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Three analytic results are proposed for a linear form of the modified Poisson-Boltzmann equation in the theory
of bulk electrolytes. Comparison is alsomade with themean spherical approximation results. The linear theories
predict a transition of the mean electrostatic potential from a Debye-Hückel type damped exponential to a
damped oscillatory behaviour as the electrolyte concentration increases beyond a critical value. The screening
length decreases with increasing concentration when the mean electrostatic potential is damped oscillatory. A
comparison is made with one set of recent experimental screening results for aqueous NaCl electrolytes.
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1. Introduction

Little attention has been paid to the linear modified Poisson-Boltzmann (MPB) equation in the
electrolyte solution theory, mainly due to the ready availability of the mean spherical approximation
(MSA) analytical results [1]. By contrast, the non-linear MPB approach along with the hypernetted
chain (HNC) [2] theory have proved two of the more successful theories in predicting the structure and
thermodynamic properties of the primitive model (PM) (arbitrary sized charged hard spheres moving in
a continuum dielectric) electrolyte solution [3–5]. It can be shown that the MSA is the linearized version
of the HNC theory (see for example, the references [6, 7]). However, unlike the MSA, the linear MPB
theory remains relatively less well explored.

In a broad sense, the usefulness of a linear theory is twofold.
Firstly, from a theoretical point of view, linear theories can and often provide valuable insights into

the physics and chemistry of a situation, which might otherwise remain obscure when analyzed through
their non-linear counterparts only. A case in point is the similarity (or even equivalence) between the
Debye-Hückel (DH) parameter κ [8] and the analogous MSA parameter Γ = [

√
(1 + 2κa) − 1]/(2a) (a

is the ionic diameter) [1]. Although the HNC gives a more accurate solution generally, it does not lead
to a physically significant quantity such as Γ. Similarly, in our case, the linear MPB (LMPB) predicts
the asymptotic form of the non-linear equation and gives useful information regarding the screening
length. Being based on the mean electrostatic potential approach, the linear theory is a logical extension
of the Debye-Hückel (DH) theory [8]. In particular, a natural transition is given of the mean electrostatic
potential behaviour in going from a DH damped exponential to a damped oscillatory as the concentration
increases beyond some critical value.

Secondly, from a practical perspective, linear solutions are normally easier to obtain and are often
analytic. The latter feature makes a linear solution particularly convenient to use as an initial guess in an
iterative algorithm to obtain the corresponding non-linear solution.
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Screening has played an important role in analysing charged systems since the electrical double
layer work of Gouy and Chapman [9, 10], and that of Debye and Hückel [8] in the electrolyte bulk.
The phenomenon is significant in shaping the structure and thermodynamics in these systems. A recent
theoretical work on the subject is due toRotenberg et al. [11]. The experimental screening length decreases
at the higher electrolyte concentrations in contrast to that predicted by the DH theory. Smith et al. [12],
Lee et al. [13] have recently investigated the experimental screening length of concentrated electrolytes.
A scaling analysis [13] suggests that the decay length increases linearly with the Bjerrum length at higher
concentrations. When applied to the restricted primitive model (RPM), the MSA and LMPB theories
both predict a decrease in the screening length above a critical yc (y = κa). Neither theory can predict
the scaling result, a probable factor being the neglect of solvent effects.

In this paper we will present the mean electrostatic potential results due to three different versions
of the LMPB, and compare them with the corresponding results from the MSA, the MPB, and the DH
theories. The comparative behaviour of the screening properties predicted by the MPB andMSA theories
will also be examined.

2. MPB theory

Improvements to the classical PB theory rest upon a more accurate pair distribution function gi j for
two ions i and j. In the mean electrostatic potential approach, this implies an improvement in the mean
electrostatic potential ψ(1; 2) at the field point r2 for an ion i at r1 through the solution of the Poisson
equation

∇2ψi(1; 2) = −
1
ε0εr

∑
s

esnsgis , (1)

where es is the charge on an ion s at r2, ns is the mean number density of ions of type s, εr is the solvent
relative permittivity and ε0 is the vacuum permittivity. One technique to express the pair distribution
function in terms of mean electrostatic potentials is to use Kirkwood’s charging process [14]. Taking the
ion j to have a charge λ2ej (0 6 λ2 6 1), then the charging process gives [15, 16]

gi j = gi j(λ2 = 0) exp
−βej

ψ(1; 2) +
1∫

0

φ(1, 2; 2)dλ2


 , (2)

where φ(1, 2; 3) is the fluctuation potential defined by

ψ(1, 2; 3) = ψ(1; 3) + ψ(2; 3) + φ(1, 2; 3), (3)

with ψ(1, 2; 3) the mean electrostatic potential at r3 for ions i and j fixed at r1 and r2, respectively.
Thus, the fluctuation potential φ(1, 2; 3) describes the departure from linear superposition of the singlet
potentials. Equation (2) for gi j is not symmetric, but a symmetric pair distribution function is obtained
by charging up the ion i and combining the result with equation (2) [17].

TheMPB theory rests upon the closure introduced in [18]. Consider the conditional potential of mean
force W(1, 2; 3), which measures the work done in bringing an ion s to r3, given the fixed ions i and j
at r1 and r2, respectively. In an analogous fashion to that for the mean electrostatic potentials, it can be
written as follows:

W(1, 2; 3) = W(1, 3) +W(2, 3) + w(1, 2, 3), (4)

where w(1, 2, 3) is the corresponding departure from linear superposition of the singlet potentials of mean
force. The MPB closure is

w(1, 2, 3) = esφ(1, 2; 3), (5)

which is analogous, but at the next hierarchical level, to the DH closure W(1; 3) = esψ(1; 3). Attempts to
improve the DH theory by using the closure W(1, 2; 3) = esψ(1, 2; 3) fails as this closure neglects terms
of the order being calculated [15, 16, 18, 19].
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The governing set of differential equations for the fluctuation potential can be derived by using the
Poisson equation for one or two fixed ions. This gives for the PM a two sphere potential problem which
enables an approximate solution to be found for φ(1, 2; 3). Given an appropriate fluctuation potential, an
improved pair distribution function can now be found. Previous analysis [15–17] has derived, for a RPM,

gi j = g
0
i j exp

{
−
β

2
[ejL(ui) + eiL(u j)]

}
, (6)

where g0
i j = gi j(ei = ej = 0),

L(u) =
1

2r(1 + y)

u(r + a) + u(r − a) + κ

r+a∫
r−a

u(R)dR
 . (7)

Here, u = rψ(1; 2), r = ri j , y = κa with κ = [β/(ε0εr)
∑

s e2
sns]1/2 the DH parameter. Substituting for

gi j in equation (1) gives the RPM non-linear MPB equation.

2.1. The linear MPB and MSA equations

The linear form of the MPB equation, for the special case of a single electrolyte with equal valences,
is as follows:

d2u(r)
dr2 = g0

i j κ
2rL(u), r > a, (8)

with
u(r) =

r
a

u(a) −
ei(r − a)
4πε0εra

, 0 6 r 6 a. (9)

Substituting the linear solution equation (9) into equation (8) means that

L(u) =
κ2

4(1 + y)

2u(r + a) + (r − 2a)(2 + 2y − κr)
(

du
dr

)
r=a

+ 2(1 + 2y − κr)u(a) + 2κ
r+a∫
a

u(R)dR
 ,

a 6 r 6 2a. (10)

Taking the Laplace transform of equation (8), with g0
i j = 1, gives the general solution to be of the form

u(r) =
∞∑
n=1

An exp
(
−

znr
a

)
, (11)

where the sum is over the roots zn = αn + iβn of the transcendental equation

z cosh(z) + y sinh(z) = z3 (1 + y)
y2 . (12)

The roots with the smallest real part correspond to the physical situation. For small y, there are only
two real roots with the smallest corresponding to the DH solution. As y increases, the two real roots
coalesce at yc = 1.2412. Above this value, the two roots move off as a complex conjugate pair until they
become purely imaginary at yI = 7.83.

The MSA theory is one of the most successful and widely used theories of charged fluid systems.
Although of a linear nature, its appeal lies in its analytical results, which have been applied to numerous
electrolyte models and theories. The mean electrostatic potential has been studied in [20], with

d2u(r)
dr2 = κ2rLM(u), r > a, (13)
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where now

LM =
1
2r

(1 − b)2[u(r + a) + u(r − a)] +
2b
a

r+a∫
r−a

(
1 −

b
a
|r − R|

)
u(R)dR

 , (14)

with b = [y + 1 −
√
(1 + 2y)]/y. The general solution is the form of equation (11), where now z satisfies

the transcendental equation
z2 − 2aΓz + 2(aΓ)2[1 − exp (z)] = 0, (15)

with aΓ = y(1 − b)/2. There are two real roots for small y with the smallest corresponding to the DH
solution, analogous to the MPB theory. Again, as y increases, the two real roots coalesce, but at the
slightly smaller value of yc = 1.229 [20, 21]. Above this critical value of y, the two roots become a
complex conjugate pair, but unlike the MPB situation, they do not become purely imaginary for large y
[1]. Figure 1 displays the behaviour of the MPB and MSA roots, while a table of some of the roots is
given in [15]. A critical value of yc = 1.032 was first predicted by Kirkwood [14] in his analysis of the
potentials of mean force. His transcendental equation, corresponding to those of equations (12) and (15),
has a behaviour pattern similar to the MPB theory. Unfortunately, his value of yI = 2.79 means that his
theory is restricted to much lower concentrations than the MPB and MSA theories. Critical values of yc
have been predicted by other theories [22–26].

We now consider u(r) to be given by the two roots with the smallest real parts so that

u(r) = A1 exp
(
−

z1r
a

)
+ A2 exp

(
−

z2r
a

)
, r > 2a, (16)

with the first term corresponding to the DH value for small y. Both the MPB and MSA predict, above
their respective yc, that the solution is damped oscillatory [15, 16]. So, taking the complex conjugate pair
z1, z2 to be α ± iβ, equation (16) can then be written as follows:

u(r) = A exp
(
−
αr
a

)
cos

(
βr
a
− B

)
, r > 2a, (17)

where A1 = Ā2 = X + iY , A = 2
√

X2 + Y2, tan B = Y/X . Equation (17) holds for the MPB when
1.2412 < y < 7.83, while for the MSA when y > 1.229. Analysis of the Ornstein-Zernike equation

Figure 1. (Colour online) Roots of the MPB transcendental equation (12). For y < yc there are two
real roots α1, α2 with the black (lower) curve corresponding to the DH κ (= α1/a) for low y. For
yc < y < yI, the black curve represents the screening parameter α, and the blue curve represents the
screening frequency |β|. The MSA roots of equation (15) are nearly identical to those of the MPB for
y < yc, where now yc = 1.229, and are hence not shown. For y > yc, the MSA screening parameter α
is given by the upper green curve. The MSA does not have a finite yI. The two vertical dashed lines at
yc = 1.2412 and yI = 7.831 indicate the two MPB critical values.
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indicates that the asymptotic form of the correlation function takes on a similar form [27]. Equation (17)
predicts, for both theories, that the screening α/a decreases and the frequency parameter β/a increases
for increasing y.

The approximate solution (16) involves two unknown constants. These cannot be determined in
a unique fashion as equation (16) is simply the two leading terms of the general solution (11). A
consistent analysis requires that the general solution satisfies the integro-difference differential equation
in a 6 r 6 2a and the continuity of u(a) and (du/dr)r=a. In this general case, the boundary conditions
at r = a give the neutrality condition

∞∑
n=1

An(1 + zn) exp (−zn) =
ei

4πε0εr
. (18)

Another general condition is that of Stillinger-Lovett [28], which is true away from the critical region
of the RPM electrolyte. In terms of the mean electrostatic potential, the condition is [29]

β
∑
s

esns

∫
ψsdV = 1. (19)

Assuming that the solution (16) holds for r > a, then neutrality and the Stillinger-Lovett condition
allows A1 and A2, or equivalently A and B, to be calculated. Another approach, following Kirkwood [14],
is for the solution to satisfy neutrality and equation (16) at r = a. A third possibility, amongst others, is to
evaluate u(r) in a 6 r 6 2a by substituting the solution (16) for r > 2a into equation (8) and integrating
twice. In this case, the boundary conditions are u(r), du(r)/dr continuous at r = a and 2a, with neutrality
and the Stillinger-Lovett condition satisfied. The three approximations are called LMPB1, LMPB2, and
LMPB3, respectively. See appendixA for details. The above approximate analysis to determine the LMPB
mean electrostatic potential is unnecessary for the MSA as an alternative approach gives an analytical
result [20, 30]. However, this alternate formulation does not give immediately a direct identification of
the MSA screening and frequency parameters.

3. Results and discussion

The physical parameters used in all the calculations were as follows: the temperature T = 298.15 K,
a = 4.25× 10−10 m, relative permittivity εr = 78.381 with the concentration varying from c = 0.79 M to
18.4 M, so the range of y is 1.243 to 6. Plots of the dimensionless mean electrostatic potential ψ∗(r/a)
[= β|e|ψ(r/a)] for the 6 theories MPB, LMPB1, LMPB2, LMPB3, MSA and DH are shown in figures 2
and 3 for a uni-univalent electrolyte. Figure 2 illustrates the behaviour of ψ∗ as y increases through yc
from y = 1.243 to y = 1.978, and figure 3 shows the behaviour at the higher values of y = 3, 4, 6. The
non-linear MPB has been shown to accurately predict both the structural and thermodynamic properties
of the RPM for 1:1 electrolytes, and thus is a good metric to assess the accuracy of the linear theories.
For y < yc, except for y approaching yc, all the theories are qualitatively very similar to the DH result,
and hence, are not shown here. Above yc, the theories demonstrate a damped oscillatory behaviour
which cannot be predicted by the DH theory. Overall LMPB2 is in closest agreement with MPB, while
surprisingly LMPB3 does relatively poorly. It would have been expected that the LMPB3 would be the
most accurate because of the treatment of the region a 6 r 6 2a via equation (10). Comparison with the
MPB, when the exclusion volume term is unity, brings the LMPB3 and MPB into almost quantitative
agreement for c 6 18.4 M. This indicates that the improved mean electrostatic potential treatment of the
LMPB3 analysis needs to be balanced by incorporation of the uncharged hard sphere term in equation (8).
An interesting feature of the LMPB3 is that besides damped oscillation terms, there is a (r−2a) quadratic
contribution in the region a 6 r 6 2a.

Experimental results for a wide class of salts indicate that the decay length λs of concentrated
electrolytes increases with concentration, in contrast to that of the DH prediction. The LMPB and
MSA also predict that their decay length a/α, which corresponds to the experimental λs, increases at
higher concentrations, but at too low a rate — see figure 4. Lee et al. [13] have analysed the electrolyte

23801-5



C.W. Outhwaite, L.B. Bhuiyan

Figure 2. (Colour online) The DH, MPB and LMPB3 reduced mean electrostatic potential ψ∗(r/a)
[= β |e|ψ(r/a)] as a function of r/a for a 1:1 RPM electrolyte at y = 1.243 (c = 0.79 mol/dm3) (top
panel), y = 1.398 (c = 1 mol/dm3) (middle panel), and y = 1.987 (c = 2 mol/dm3) (bottom panel). The
LMPB1, LMPB2 and MSA results are very close to the LMPB3 result, and are not shown.

screening length behaviour at high concentration using a scaling analysis. They find that the decay length
increases linearly with the Bjerrum length, or alternatively λs/λD ∼ (a/λD)3 where λD = 1/κ, in general
agreement with experimental results for a range of 1:1 valency ionic liquids. We note that in the present
paper λs/λD = y/α and a/λD = y so that the experimental trend thus provides a test of theories through
a study of y/α ∼ y3. Unfortunately, no realistic comparisons can be made with the MPB and MSA
predictions due to the decay length being too small. For example, at y = 3, the LMPB y/α = 1.95,
which is an order of magnitude too small (see figure 1 of [13]). Only for y close to yI is the LMPB
decay length of the correct order of magnitude. The most probable reason for the shortfall is the lack of
any treatment of the solvent. At low to medium solution concentration, the solvent contribution can be

23801-6



Linear modified Poisson-Boltzmann equation

Figure 3. (Colour online) The DH, MPB, LMPB1, LMPB2, LMPB3 and MSA reduced mean elec-
trostatic potential ψ∗(r/a) [= β |e|ψ(r/a)] as a function of r/a for a 1:1 RPM electrolyte at y = 3
(c = 4.605 mol/dm3) (top panel), y = 5 (c = 12.8 mol/dm3) (middle panel), and y = 6
(c = 18.4 mol/dm3) (bottom panel). In the order from the lowest ψ∗(1) value, the theories are MPB,
LMPB2, LMPB3, MSA, LMPB1 and DH. In the top panel, the MSA and LMPB3 overlap and in the
bottom panel there is no MPB numerical solution.

partially treated by using an hydrated ion diameter. In figure 4, the experimental ratio λs/λD for varying
a/λD is given for an aqueous solution of NaCl for a = 2.94× 10−10 m and a = 5.2× 10−10 m. The use of
the hydrated diameter a = 5.2 × 10−10 m brings the experimental points closer to the MPB results. The
high concentration of the solvent relative to the solute ions means that the structure around the ions is
driven by the solvent. A step in this direction is to consider the solvent primitive model where the solvent
is modelled by uncharged hard spheres moving in a constant permittivity. Recently, the underscreening
in this solvent primitive model has been studied in the MSA [11]. The ratio λs/λD increases at higher
concentrations as required by experiment, but at too slow a rate.
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Figure 4. (Colour online) The experimental ratio λs/λD for an aqueous solution of NaCl as functions of
a/λD compared with the MPB y/α1, y/α2 for y < yc, y/α for yc 6 y 6 yI. The filled squares and the
filled circles are the experimental results for the unhydrated (a = 2.94 × 10−10 m) and hydrated (a =
5.2 × 10−10 m) NaCl, respectively. The experimental results are taken from the Supporting Information
of Smith A.M., Lee A.A., Perkin S.; electronic link given in reference [13]. The upper curve for y < yc
is that for α1 which would be unity if it was the DH value. The MSA screening length is given by the
lower red curve and is indistinguishable from the MPB value on the graphical scale for y 6 4. The MSA
does not have a finite yI. The two vertical dashed lines at yc = 1.2412 and yI = 7.831 indicate the two
MPB critical values.

4. Summary

The potential approach of the MPB theory provides a natural extension to the DH theory. At lower
electrolyte concentrations, the predictions mimic the DH theory but qualitative differences occur at higher
concentrations. In the region yc < y < yI, the MPB predicts a damped oscillatory potential which is in
accordance with simulation and other theoretical work. For this interval of y, the linear potential is of
the form u(r) = A exp (−αr/a) cos (βr/a − B), r > 2a, where A, B are constants and α, β given by the
solution of equation (12). There is no unique way of determining the constants, so three methods are
considered, in each case the neutrality condition being satisfied. The Stillinger-Lovett condition is used
in both the LMPB1 and LMPB3 approaches with the solution holding at r = a and r = 2a, respectively,
while the LMPB2 is derived by assuming that the equation is satisfied at r = a. Comparison of the three
theories with the accurate non-linear MPB for 1:1 salts indicates that overall the simple LMPB2 provides
the best approximation. The relative poor behaviour of LMPB3 is deceptive. The LMPB3 potential is
nearly identical to that of the non-linear MPB when its exclusion volume term is unity. This means that
realistic improvements to the linear MPB lie through treating the exclusion volume term in the LMPB3
approach.

Experimental results have shown that the screening parameter, as interpreted via a DH type potential,
initially increases as the electrolyte concentration rises, but then decreases at higher concentrations. In
the LMPB theory at lower concentrations, there are two pure damped exponential terms with screening
parameters α1/a, α2/a with the smaller α1/a corresponding to the DH screening. The parameters α1, α2
coalesce at yc as the concentration increases and become complex conjugate roots α± iβ for yc < y < yI.
These complex conjugate roots lead to a damped oscillatory behaviour for the electrostatic potential with
screening parameter α/a. In this region of y, the screening parameter reduces with concentration, as
seen in experiments over a similar range of y. The experimental results also suggest that the decay length
increases linearly with the Bjerrum length. Such a behaviour is not seen in the LMPB as the rate of a
decrease of the screening length is too small, only at values of y close to yI is the screening length of
the correct order of magnitude. The MSA mean electrostatic potential has features in common with the
LMPB. It becomes damped oscillatory at a value of yc slightly less than that of the MPB, but in contrast
there is no finite value of yI. This means that its screening factor behaves in an analogous fashion to that
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of the MPB as y increases through yc. Above yc, the MSA screening parameter is greater than that of the
MPB and slowly reduces to zero as y tends to infinity. Close agreement with experiment at the higher
electrolyte concentrations is unlikely with the present PM model. A critical feature of the PM is the
lack of any adequate treatment of the solvent. Models such as the solvent primitive model have provided
insight as to the importance of solvent steric effects, but both the solvent and solute molecules need to be
adequately modelled and treated on an equal footing.

The linear MPB equations studied here complement the full, non-linear MPB approach to the elec-
trolyte solution theory. From a theoretical perspective, these solutions offer a valuable physical insight
by painting a clearer picture of the onset of oscillations in the mean electrostatic profile and screening
in electrolytes. The LMPB solutions transcend the simplistic DH view, compare favourably with the
more well known MSA while retaining the simplicity and convenience of their analytic nature. Thus,
the LMPB theories might well prove useful as a basis for interpreting the thermodynamic properties of
concentrated electrolytes. Again, the theories could be applied to studying the liquid-gas transition in
simple electrolytes in an analogous fashion to the MSA. Although the LMPB1 and LMPB3 satisfy the
Stillinger-Lovett condition, this does not prohibit the LMPB1 and LMPB3 from having a solution in the
liquid-gas region, as seen with the MSA. The solution of the LMPB theories is basically dependent on y
through the soluton of equation (12), so the theories can be solved in the simulated liquid-gas coexistence
region. The pattern of the LMPB results for the range of concentration treated suggests these to be
potentially very useful as initial input in the numerical solution of the full MPB equation and alternative
non-linear theories.
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A. Analytic expressions for the three LMPB theories

A.1. 0 6 y 6 1.2412
Roots of equation (12), z1 = α1, z2 = α2.

ψi = [A1 exp(−α1r/a) + A2 exp(−α2r/a)] /r, r > a.

(a) LMPB1

A1 =
ei

4πε0εr
exp(α1)[α

2
1G2 − ω(1 + α2)]/D,

A2 =
ei

4πε0εr
exp(α2)[−α

2
2G1 + ω(1 + α1)]/D,

D = α2
1(1 + α1)G2 − α

2
2(1 + α2)G1 , ω = 6α2

2/y
2,

G j = α
3
j + 3α2

j + 6αj + 6, j = 1, 2.

(b) LMPB2, see also reference [31].

A1 =
ei

4πε0εr
b2 exp(α1)/D,

A2 = −
ei

4πε0εr
b1 exp(α2)/D,

D = b2(1 + α1) − b1(1 + α2),

bj =
2α2

j

λ
− (2 + y)αj − 2(1 + y) −

2y
αj
− 2

(
1 −

y

αj

)
exp(−αj), j = 1, 2,

λ =
y2

2(1 + y)
.

(c) LMPB3. Not given as results very detailed, see for example subsection A.2 below.

A.2. 1.2412 < y < 7.83
Roots of equation (12), z1 = α + iβ, z2 = α − iβ.

ψi = (ei/4πε0εrr)A exp[−α(r/a − 1)] cos[β(r/a − 1) − B], r > a,

A =
√

X2 + Y2/D, B = tan−1(Y/X),

R = α2 − β2, S = α2 + β2.

(a) LMPB1

G = G1 + iG2 ,

G1 = α
3 − 3αβ2 + 3α2 − 3β2 + 6α + 6,

G2 = 3α2β − β3 + 6αβ + 6β,

H =
6
y2 S2,

X = βH − RG2 + 2αβG1 ,
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Linear modified Poisson-Boltzmann equation

Y = (1 + α)H − RG1 + 2αβG2 ,

D = (1 + α)X − Y β.

(b) LMPB2
From A.1 (b), b1 = Y + iX , b2 = Y − iX , giving

Y =
2R
λ
− (2 + y)α − 2(1 + y) −

2yα
S
− 2 exp(−α)(p cos β + q sin β),

X =
4αβ
λ
− (2 + y)β + 2q − 2 exp(−α)(q cos β − p sin β),

D = (1 + α)X − Y β,

λ =
y2

2(1 + y)
, p = 1 −

yα

S
, q =

qy
S
.

(c) LMPB3

ψi =
λei

4πε0εr
[DX + EY + µ(r) + c8η(r)], a 6 r 6 2a,

ψi =
ei

4πε0εr
A exp(−αr/a) cos (βr/a − B), r > 2a,

A = 2
√

X2 + Y2, B = tan−1(Y/X),

λ =
y2

2(1 + y)
, p = 1 −

yα

S
, q =

yβ

S
,

R = α2 − β2, S = α2 + β2,

x =
r − 2a

a
,

c1 =
6y3

12 + 12y − y3 ,

c2 =
120y2

240 + 240y + y2(60 + 15c1 + 40y + 4yc1)
,

c3 =
5c1
24

,

c4 =
1

24
(4c3 + 5) +

y

120
(5c3 + 6) + d2c8 ,

c5 = 1 −
y2(3 + 2c8)

6
−

y4c4
2(1 + y)

,

c6 =
19

120
+

29y
720
+

c3
8
+
yc3
30

,

c7 = 1 − y2
[
3
2
+

2y
3
+

c1(4 + y)
16

+ c8c9

]
,

c8 = −c2
24 + 4c1 + 12y + yc1

24
,

c9 =
200 + 110y + 3c1(15 + 4y)

240
,

d1 = p
(
1 +

α

S

)
+

q2

y
+

3y
2
,

d2 = β
y(S + 2α) − S

S2 ,

D = K + D1 + M x +
[

c1V
2
+
y exp(−2α)B4

S

]
x2 + M3η(r),
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E = L + E1 + N x +
[

c1W
2
+
y exp(−2α)B5

S

]
x2 + N3η(r),

D1 =
2 exp

[
−

(
r
a + 1

)
α
]
(Rs1 + 2αβs2)

S2 ,

E1 =
2 exp

[
−

(
r
a + 1

)
α
]
(2αβs1 − Rs2)

S2 ,

s1 = p cos
[
β

( r
a
+ 1

)]
+ q sin

[
β

( r
a
+ 1

)]
,

s2 = q cos
[
β

( r
a
+ 1

)]
− p sin

[
β

( r
a
+ 1

)]
,

η(r) =
1

240
[
c1(15 + 4y) + 120 + 40(1 − y)x − 10x2] x2,

µ(r) =
1
48
[c1(4 + y) + 24]x2 −

y

6
x3,

K =
2
λ

exp(−2α) cos 2β −
2
s2 (RB2 + 2αβB3) exp(−3α),

L =
2
λ

exp(−2α) sin 2β −
2
s2 (2αβB2 − RB3) exp(−3α),

B2 = p cos 3β + q sin 3β, B22 = p cos 2β + q sin 2β,
B3 = q cos 3β − p sin 3β, B32 = q cos 2β − p sin 2β,
B4 = α cos 2β − β sin 2β,
B5 = β cos 2β + α sin 2β,

B6 =
(
1 +

α

S

)
cos 2β −

β

S
sin 2β,

B7 =
(
1 +

α

S

)
sin 2β +

β

S
cos 2β,

B8 =
(
2 +

α

S

)
cos 3β −

β

S
sin 3β,

B9 =
(
2 +

α

S

)
sin 3β +

β

S
cos 3β,

δ1 = α
3 − 3αβ2, δ2 = β

3 − 3βα2,

M =
2
S
(αB2 + βB3) exp(−3α) −

2
λ
(α cos 2β + β sin 2β) exp(−2α),

N =
2
S
(βB2 − αB3) exp(−3α) −

2
λ
(α sin 2β − β cos 2β) exp(−2α),

P =
{
y

3S
B4 +

2
S3 [δ1B22 − δ2B32 − (δ1B2 − δ2B3) exp(−α)]

}
exp(−2α),

Q =
{
y

3S
B5 +

2
S3 [−δ2B22 − δ1B32 + (δ2B2 + δ1B3) exp(−α)]

}
exp(−2α),

V = K −
M
2
+ P,

W = L −
N
2
+Q,

V1 =
2
S

exp(−2α)(d1B4 + d2B5),

W1 =
2
S

exp(−2α)(d1B5 − d2B4),

M2 =
2
S
{β[−q cos 2β + (y + p) sin 2β] − α[(y + p) cos 2β + q sin 2β]} exp(−2α),
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N2 =
2
S
{α[q cos 2β − (y + p) sin 2β] − β[(y + p) cos 2β + q sin 2β]} exp(−2α),

M3 = c2(M − c1V + M2), N3 = c2(N − c1W + N2),

K2 =
{ 5y

12S
B4 +

2
S3 [δ1(pB6 + qB7) − δ2(qB6 − pB7)]

− exp(−α)[δ1(pB8 + qB9) + δ2(pB9 − qB8)]
}

exp(−2α),

L2 =
{ 5y

12S
B5 +

2
S3 [−δ2(pB6 + qB7) + δ1(qB7 − pB6)]

+ exp(−α)[δ2(pB8 + qB9) − δ1(pB9 − qB8)]
}

exp(−2α),

K3 =
3K
2
−

2M
3
+

5c3V
24
+ K2 ,

L3 =
3L
2
−

2N
3
+

5c3W
24
+ L2 ,

M4 = λ

(
K − 2M +

3c1V
2
+ V1 + c9M3

)
,

N4 = λ

(
L − 2N +

3c1W
2
+W1 + c9N3

)
,

F =
2
S
y2 exp(−2α)

[
2B4 +

1
s
(R cos 2β − 2αβ sin 2β)

]
,

G =
2
S
y2 exp(−2α)

[
2B5 +

1
s
(R sin 2β + 2αβ cos 2β)

]
,

F1 =
y2M3

3
+ λy2(K3 + c6M3) + F,

G1 =
y2N3

3
+ λy2(L3 + c6N3) + G,

X =
N4c5 − G1c7

D0
,

Y =
F1c7 − M4c5

D0
,

D0 = N4F1 − G1M4.
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Коментарi стосовно лiнiйного модифiкованого рiвняння

Пуассона-Больцмана в теорiї розчинiв електролiтiв

К.Б. Оутвайт1, Л.Б. Бхуян2
1 Факультет прикладної математики, Унiверситет Шеффiлда,Шеффiлд, Великобританiя
2 Лабораторiя теоретичної фiзики, Унiверситет Пуерто Рiко, Пуерто Рiко, США
Запропоновано три аналiтичнi результати для лiнiйної форми модифiкованого рiвняння Пуассона-
Больцмана в теорiї об’ємних електролiтiв. Цi результати порiвнюються з результатами середньо сфери-
чного наближення. Лiнiйнi теорiї передбачають перехiд середнього електростатичного потенцiалу вiд за-
гасаючої експоненцiйної поведiнки типу Дебея-Гюккеля до загасаючої осциляцiйної поведiнки при збiль-
шеннi концентрацiї електролiту вище критичної величини. Радiус екранування зменшується зi збiльше-
нням концентрацiї, коли середнiй електростатичний потенцiал загасає осциляцiйно. Проведено порiвня-
ння з одним набором нещодавнiх експериментальних результатiв по екрануванню для водних електро-
лiтiв NaCl.
Ключовi слова: концентрованi електролiти, обмежена примiтивна модель, радiус екранування, лiнiйна

модифiкована теорiя Пуассона-Больцмана
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