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It is shown that in the Bose-Fermi-Hubbard model which is used for a description of the ultracold atomic boson-
fermion mixture in the optical lattice, the nB 6 2 restriction enables one to analyze a more general case of
separated lobes Mott insulator in comparison with the case of nB 6 1 (hard-core bosons). It also showed that
the restriction to no more than 2 bosons on site is enough to comprehend the structure of (µ, |t0 |) diagrams atarbitrary nb values with an account of a possibility of the 1st order phase transition.
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1. Introduction

We investigate the phase transitions in the Bose-Fermi-Hubbard model proposed for a description
of thermodynamics and energy spectrum of the ultracold mixtures of Bose- and Fermi-atoms in optical
lattices. Our main task is to study the influence of the fermion subsystem on the phase transition (PT) from
the normal (Mott insulator, MI) phase to the superfluid (SF) phase with the Bose-Einstein condensate.
Consideration is performed for the case of infinitely small fermion transfer in the limit of truncated
basis of the single-site states of bosons (ni 6 1 for hard-core bosons, and ni 6 2). The boson-fermion
interaction U ′ is taken into account exactly while the hopping t0 of bosons is considered within the
mean-field approximation.

The regime of fixed values of chemical potentials (µ and µ′, respectively) of Bose- and Fermi-particles
is the basic one in our study. Analyzing the behavior of the BE condensate order parameter and the grand
canonical potential, we have built, for the case of hard-core bosons and “heavy” fermions, the (µ, µ′) and
(µ, t0) phase diagrams at T = 0 and at nonzero temperatures [1]. It is shown that: i) in the cases when
transition to the SF phase is accompanied by the change of the mean number of fermions, the PT order
changes from the 2nd to the 1st one; this result corresponds to the literature data (DMRG calculations
for harmonic trap [2]); ii) the shape of the MI phase regions (so-called lobes) in the (µ, t0) diagrams and
the localization of the 1st order PT segments upon them depend on the µ′ level position.

At the same time, in the literature [3, 4], the approximation is developed, where the models are based
on truncated Hilbert space with a larger number of the boson states. As an example, one can mention the
known approach, where NB

max = 2, (nbi = 0, 1, and 2) [5].

2. Bose-Fermi-Hubbard model

In our investigation we use the Hamiltonian of the BFH model written in the form

H = −
∑
<i, j>

ti jb+i bj +
U
2

∑
i

nbi (n
b
i − 1) +U ′

∑
i

nbi nfi − µ
′
∑
i

nfi − µ
∑
i

nbi . (2.1)
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Here, U and U ′ are constants of boson-boson and boson-fermion on-site interactions; the chemical
potentials of bosons and fermions are µ and µ′, respectively, and t is the tunneling amplitude of bosons
describing the boson hopping between the nearest lattice sites. We restrict ourselves to the so-called case
of “heavy” fermion when the hoping of fermions can be neglected.

The occupation numbers of bosons (fermions) on the site i, are nbi (n
f
i) and we can write (as it was

introduced in [6]) the single-site basis of states

(nbi = n; nfi = 0) ≡ |n, i〉; (nbi = n; nfi = 1) ≡ |ñ, i〉. (2.2)

Then, the Hubbard operators are: Xn,m
i = |n, i〉〈m, i |, X ñ,m̃

i = |ñ, i〉〈m̃, i |, etc.
The creation and annihilation operators and the opccupation number operators will be expressed in

terms of X-operators in the following way:

bi =
∑
n

√
n + 1Xn,n+1

i +
∑
ñ

√
ñ + 1X ñ,ñ+1

i ,

b+i =
∑
n

√
n + 1Xn+1,n

i +
∑
ñ

√
ñ + 1X ñ+1,ñ

i , (2.3)

nbi =
∑
n

nXn,n +
∑
ñ

ñX ñ,ñ, nfi =
∑
ñ

X ñ,ñ.

The Hamiltonian in this new representation takes the form:

H = H0 + Hb , (2.4)

H0 =
∑
i,n

λnXnn
i +

∑
i,ñ

λñX ññ
i , Hb = −

∑
<i, j>

ti jb+i bj ,

λn =
U
2

n(n − 1) − nµ, λñ =
U
2

ñ(ñ − 1) − µñ − µ′ +U ′ñ.

Using the order parameter of BE condensate ϕ = 〈bi〉 = 〈b+i 〉 we can write in the case of mean field
approximation (MFA) [6]:

b+i bj → ϕ(b+i + bi) − ϕ2 (2.5)∑
i j

ti jb+i bj = ϕt0
∑
i

(b+i + bi) − Nt0ϕ2,

(here, t0 =
∑

ti j = −|t0 |, t0 < 0).
Then, for initial Hamiltonian after separating the mean field part we will have:

Happrox = HMF +
∑
i j

ti j(b+i − ϕ)(bi − ϕ) , (2.6)

where

HMF =
∑
i

Hi − Nt0ϕ2, Hi =
∑
pr

Hpr Xpr
i . (2.7)

The matrix Hpr is a block-diagonal matrix and is of the following form:

Hpr =

(
H11

pr 0
0 H22

pr

)
, (2.8)

where H11
pr is infinite matrix:

H11
pr =

©«
λ0 |t0 |ϕ 0 0 . . .

|t0 |ϕ λ1
√

2|t0 |ϕ 0 . . .

0
√

2|t0 |ϕ λ2
√

3|t0 |ϕ . . .

0 0
√

3|t0 |ϕ λ3 . . .
. . . . . . . . . . . . . . .

ª®®®®®¬
, (2.9)

and H22
pr is of the same form but with the replacement n→ ñ [see (2.2)].
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This form of the Hamiltonian is widely used while investigating the thermodynamical properties of
this type of models [Bose- Hubbard (BH) and Bose-Fermi Hubbard (BFH) models] in the case of optical
lattices. Discussing the applicability of the MFA in such models we have to state that this approximation
is more suitable for systems with a great number of interacting sites connected with the given one. The
size of the system should set up the thermodynamical limit (N → ∞) and in the case of experiments in
optical lattices the number of particles is of the order of N ≈ 104 . . . 105. As we see, it is quite sufficient
to satisfy the macroscopicity condition.

3. Spinodal lines and the role of boson transfer (an example: the ground

state of BFH)

In this section and in all of the rest, the calculations were performed for the ground state (T = 0) case
and for the lowest possible state to calculate the value of temperature T = 0.005U ′ (for the nB 6 2 case).

Using the unperturbed Hamiltonian, we can build the ground state diagram for (µ, µ′) plane and get
the spinodals (the lines of instability of the SF phase); at the same time, they are the PT lines in the case
of the 2nd order transition. In the absence of boson transfer they split up the plane into different ground
state regions [6] (figure 1, on the left). The vertical lines separates the states with a different number of
bosons but with the same number of fermions while the slanting lines separate the states with different
numbers of both bosons and fermions. A possibility of such transitions (with different numbers of both
bosons and fermions) is the manifestation of the main differences between the BFH and pure BH models.

In the paper [6], we described in what way using random phase approximation (RPA) for two-time
Green’s function Gi j(t − t ′) = 〈〈b| |b+〉〉 we can obtain the next equation for Green’s function Gk(ω)

Gk(ω) =
1

2π
g0(ω)

1 − g0(ω)tk
, g0(ω) =

∑
m

[
Qm(m + 1)
ω − ∆m

+
Qm̃(m̃ + 1)
ω − ∆m̃

]
, (3.1)

where ∆m = λm+1 − λm and Qm = 〈Xm,m − Xm+1,m+1〉.
Instability connected with the phase transition from the Mott insulator to SF phase is characterized

by the divergence of the Green’s function Gk=0(ω = 0) → ∞, this condition leads to equation:

1 = t0
∑
m

[
Qm(m + 1)
ω − ∆m

+
Qm̃(m̃ + 1)
ω − ∆m̃

]
. (3.2)

Solving this equation (known as equation for spinodal lines) we can build the ground state diagram on
the plane (µ, µ′) in the presence of the boson hopping (see figure 1 on the right).

As we see, regarding these two phase diagrams, the boson hopping leads to the appearance of the SF
phase in the regions where the number of bosons on site changes (painted areas).

Figure 1. (Colour online) Ground state phase diagrams for BFH model at |t0 | = 0 (on the left-hand side),
the figure taken from [6], and |t0 | , 0 (on the right-hand side).
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Figure 2. (Colour online) Spinodal lines on the (µ, |t0 |) plane at different values of chemical potential of
fermions. Breaks of line are marked by red arrows.

Solving the equation (3.2) for different values of chemical potential of fermions we will get the phase
diagrams on the (µ, |t0 |) plane (figure 2). We see, similar to the BH case, the sequence of lobes which
separates the MI (under lobes) and SF phases. However, the presence of a fermion subsystem manifests
itself here by the breaks on the separating line.

4. Truncated Hilbert space and first order phase transitions

The above applied way of construction of spinodales is based on the investigation of lines where the
SF phase becomes unstable. A more complete analysis requires to search for the lines of co-existence
of different phases, where the main criterium is an equality of thermodynamical potentials of neighbour
phases (MI phase with ϕ = 0 and SF phase with ϕ , 0).

Starting from equation (2.7) we will obtain:

Ω = −Θ lnSp e−βHMF = −Θ ln
∑
α

e−βεα − Nt0ϕ, (4.1)

where

HMF =
∑
i

[
Hi + (bi + b+i )

(∑
i

ti jϕ
)]
− Nt0ϕ2.

In terms of Hubbard operators, the task, at the beginning, is reduced to diagonalization of the Hamiltonian
matrix obtained after transition to the “n” – representation

Hpr =

(
H11

pr 0
0 H22

pr

)
. (4.2)
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Here, the first infinite matrix is related to the states with zero fermions and the second one is related to
the states with one fermion [see ( 2.2)].

Such an approach was used by Sheshandri et al. in [7], where the problem was solved by a numerical
method restricted to the finite maximal number of the single-site boson states (the value of NB

max was
determined by calculational ability).

At the same time, in the literature, an approximation is developed, where the models are based on
truncated Hilbert space with a larger number of the boson states [3–5]. As an example, one can mention
the known approach, where NB

max = 2, (nbi = 0, 1, and 2).
The case NB

max = 2, (nbi = 0, 1, and 2) opens up new possibilities. Let us stop on these more in detail
compared with the hard-core boson case.

1. For the hard-core bosons, the matrix is of the form

Hpr =

©«
λ0 |t0 |ϕ 0 0
|t0 |ϕ λ1 0 0

0 0 λ0̃ |t0 |ϕ
0 0 |t0 |ϕ λ1̃

ª®®®¬ , (4.3)

where separate (2×2) blocks correspond to the states with nfi = 0 and nfi = 1 , respectively. Its eigenvalues
are equal to (see [1]):

ε0′,1′ = −
µ

2
±

√
µ2

4
+ t2

0ϕ
2 , ε0̃′,1̃′ = −µ

′ −
µ

2
+

U ′

2
±

√
(µ −U ′)2

4
+ t2

0ϕ
2 (4.4)

and depend on the BE-condensate order parameter. Minimization of Ω(ϕ) with the help of equation
∂Ω/∂ϕ = 0 determines the stable equilibrium states of the system. At T = 0, the problem can be solved
analytically [1].

2. Three-state model (nbi = 0, 1, 2).
Now, the matrix Hpr is written in the following form:

Hpr =

©«

λ0 |t0 |ϕ 0 0 0 0
|t0 |ϕ λ1

√
2|t0 |ϕ 0 0 0

0
√

2|t0 |ϕ λ2 0 0 0
0 0 0 λ0̃ |t0 |ϕ 0
0 0 0 |t0 |ϕ λ1̃

√
2|t0 |ϕ

0 0 0 0
√

2|t0 |ϕ λ2̃

ª®®®®®®®¬
. (4.5)

Equation for eigenvalues

det | |Hpr − εδpr | | = 0 , (4.6)

can be easily written.
However, in spite of significant simplification of the model, which is a consequence of truncation

of the basis of states, the problem is further solved in a numerical way [although here there exists a
possibility of the analytical solution for (3 × 3) case].

It is important to stress that the truncated basis approach in the above described form, can be applied
to the cases of a sequence of any of the three neighbor boson states (n − 1, n, n + 1). The same situation
takes place in the case of hard-core bosons and concerns the sequences of two neighbor states [(0, 1) or
(1, 2), (2, 3) etc.; in general, (n − 1, n)].

4.1. (µ, | t0 |) phase diagrams
Solving the equation (4.6) we numerically get the eigenvalues εn′ which can be used in constructing

the diagonal Hamiltonian in the form:

H =
∑
i,p′

εp′X
p′p′

i − t0ϕ2,
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thus, as the next steps, there follows an equation for ϕ by minimizing Ω and finding the values of the
order parameter. The stable states and lines of the phase transition of the 1st order can be found from the
global minimum condition for the grand canonical potential.

Using the obtained 1st order PT lines and equations for spinodals we have a possibility to build phase
diagrams on the plane (µ, |t0 |).

As one can see from figure 3, an increase of the chemical potential of fermions leads to a rebuilding
of the lobe of MI-SF phase transition and to the change of the 1st order PT position.

4.2. Comparing different reductions of Hilbert space

In order to compare different (with different maximal number of bosons on site) approximations we
can use the earlier obtained (see [1]) for the case of nB 6 1 (hard-core bosons) phase diagrams constructed
in this work. In figure 4, the diagram (µ, µ′) is presented. As one can see the general form and coordinates
of characteristic points [on the left-hand side (hard-core bosons) and first part on the right-hand side
(the case of three-state model)] are close to each other. In figure 5, the diagrams (µ, |t0 |) are presented.
Here again we can see the similarity between the figure on the left-hand side and the related part (in the
vicinity of the value µ = µ′) on the right-hand side diagram for these two cases.

5. Conclusions

In the cases where transition to the SF phase is accompanied by the change of the mean number of
fermions, the PT order changes from the 2nd to the 1st one; this result corresponds to the literature data
(DMRG calculations for harmonic trap, [2]).

The shape of the MI phase regions (so-called lobes) in the (µ, t0) diagrams and the localization of the
1st order PT segments upon them depend on the µ′ level position.

The appearance of fermions worsens the conditions for the BE-condensate existence on the back-
ground of unoccupied fermion states. At the same time, the existence of fermions stimulates the appear-
ance of the BE-condensate of the other type [8]. For example, in [9] and [10], the mixture of fermionic
40K and bosonic 87Rb atoms in a three-dimensional optical lattice was studied and it was observed that
an increasing admixture of the fermionic species diminishes the phase coherence of the bosonic atoms.
In [11], for the same set of fermionic and bosonic atoms (40K and 87Rb), there was noticed a shift of the
line of MI-SF phase transition depending on the sign and absolute value of boson-fermion interaction
(which can be tuned in a wide range using Feshbach resonance).

Consideration in the hard-core boson limit allows one to describe SF-MI transitions in the regions
of the MI lobes contact points. The nb 6 2 restriction enables one to analyze the more general case of

Figure 3. (Colour online) (µ, |t0 |) phase diagrams for different chemical potential values of fermions.
Here and hereafter, the curves for 1st (2nd) order PT are depicted as solid (dashed) lines.
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Figure 4. (Colour online) (µ, µ′) phase diagrams. On the left-hand side: hard-core bosons, ground state
diagram for nB 6 1 is taken from [1]; the diagram for nB 6 2 case (on the right-hand side); T = 0.005U ′.

Figure 5. (Colour online) (µ, |t0 |) phase diagrams. Ground state for nB 6 1 (on the left-hand side) taken
from [1]. T = 0.005U ′ diagram for the nB 6 2 (on the right-hand side).

separated lobes. That is enough to understand the structure of (µ, |t0 |) diagrams at arbitrary nB values
with an account of the possibility of the 1st order PT.
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Модель Бозе-Фермi-Хаббарда в обмеженому гiльбертовому

просторi

В.О. Краснов, I.В. Стасюк
Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, 79011 Львiв, Україна
Показано, що в моделi Бозе-Фермi-Хаббарда, що використовується для опису надхолодних атомарних
бозе-фермi сумiшей в оптичних гратках, обмеження nB 6 2 дозволяє проаналiзувати бiльш загальнi
випадки роздiлених куполоподiбних областей iснування фази моттiвського дiелектрика в порiвняннi з
випадком nB 6 1 (наближення жорстких бозонiв). Також показано, що обмеження за числом бозонiв
не бiльшим нiж два на один вузол, є достатньо для того щоб зрозумiти структуру (µ, |t0 |) дiаграм при
довiльному значеннi nb з врахуванням можливостi iснування фазових пепреходiв 1-го роду.
Ключовi слова: модель Бозе-Фермi-Хаббарда, бозе-конденсат, оптичнi гратки, фазовi переходи
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