KinbLsx. Po3pa-
XYHKN BVKOHaHi METOA0M PO3KaaAy XBUAbOBUX GYHKLi/ KBa3iYaCTUHKMN 38 NOBHUM HabopOM LMAIHAPUYHUX
XBUALOBUX GYHKLi, OTPMMAHUX K TOUHUIA PO3B'A30K PiBHAHHSA LLpeaiHrepa Ana enekTpoHa B HAHOCTPYKTYPi
3@ Bi/ICYTHOCTi eNekTpuyHoro rnons. lMokasaHo, L0 eIeKTpUYHe nosie CYTTEBO BIIMBAE Ha JoKanisauilo ene-
KTPOHA Yy cucTeMi HaHokineub. Mpu LbOMY IK eHepril eNeKTpoHa, Tak i CUAN OCLUAATOPIB BHYTPILLHBO30HHNX
KBaHTOBUX MePexoAiB HEMOHOTOHHO 3a/1eXaTb Bif, BEJIMYMHUN HANPYXXeHOCTi eNIeKTPUYHOTo NoAs.

Kniouosi cnoBa: HaHoKinbLe, €/1eKTPOH, eHepI’eTl/l'-IHMﬁ CreKTp, cnia ocynisaTopa, eJ1eKTpuyHe nosie
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