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A theoretical analysis of physical properties of the effect of size of a nanoobject in the form of a rectangular par-
allelepiped whose sides a, b, ¢, are oriented along the OX, OY, OZ, respectively, is carried out. In the frame-
work of the perturbation theory, changes in the electronic spectrum of the nanoobject caused by an external
magnetic field B, depending on its size, are analyzed. We consider two cases of the fields which are described
1) by the Landau gauge, 5(7) = (0, Bx,0) (B is oriented along the side ¢) and 2) by 5(7) = (Bz,0,aBy) (a
is a parameter; at @ = 0, Bis directed along OX axis, and at @ = 1, B is directed along the diagonal in XO0Y
plane). Firstly, it is shown that the first correction to the spectrum is zero, regardless of B orientation. Secondly,
it is established that, in contrast to the case of the field orientation 1), where the correction does not depend
on the length of ¢, in the case 2) such correction depends both on ¢ and on its ratios to the lengths of a and b.
There was found the existence of such nanoobject sizes in XOY plane at which the corrections to the spectrum
are the same for different lengths of ¢ of the nanoobject.
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1. Introduction

The influence of the shape and size of nanoobjects on their physical properties (electronic, optical,
optoelectric, and others) is an important problem in modern nanotechnology.

The electronic spectrum of crystals is the basis of microelectronics. It is known that the spectrum of an
infinite crystal is quasi-continuous, while the spectrum of a nanosized crystal is noticeably discrete. Such
a quantized character can be practically used in microelectronics. Moreover, if the size of a nanoobject is
equal to the length of the coherence of electronic excitations then, by changing its size and/or shape, we can
manipulate with its basic characteristics. Such changes in combination with optoelectric characteristics
create the basis of such a promising scientific and technological direction as femtosecond optics [L]].

There are two methods of fabrication of nanoobjects in modern nanotechnology [2]: 1) top-down
nanotechnology — the transition from bulk crystal to nanosized one by removing its layers; 2) bottom-up
nanotechnology — fabrication of a nanoobject at an atomic level by addition of atom to atom, molecule
to molecule or cluster to cluster. Until the 90s of the last century, semiconductor quantum dots (zero-
dimensional objects) were fabricated as dopants in glasses and in solvates or as epitaxially grown objects.
While in the former case the quantum dots were of a nearly spherical shape with a diameter of 1. .. 10 nm,
epitaxial quantum dots were of an elongated shape of the order of nm and a cross-section of about 10 nm.
However, such nanoobjects had a wide-size spread, which limited the accuracy of their experimental
studies. After 90s, high-quality, practically monodisperse quantum dots were achieved by injection of
highly reactive organometallic precursors into solvent.

Modern technology allows us to change their size and shape, and thus, purposefully change their
optical and photoelectric characteristics, cathodoluminescence, Raman scattering, thermodynamics. An
analysis of such effects occupies a significant place in the monographs [3H9]. Cognition of the physics
of sizes and shapes in nanoobjects remains urgent. In [10]], the theoretical investigation of changes in the
band gap of the semiconductor nanocrystals XY (X — Cd, Zn, Y — S, Se, Te) related to their shape and
sizes is presented. Similar changes are recorded in [[11] in the study of GaP nanocrystals. In [12]], electron
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and hole states of InAs nanocrystals of the same size, but of different ellipsoidal shape, were analyzed.
It is shown that the changes in the energy states lead to significant differences in the spectra of radiation
with different polarizations. Results [13]] showed differences in the optical and electrical characteristics
of the colloidal semiconductor nanocrystals fabricated in the form of spherical quantum dots, nanowires,
two-dimensional nanoplates, and nanosheets. In [14], it was found that silver nanoparticles of different
shapes (sphere, cube, rod), but of the same size, have different biological characteristics. An analysis of
the differences between the electronic spectra of quantum dots and quantum wells is given in [15]. Recent
works [16, [17] present the results of investigations of the influence of a magnetic field on the electronic
spectrum and on optical properties of nanoobjects. Even such an incomplete list of publications on the
effects of shapes and sizes in nano-sized materials is a convincing proof of its relevance.

Herein below we will analyze, within the perturbation theory, the change of the electronic spectrum
of a nanoobject due to an applied magnetic field, depending on the size of the nanoobject.

2. Model. Calculations

Let us consider a nanoobject of the shape of a rectangular parallelepiped with the sides a, b, ¢ located
along OX, OY, OZ axes, respectively. Let the potential energy of an electron in it be the sum of three
terms

UFR=Ux)+Uy)+U(z), 2.D
where each of them is an infinite deep square well, i.e.,

U(s) 0, ifs=x€[0,aloryel0,b]orze]0,c],
s) =
oo, otherwise.

In this case, the electronic spectrum is a solution of the time-independent Schrédinger equation with
the Hamiltonian

=2

=2 vum 2.2)
2m

and equals [[18]

hzTCZ i’l2 h2n2 n2 ni 7’12
E(ngnpn,) = iy parcAF i 213
(nanpnc) 2m s? 2m \a®? B2 2 (@3)
s=a,b,c
where ny = 1,2,3,. .. are principal quantum numbers. It is seen that the spectrum (2.3) is a set of discrete

energy levels separated by a distance, dependent on the widths of the wells. Moreover, at a = b = ¢, each
state is triply degenerate, ata = b # ¢, a = ¢ # b or b = ¢ # a each state is doublet plus singlet level,
whereas at a # b # c, each state is a set of three singlet levels.

The wave functions of an electron in such states are as follows:

2 2 2
a a b b c c

Let us place the nanoobject in a uniform magnetic field whose vector potential is A (7). Tt is known
[18, [19] that, in the general case, the Hamiltonian of the electronic subsystem in the magnetic field B
takes the following form:

[+eA)]
2m

H = +U )+

- (?)} . (2.5)
2m
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Here, & = (0x0y0;) where oy = ( (1) (1) ) oy = ( (z) Bl ) o, = ( (1) _01 ) are Pauli matrix; and

the expression @ (F) = #{§U (7) - [p + eA(F)]}& describes spin-orbital interaction.
After transformations, the Hamiltonian (2.3) can be rewritten as follows:

H = Hy+ H,, (2.6)
where
N € [0 o0 2o o er 5 . ehs,
Ay = — [pA (7) + A(r)p] + 220+ 2 Bs+ac 2.7)
2m 2m 2m
is the perturbation Hamiltonian which describes the interaction of an electron with the magnetic field.

The second term in (2.7)) can be neglected in comparison with the first one. The last term in (2.7)),
taking into account the potential 1' is absent, because VU () = 0. Therefore,

N € [o= o > o eh -,
fy=5- [pA(r)+A(r)p + B (2.8)

The perturbation theory criterion, i.e., (f|H;|i) < |E¢ — E;|, in nanoobjects with their sharp discrete
spectrum, permits consideration of a problem with magnetic fields in a wide range of their values. Then,
according to [19],

. eh -
Ao+ 2 B&
2m

(nanpne|Hlngnpne) = <nanbnc nanbnc> + (ngnpne | Hy|ngnpne)

+ Z’ <nanb”c|ﬁl|nxny”z><”x”ynz|]:Illnanbnc>’ (2.9)

nengn, NgNpNe NxNyng

where H; = Ap - %55’. The 1st term is the sum of the matrix elements (n|Hy|n) and (x| %l%"ln) (here,
|n) = |ngnpne) |s); |sy = |T) or ||) are spin indices), and the last two ones describe the perturbation
up to the second order correction. In the 2nd correction, summation is carried out in all states, with
the exception of nynyn; = nqnpn.. The above-mentioned matrix element <n|%35'|n) in Landau gauge
case, due to the absence of spin-orbital interaction after summation over spin indices, takes the form:
<n|%35'|n> = <n|%BZO'Z|n) = i%Bz (n|n) = i%BZ. The obtained result does not depend on the

size of the nanoobject and it is a value of the displacement of any state E(nnyn3) (2.3) up and down with
the spin |T) and ||), respectively. Thus, only the corrections with H; contain the size of the nanoobject.

3. Shift of levels by a magnetic field

Using (2.9), we consider the shift of stationary states caused by the magnetic field:

N eh -
Hy + —Bo
2m

AE (ngnpnc) = <nanbnc|ﬁ|nanbnc> - <nanbnc nanbnc> = <nanbnc|ﬁl [ngnpne)

+ Z’ (nanbnclﬁl |nxnynz><nxnynz|1:ll |nanpne) . 3.1)

nnyn; Enanbnc - Enxn_,,nz

Let us analyze two cases of the magnetic field B orientation: a) the Landau gauge case, X(?) =
(0, Bx, 0). Taking into account the relationship B =rtotA (F) = (0,0, B), the field is oriented along OZ
axis b) the gauge X(F) = (Bz,0,aBy) — magnetic field B is in XOY plane with different orientation,
depending on parameter «, in particular, at @ = 1, B is oriented along the diagonal in XOY plane, and at
a = 0 along OY axis.
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Case a) A(7) = (0, Bx, 0).

The 1st correction, taking into account that p, A, = A,p,, is:

eBTi eBh, . .
wmm——mwmwv—mmwwmymm:—n(h|@:;ﬁmm. (3:2)
In equatlon , we used the denotation (n| = (n,npn.|; it is taken into account that the term
(nl5,; Bo-|n> equals zero due to the absence of spin-orbital interaction; with the denotation ¢ = "Zﬂx,
using the integrals tables [20]],
2 Mal 2, 5 nam
) 2 a .2 2 a q q . 1 a
=—- . . cdg=—--|—| (= — 5 sin2g— =cos2 =—, 33
. a (nan) Jqsmq 1 a (nan) (4 4smq SCOSqO 2 (3-3)
2 b 0 2 1 b
b
izzz-JmnTya—sm%y d_1/:>l—7 3 (sinz%yﬂo =0, (3.4
0
2 Cc
- fsm2 Ll dz=1. (3.5)
c c
0
Thus, the 1st correction (3.1)) is zero.
Let us consider the 2nd correction.
We start with the calculation of the matrix elements in equation (3.1))
eBh
(alybm) = 2 Galn) = 22 (o] 2 Gglm) = Sy Tsisis (3.6)
where
a
o2 J . omm o 2 1 [ (n —m)m (np +mpm ||°
ig=—-|x-sin—x-sin—x-dx= — - x= |cOS———————Xx —COS ————X
a a a a a a 0
0

a 8nimy [(

< —pymm ], 3.7
2 (mf - n%)2 ) | 37

b
. 2 nym 0 4 nymy +
== ——y—sin——y-dy = (-1 -1t — 1|, 3.8
2 blﬁnbyamnby bt (SUR) (8
.2 . mm . m3m
i =—"-|sin—z-sin——z-dz = Apm; 3.9)
c c c T
0

(Apymy is the Kronecker symbol).
Thus, the 2nd correction is non-zero only at even ny+mj, ny+my, i.e.,ni+m; = 2k;+1(k; = 1,2,3,...).
In particular, the correction ApE (111) to the ground state £ (111) in terms of the units [—(%)2 .

(%)2 : 2107[#] is of the following form:

2 -1
_(a , 2k, 2k, k) -1 (2k2)* -1
BEED = (Z) | klzk‘; {[(2k1)2— 1)’ [(2ka)? - 1]} [ P> - GO

It is seen that such a correction does not depend on the length of ¢ of the nanoobject, along which
the magnetic field B is directed. Figure |1| shows the dependence of the correction on the size of the
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Figure 1. (Colour online) Dependence of the 2nd correction in terms of the units [-(£> eB )2 ( )2 %]

on the sizes in XOY plane in the Landau gauge case, A= (0, Bx, 0) (magnetic field orlented along the
0Z) (a, b in nm).

AQE(m))

Table 1. Relative values of the correction, ( EQTD

a, nm 1 10 | 20 | 30

AE(111) —4
22 % | 107 0.1 | 15| 10

nanoobject in XOY plane, which is perpendicular to the direction of B. The correction monotonously
increases with an increase of a for any value of b from the interval 1-5 nm, and vice versa, monotonously
decreases with an increase of b for any value of @ from the interval 1-5 nm.

We will evaluate the correction to the energy state £(111) of the nanoobject for B = 10 T and for
different values of a = b. Table |I| shows the relative magnitudes of the correction (%)

The obtained results indicate a sharp dependence of the spectrum in a magnetic field on the nanoobject

size.

Case b) X(?) = (Bz,0,aBy).

In this case, the perturbation Hamiltonian is as follows:

Hi = — (Ap + pA) = (Axpx +Azp;) = Qﬁ ( g +ay - g ) (3.11)
m Ox 0z
In the case of @ = 0, i.e., with B directed along O X, the results and conclusions qualitatively coincide
with the similar ones in the case K(?) = (0, Bx, 0). Herein below we will consider the case of @ = 1.
Here, the 1st correction, similarly to the case a), equals zero.
The calculations, similar to the above ones, in terms of the same units, give the following 2nd
correction to the ground state:

2 -1
, ()2 / 2k, 2k3 Qk)* -1 (2k3)? -1
A2E(111)_ (5) ’ I;m {[(2k1)2—1] ’ [(2](3)2—1]2} [ a2 + c2
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0.3
0.2
0.2
0.1
0.1
0.0

-

3
b

—18
Figure 2. (Colour online) Dependence of the 2nd correction in terms of the units [—( %)2 ( i_%)z . 2'1075—2'm]

on the sizes in XOY plane in the gauge case, A= (Bz,0, By) (the direction of the magnetic field coincides
with the bisection of the XOY), c; =3, ¢ =4,c3 =5, ¢4 =6 (a, b, c in nm).

2%k 2%k TP =1 k)P —1]"
3 2 }[ 2b2 b0 ] . (3.12)

b ’
T (c) Py {[(2k3)2—1] [(21<2)2—1]2 ?

This correction, in contrast to the analogous one in the case a), contains the dependence of the length
of ¢, as well as of its ratios to a and b, namely (%), (%). Figure 2| shows the analogous to figure
dependences of the 2nd correction for the size family c. It is shown that the greater ¢, the greater
AJE (111). For all surfaces AJE (11 1)|C, for any fixed value of a, the correction monotonously increases
with an increase in b and weakly decreases with an increase in a at fixed .

Figure shows the dependencies AJE (111) = f (a, b) for the family ¢; = 1 and ¢ =3 (a) and ¢; = 1
and ¢, = 4 (b). There is clearly seen an intersection of two pairs of planes. The points a;, b; on the line of
intersection are those in which the corrections corresponding to ¢, ¢, are of the same values. From the

Cc

C,

5

4 54

33 3 4 3
4 521

a) b)

Figure 3. (Colour online) Dependence of the 2nd correction in terms of the units [—( % Y ( i—% )2 2'10;[#]
on the sizes in XOY plane in the case A= (Bz,0, By) (the direction of the magnetic field coincides with
the bisection of the XOY) atcy = 1; o =3 (@) and ¢| = 1; ¢ = 4 (b) (a, b, c in nm).
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difference in the intersections in the cases a) and b), we can make a conclusion regarding the possible
intersections outside the intervals @ € [1,5] and b € [1, 5].

4.

Conclusions

The analysis of the electron spectrum of a nanoobject and of the shape of rectangular parallelepiped

placed in an external magnetic field, depending on the size of the object, indicates that

(1) in the framework of perturbation theory, the correction to the spectrum appears only from the

second term onward;

(2) the magnitudes of the corrections depend both on the magnitude of the magnetic field B (it is

greater for greater fields) and on its orientation relative to the nanoobject;

(3) in the case of Landau gauge (E is directed along OZ axis), the correction does not depend on the

length of the nanoobject in this direction;

(4) in the case A=B (z,0, ay), for any parameter a from the semi-interval (0, 1], unlike in the former

case, the correction depends on the three lengths of the nanoobject;

(5) it is established that in the case of A=B8B (z,0, y), there exists such a set of dimensions of the

nanoobject in XOY plane for which the corrections are the same as those for their certain values
of length along OZ axis.

Thus, in order to purposefully change the electronic spectrum of the nanoobject by the magnetic

field E, one should take into account not only the orientation of B in the nanoobject, but also its size and
relationship between its geometrical characteristics.
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Po3mipHi epekTU B HAHO06'eKTaxX y MarHiTHOMy noani

B.A. JlykiaHeupb, [.B. MaTtynka

HauioHanbHWii yHiBepcuTeT “/IbBiBCbKa NoniTexHika”, Bya. C. baHgepw, 12, 79000 JlbBiB, YKpaiHa

MpoBeAeHW i TeOPETMYHMIA aHani3 BNIMBY Po3MipiB Ha ¢i3nYHi BNACTUBOCTI HAHOOG'EKTa Yy BUrNAAI MPAMOKY-
THOro Mapaneneninega 3i cTopoHamu a, b, ¢, opieHTOBaHMX, BiAMNOBIAHO, B3J0BX oceii koopanHat OX, OY,
OZ. B pamkax Teopii 36ypeHb aHani3yloTbCs 3MiHV B €N1eKTPOHHOMY CrekTpi HaHOO6'eKTY, BUKINKAHOrO 30B-
HiLLHIM MarHiTHUM nosiem E 3a/1eXHO Bij PO3MIpiB HaHOOG'ekTa. PO3INsiHYTO ABa BWNAAKM OpieHTALT Ma-
FHITHOFO nons: 1) 3 kanibposKoto JlaHaay, A(_j = (0, Bx,0), (B OpIiEHTOBAHWI y30BX CTOpOHM c)i2)Ha
A(r) = (Bz,0,aBy), a € napametp, Lo MiHSETbCS B iHTepBani [0, 1], 30kpema npn @ = 0 B HanpaB/eHuii
B3goBx oci OX,anpna =1 B Hanpas/ieHnii B30BX BicekTpucy naowmHn XOY . Mo-nepLue, NokasaHo, Lo
repLua nonpaeka CNekTpy AOPIBHIOE HYJIIO, HE3aNeXHO Bij OpieHTaL,l B. Mo-apyre, BCTaHOBNEHO, Ha BiAMiHY
BiZ BMNaAKy 1) opieHTaLjii MoAs, e nonpaska He 3ai1eXWTb Bij AOBXUHU ¢, Y BUNajKy 2) Taka nonpaska 3ane-
XUTb K Bif ¢, TaK i Big 1i CNiBBIAHOLLEHb A0 AOBXUHM @ i b. 3HalAeHO iCHYBaHHS TaknX PO3MipiB HaHOOG6'eKTiB
y nnowmHi XOY, npu sikux nonpaBKu A0 CNeKTPY OAHAKOBI 4181 Pi3HOT AOBXMHU ¢ HAHOO6'EKTa.

KntouoBi cnoBa: HaHOO6'eKT, MarHiTHe roJie, eeKTPOHHWUI CEKTP, PO3MIPHWI epekT
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