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Drift-diffusion analysis has been introduced in physics as a method to study turbulent flows. In the current
study, it is proposed to use the method to identify underlying dynamical models of particulate matter smog,
ozone and nitrogen dioxide concentrations. Data from Chiangmai are considered, which is a major city in the
northern part of Thailand that recently has witnessed a dramatic increase of hospitalization that are assumed to
be related to extreme air pollution levels. Three variants of the drift-diffusion analysis method (kernel-density,
binning, linear approximation) are considered. It is shown that all three variants explain the annual pollutant
peaks during the first half of the year by assuming that the parameters of the physical-chemical evolution
equations of the pollutants vary periodically throughout the year. Therefore, our analysis provides evidence
that the underlying dynamical models of the three pollutants being considered are explicitly time-dependent.
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An important task of nonlinear physics and statistics is to identify the underlying mechanisms that
determine the evolution of systems on the basis of experimental data. In this regard, in physics, a method
has been developed to investigate turbulent flows [1] that is nowadays frequently called drift-diffusion
analysis. The method was in part motivated by the self-similarity hypothesis of turbulent flows that in
its own merit has been investigated in various systems (see e.g., [2]). In recent years, various studies
have examined turbulence using the drift-diffusion analysis approach [3–6], see also [7]. However, the
method turned out to have a broad spectrum of applications (for a review see [7]). For example, sport
and movement sciences have been taken advantage of drift-diffusion analysis to identify movement- and
posture-related dynamical systems [8–12]. Bistable lasers [13, 14] and engineering problems [15–17] have
been examined. In what follows, the drift-diffusion analysis approach will be used to identify underlying
laws determining the evolution of air pollutants. Those laws are assumed to reflect the relevant physical-
chemical evolution equations of the pollutants under consideration aswell as the impacts ofmeteorological
conditions. Monthly extreme value data of air pollutants will be considered because such extreme air
pollutant concentrations are assumed to come with serious health risks [18–20] and are likely to increase
death rates [21, 22]. We will analyze data from the city of Chiangmai, Thailand. While Chiangmai is not
the largest city of Thailand, it is the largest city in the northern part of Thailand. Importantly, in recent
years, the number of hospitalizations that are due to high air pollutants concentrations is dramatically
increasing in Thailand, in general, and in Chiangmai, in particular [23]. Therefore, a better understanding
of the dynamics of the monthly extreme scores of air pollutant concentrations would be beneficial. We
will consider the following three air pollutants: particulate matter that is of 10micrometers of less (PM10),
ozone (O3), and nitrogen dioxide (NO2).
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Our departure point is a time-discrete sequence of observations of pollutant concentrations. This
sequence will be referred to as historical trajectory Xh(n) given for the time points n = 1, . . . , N
(with N = 60, see below). In what follows, n will denote consecutive months. Our goal is to derive a
stochastic model from the historical trajectory in analogy to the proposal by Friedrich-Peinke-Renner for
historical financial data and to take seasonal effects into account. Following the Friedrich-Peinke-Renner
method [24], we consider the increments Yn(τ) defined by Yn(τ) = X(n + τ) − X(n) ⇒ X(n + τ) =
Yn(τ) + X(n) for τ > 0 and Yn(0) = 0. Parameter τ defines a time scale. The increments Yn are assumed
to satisfy an evolution equation that describes how Yn(τ) evolves from small scales of a few months (e.g.,
τ ≈ 1, 2, 3) to large scales of a year (e.g., τ ≈ 12, 13, 14). In order to determine that evolution equation,
we consider R increment trajectories of length S with τ = 0, . . . , S, n = 1, . . . , R, and R + S = N . The
evolution equation for Yn is then obtained using the drift-diffusion analysis [1].

Although drift-diffusion analysis [1] is as such a non-parametric data analysis method, it requires to
fix a priori the type of the stochastic model under consideration. In what follows, we consider a model
given in terms of the stochastic iterative map

Yn(τ + 1) = f
(
Yn(τ),m(n, τ)

)
+ g

(
m(n, τ)

)
ε(τ) . (1)

In equation (1), f will be referred to as drift function (in analogy to the drift function of a Fokker-Planck
equation [25, 26]). The drift function f is assumed to depend on themonthm of the year, wherem depends
on n and τ like m(n, τ) = v if v ∈ [1, 11] and m(n, τ) = 12 if v = 0 with v = (n+τ)mod 12. In equation (1)
ε(τ) denotes statistically independent random variables distributed like a normal distribution with mean
zero and variance 2. The parameter g > 0 is the noise strength or noise amplitude and, in general, may
depend on the month of the year. Moreover, g2 is the noise variance. For the sake of simplicity, it is
assumed that g does not depend on the state Yn (i.e., an additive noise model is considered). In early
studies by Friedrich and Peinke [1] and Stanton [27] on the drift-diffusion analysis, Friedrich, Peinke, and
Stanton have determined representations for drift and diffusion coefficients ofMarkov diffusion processes
in terms of conditional averages. In analogy to those representations, from equation (1) we obtain the
Friedrich-Peinke-Stanton representation of the drift in terms of the conditional average

f (z,m) = 〈Yn(τ + 1)〉
��
Yn(τ)=z

. (2)

For the noise variance we obtain

g2(m) =
1
2

〈[
Yn(τ + 1) − f

(
Yn(τ),m

) ]2
〉
, (3)

which is not a conditional average because we assume that the noise term is state-independent (i.e.,
additive). The drift function f can approximately be described by means of several methods. The
Friedrich-Peinke binning method [1, 3] yields the estimator

f (z,m) ≈
K∑
j=1

cj(m)χj(z), cj(m) =
1

Z jm

S∑
τ=0


R∑

n=1,Yn(τ)∈Ij

δmnYn(τ + 1)
 , (4)

where χj are indicator functions equal to 1 in appropriately defined intervals. We consider Yn ∈ [A, B)
and use K bins of width ∆y such that y1 = A, yK+1 = B, and yj = A + ( j − 1)∆y. The bin-intervals are
Ij = [yj, yj+1). The indicator function is χj(z) = 1 if z ∈ Ij and χj(z) = 0 otherwise. In equation (4), δmn

is the Kronecker function that equals 1 if the (running) month n corresponds to a particular month m of the
year and zero otherwise. That is, only those pairsYn(τ),Yn(τ+1) contribute to cj(m) forwhich the (running)
month n is the month of the year m of interest. Moreover, we have Z jm =

∑S
τ=0[

∑R
n=1,Yn(τ)∈Ij δmn]. The

kernel density estimation method suggested by Stanton [27] yields

f (z,m) ≈
1

Zm

S∑
τ=0

R∑
n=1

δmnYn(τ + 1) exp
{
−
[z − Yn(τ)]2

2h2

}
, (5)

where the standard deviation h is given by h = sL−0.2, where s is the sample standard deviation of all
Yn scores that belong to a particular month m of the year (i.e., that show up on the sum and for which
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δmn = 1 holds — these are the scores from which the density is estimated) and L is the number of such
scores [28, 29]. Moreover, Zm =

∑S
τ=0

∑R
n=1 δmn exp{−[z −Yn(τ)]2/(2h2)}. The interpolation modelling

method (or regression model method) assumes that f (z,m) ≈ A0(m) +
∑p

j=1 Aj(m)z j . For the relative
small data sets that will be considered below, we will use the model that describes some dependency of
f on z and features the smallest number of parameters. That is, we will consider the order p = 1. In this
case, equation (1) becomes the linear regression model

f (z,m) ≈ A(m) + B(m)z ⇒ Yn(τ + 1) = A(m) + B(m)Yn(τ) + g(m) ε(τ) (6)

with A = A0 and B = A1. The intercept and slope parameters A(m) and B(m) can be estimated by fitting
the linear regression model equation (6) to scatter plots ofYn(τ+1) versusYn(τ) given for every month m.
In fact, theYn(τ+1) versusYn(τ) scatter plots are used to determine f for all three approximations defined
by equations (4), (5) and (6) since equations (4), (5) and (6) involve the data pairs Yn(τ + 1) and Yn(τ) for
a fixed month m, that is, all pairs Yn(τ + 1) and Yn(τ) for which n corresponds to a particular month m of
the year. Moreover, from equation (3) it follows that g of the linear regression model equation (6) can be
estimated from the root-mean-squared error RMSE of the regression model like g(m) = RMSE(m)/

√
2.

Data were taken from the Pollution Control Department (PCD) of Thailand [30]. Pollutant data for
PM10, O3, and NO2 in N = 60 months from January 2010 to December 2014 were retrieved for the
Provincial Hall measurement station in Chiangmai. Figure 1 shows the pollutant time series. The station
measured raw PM10 concentrations (in µg/m3) as averaged values for every day. From the daily raw data,
the PCD determined for each month the maximum scores. By contrast, O3 and NO2, raw concentrations
(in ppb) were measured by the station every hour. From those hourly raw data, maximum scores of the
day and maximum values for the month were determined. The monthly extreme value data for PM10, O3,
and NO2 published on the PCD website [30] were retrieved and analyzed. As mentioned above, the study
of extreme value data is of importance because extreme pollutant concentrations are related to increased
health risks [18–20] and death rates [21, 22]. All three pollutants PM10, O3, and NO2 showed periodic
annual patterns (i.e., seasonal effects), see figure 1. PM10 extreme value concentrations peaked in the
month of March. Similarly, O3 extreme value concentrations reached maximum values during February,
March, and April. NO2 extreme value concentrations were the largest in February and March.

For each pollutant trajectory X(n), increment trajectoriesYn(τ)were derived for reference time points
n in the first three years (i.e., n = 1, . . . , R with R = 36) such that each trajectory covered a two years
period (i.e., τ = 0, . . . , S with S = 23). From the trajectories Yn, scatter plots for each month m showing
Yn(τ + 1) versus Yn(τ) were obtained. From the scatter plots, the drift functions f were determined by
means of the 3 different approximations defined by equations (4), (5) and (6). Figure 2 shows the drift

Figure 1. Extreme value pollutant concentrations (solid lines) measured in Chiangmai, North Thailand,
over the five years (i.e., 60 months) period from January 2010 to December 2014. Panels A, B, C show
PM10, O3, and NO2, respectively. Dashed lines show model fits obtained from the linear regression
model equation (6) in the deterministic case.
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Figure 2. Drift functions f (Y,m) for Y = PM10 extreme value concentrations determined for January,
February, March, and April (panels A, B, C, and D) by means of three approximations: binning method
(stair-step graphs), kernel density estimation method (solid smooth nonlinear lines), and linear regression
model (solid straight lines). Dashed lines represent diagonals.

functions f (Y,m) thus obtained for PM10 for the first four months of the year, January to April. The
dashed lines represent diagonals. For January and February, all three approximations of f were above
the diagonals indicating that PM10 increment concentrations increased during those months. That is, if
increments were positive in January (February), then they tended to be positive and larger in magnitude
in February (March). This describes the increase of the PM10 pollutant concentration X(n) towards the
peaks in March (see figure 1A). By contrast, for March and April, the drift functions were found to be
below the diagonals indicating the PM10 increment concentrations decayed during those months. More
precisely, if increments were positive in March (April), then they tended to be smaller (closer to zero) or
negative in April (May). This corresponds to the decay of the PM10 pollutant concentration X(n) from
March to May [see figure 1 (A) again].

By visual inspection of figure 2, the kernel density estimation method has the advantage to account for
nonlinear characteristics of f in a smooth fashion. It has the disadvantage of being described by the whole
data sets of Yn(τ + 1) and Yn(τ) pairs that contribute to the relevant scatter plots. That is, each smooth
function f is characterized by a relatively large set of parameters given in terms of Yn(τ + 1) and Yn(τ)
pairs. The linear approximation has the advantage of being conveniently characterized by two parameters
A and B. It has the disadvantage of not capturing nonlinear effects. The drift function approximation by
means of the binningmethod can be regarded as a compromise between the two other approximations. The
stair-case like approximate drift functions obtained from the binning method account for nonlinearities.
They can be described by a bin width ∆y, the bin centers yk,c = (yk+1 + yk)/2, and the function values
fk . Consequently, to describe f with K bins, we need 2K + 1 parameters. Therefore, the number of
parameters to describe f with the binning method is larger as compared to the number of parameters that
characterize the linear regression model but smaller as compared to the number of Yn(τ + 1) and Yn(τ)
parameters that are needed to approximate f by means of the kernel density estimation method.

The linear regression model approximation, that has the advantage of requiring the smallest number
of characterizing parameters, was determined in detail for all three pollutants. That is, the parameters A,
B and g were estimated as described above. Figure 3 shows the model parameters thus obtained. For all
three pollutants, the intercept parameter A varied across the months of the year in a characteristic pattern.
For PM10 and O3 in January and February and for NO2 in January it was positive and assumed the largest
positive values. Subsequently, in March and April (PM10), April and May (O3 and NO2), parameter A
was negative and assumed the largest-in-the-amount negative values. These patterns, as discussed above
in the context of PM10 and figure 2, describe the mechanism that leads to the peaks in the original
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Figure 3.Model parameters A, B, and g as functions ofmonthm of the linear regressionmodel equation (6)
for the pollutants PM10 (panel A), O3 (panel B), and NO2 (panel C). Here, ∗ in panel A means µg/m3.
Panels D, E, F: Lag-s autocorrelation coefficients of residuals for PM10 (panel D), O3 (panel E), and
NO2 (panel F) with thresholds for statistical significance (see text).

trajectories X(n) around February, March, and April, see figure 1. For the remaining months from May
to December, the intercept parameters A were overall relatively small (i.e., close to zero). PM10 and O3
showed exceptions from this rule in September, where the parameter values A were positive and assumed
20% (PM10) and 45% (O3) of their respective maximal positive A parameters. For all three pollutants,
the slope parameter B was found to be relatively close to unity. For PM10 and NO2, the noise amplitude g
showed clear seasonal peaks around January, February, and March (PM10) and March and April (NO2).

In order to validate the model, we tested the residuals ε occurring in equation (6). We determined the
first ten lag-s autocorrelation coefficients of the residuals for each trajectory Yn(τ). The coefficients are
shown in figure 3 (panels D, E, F) together with single-time-series thresholds [31] (solid lines) for sta-
tistically significant and Bonferroni adjusted [32] multiple-tests thresholds (dashed lines). We found that
some of the correlation coefficients (in particular, lag-1 correlation coefficients of O3 and NO2) violated
the single-time-series criterion for being not statistically significant. However, all correlation coefficients
were found to be within the boundaries of the multiple-tests thresholds. Residuals of trajectories Yn(τ)
were also tested for violation of normality using the Anderson-Darling normality test. For all PM10 and
NO2 trajectories Yn(τ), the residuals did not violate the normality assumption. For O3, the normality
assumption was violated in 4 out of R = 36 trajectories Yn. Overall, the correlation and normality tests
supported the model assumptions.

We showed how to identify stochastic dynamical models for the evolution of air pollutants on the
basis of single, historical trajectories of pollutant concentrations. To this end, we followed the earlier
work on financial data and considered pollutant increments rather than the raw pollutant data. In addition,
three different representation methods of the drift functions of the dynamical models were used. In doing
so, we derived three main results: First, we found that all three representation methods were consistent
with each other, see figure 2. Second, we were able to show that experimentally observed annual air
pollutant peaks were caused by drift functions of physical-chemical air pollutant systems that change
qualitatively from the pre-peak months (e.g., January and February) to the post-peak months (e.g., March
and April), see figure 2 again. These qualitative changes in the drift functions are assumed to reflect
periodic changes in the physical-chemical laws determining the evolution of the PM10, O3, and NO2
pollutant concentrations. Third, it was found that the linear approximation representation method of drift
functions (which is the most parsimony method) is sufficient to reproduce the emergence of the yearly
pollutant peaks, see figure 1.
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Здiйснення дрейф-дифузiйного аналiзу через дослiдження

турбулентних потокiв та динамiки частинок речовини

смогу i забруднювачiв повiтря

T. Варапонгпiсан1, Л. Iнгрiсвванг1, Т.Д. Френк2,3
1 Факультет природничих наук, вiддiлення фiзики, унiверситет Касертсарт, Бангкок 10900, Таїланд
2 CESPA, вiддiлення психологiї, Коннектикутський унiверситет, CT 06269, США
3 Вiддiлення фiзики, Коннектикутський унiверситет, CT 06269, США
Дрейф-дифузiйний аналiз увiйшов у фiзику як метод дослiдження турбулентних потокiв. У даному дослi-
дженнi пропонується використовувати цей метод для iдентифiкацiї базових динамiчних моделей рiзних
концентрацiй твердих частинок смогу, озону i дiоксиду азоту. В роботi дослiджуються данi з Чiангмаї, най-
бiльшого мiста у пiвнiчнiй частинi Таїланду, яке нещодавно стало свiдком драматичних шпиталiзацiй,
вочевидь пов’язаних з екстремальними рiвнями забруднення повiтря. Розглянуто три варiанти дрейф-
дифузiйного аналiзу (щiльнiсть ядра, бiнiнг та лiнiйне наближення). Показано,що всi три варiанти дають
пояснення щорiчним пiкам забруднень впродовж першої половини року з урахуванням того, що пара-
метри рiвнянь фiзико-хiмiчної еволюцiї забруднювачiв повiтря перiодично змiнюються впродовж року.
Отже, даний аналiз надає докази, що базовi динамiчнi моделi трьох забруднювачiв повiтря, розглянутих
у дослiдженнi, є явно залежними вiд часу.
Ключовi слова: дрейф-дифузiйний аналiз, частинки речовини, забруднювачi повiтря
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