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biochemistry
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Physics models
methods

Systems under study

Biology Chemistry

Biochemistry

Physical Biochemistry
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A bit of biology

O3Hakn “Kutta’:

OMmpuUMaHHS | nepemaeopeHHs eHepeall 3
cepedosuuia - memaborsiam

camMoop_aaHizauisi YHepes sUKoOpUCMaHHSs
eHepail — cUHMe3, ymeopeHHs
MaKpOMOJIEKYIIAPHUX KOMIIIIEKCI8

30amHicmb 3arnam Smoegysamu C80H
b6ydogy — eeHemu4HUU KOO

30amHicmpb 0asamu
MOMOMCMEB0 - PO3MHOXXEHHS
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Diversity of life forms

 Classification based on similarities and differences in ribosomal RNA seq.:

Prokaryotes= unicellular

organisms that lack Cells

a membrane-
bound nucleus, mitochon o %
dria, or any other Bacteria ~ Archaea
membrane- 3 W =

bound organelle

e <3um

gLl ERCITI  « diverse habitats
walsbyi
. Some aspects of
archaeal biochemistry
are unique, such as their
reliance on ether lipids in
their cell membranes

Geothermal vent on the
Atlantic ocean floor

Baumketner, BioSim, Lviv 2019

Permafrost in Antarctica

Eukaryotes= cells
with a nucleus that

stores genetic
information.

T Eukarya
e animals, plants, fungi (e.g.,

mushrooms, mold)

e definition: a cell that

contains its DNA genome
within a membrane-bound

nucleus
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Structural hierarchy in eukaryotes

KniTuHa — uernmHa gnga BCboro
XMNBOro

opraHiam
A

A

opraH

A

TKaHWHa
A

KNiTUHa

Blood cells

Illustration by Cell Imaging Core of the Center for
Reproductive Sciences.
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Great diversity of cells

shape
size
. = _ structure
(GM_;HINIWMHHMINIIMXT .
G
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Cell structure

KunwkoBa nanuyka

E. Coli (model prokaryotic cell)

plasma DNA  cell wall flagellum
membrane

ribosomes

Baumketner, BioSim, Lviv 2019



Cell structure

®ibponnacT — KNiTMHa CNOMNYy4YHOI TKAHWHKU (KoNnareH Ans 3aroloBaHHSA paH)

Fibroblast (model higher eukaryotic cell)

microtubule

centrosome with
pair of centrioles chromatin (DNA) extracellular matrix

nuclear pore \
nuclear envelope

5pm

o)

lysosome

/ V(e

actin
filaments =
nucleolus
peraxisome
ribosomes
incytosol  Golgi intermediate plasma nucleus endoplasmic mitochondrion
apparatus  filaments membrane reticulum
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Biological length scales
bases m

zooumeoml_b T

epithelial

DNA cell .
viral capsid

l 10 nm
bacteriophage

| S—
0.1 um
ZOOMING IN |
_— -

4

http://learn.genetics.utah.edu/content/begin/cells/scale/
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Hierarchical organization

POCTaHHS PIBHSA opraHisauil

Organelles

-

- Macromolecular Assemblies

-

Macromolecules

n_m

Simplest Molecular Building Blocks
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Cell atoms

—H-—

oxygen nitrogen
Organic Atoms (H, C, N, O) 99% of cells
Ions (Na, K, Mg, Ca, P, S, Cl) 0.9%
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Chemical bonds in biology

Two atoms are close enough for their atomic orbitals to mix.

The electronegativity values for the two atoms are...

F_fﬁ_ﬁ_—___—d_ﬁ_——_—_—_—_———_

Similar Very different

| lonic Bondin
The atoms are classified as... g

Nonmetals

Covalent Bonding

The electronegativity values are...

—'—'_'_'_'_'_'_'_'_'_'_'_\-\_\_\_\_\-\_\_\_\_‘—\—\_
Very close Different
Nonpolar Covalent Polar Covalent
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Polar Bond

Creates permanent
dipoles

Nonpolar Bond H

Covalent bonds
-1

[
malecule positive negative
ion ion
covalent bond ionic bond

When sodium (Na) and chlorine (Cl) are

L combined, the sodium atoms each lose
an electron, forming cations (Na*), and the
st st chlorine atoms each gain an electron to form
H H anions (CI7). These ions are then attracted to
each other in a 1.1 ratio to form sodium chloride
water
(NaCl).

Na + Cl — Na® + ClI- — NacCl
oxygen
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Noncovalent bonds

Hydrogen Bond

Electropositive hydrogen atom is shared
by two electronegative atoms. Covalent
bond is partially distorted. Interaction is
weak, last a short period of time due to
thermal motion.

Molecules that contain polar bonds and
that can form H-bonds in water dissolve
easily in water (hydrophilic). Nonpolar
molecules do not dissolve in water
(hydrophobic)

Van der Waals Interaction

The electron cloud of an atom fluctuates,
producing a flickering dipole. Such
dipoles induce oppositely flickering
dipoles in a nearby atom, generating a
weak interaction.

hydrogen bond ~ 0.3 nm long

donor acceptor
atom atom
=y==n Il @)=
| I

covalent bond
~0.1 nmlong

van der Waals
radiusof O =1.4A
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Hydrophobic interactions

[iopodob — peyoBMHa sika He 3MILLYETLCA 3
BOLOH0, Onil, HadpTa Ta iHLWIi BYrreBOaHi

Asuwe suwmMosxysaHHs1

[iOpoghobHIi YacmuHKU 3nunarmeCcs —
- " ot
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Energy scale

average ATP hydrolysis C-Cbond
thermal motions in cell breakage
ENERGY
CONTENT B I
(kcal/mole) 0.1 1 I 10 100 1000
noncovalent bond green complete
breakage in water light glucose oxidation

* Molecules do not fall apart by thermal agitation.

* The energy of noncovalent interactions are in the range of thermal noise
in the environment.

» ATP hydrolysis energy exceeds noncovalent interactions and thermal
motions

 Covalent bond energy can be used to synthesize multiple ATPs
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Specifics of biological systems

1) Processes are driven by free energy not internal energy

Protein folding Formation of hydrogen molecule

Q‘\//\}\ N =
| E
5 -' 2
E l,‘\]}/ .«“‘; A . Internuclear distance, r (pm) —
—l/ )]
— &5 - / m
) s ) l ¢
= % ) rfesal )/ -
O \ (:’\J}’ f E |
: N :
= W :\ m- 77777777777777 :
8 ‘-.‘ i @ ;.5 432 r=74
i o Observed
'-‘(‘,_-4 —_ . H H) borswz ;ie;tance
"/ One order of magnitude i,

— " differencel!
a) Strong influence of thermal fluctuations and entropy

b) Important role of non-covalent and solvent-mediated interactions

c) Very little chemistry other than in enzymes
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Biological molecules
A, Faity acyls (FA) %"

Proteins Lipids
=%
B Glycaraipids (GL)
0 Gyeaso-
shiagdholipets (1G]
Ji.\_
0 Sterol bpids (5713 @
e . i E. Sghings- ﬁvﬁ
. " ipids | 5P
e .---I.I' --‘-‘-‘_""‘—-._._‘ﬂ" ¥
= e S
. - S ugars
Nucleic - 9
aC|dS gl'_.tr,'rnld:h_lrdc i hise plucase galactase fructose  sedoheptulos:
[Ny i, N h, 2 n, o 'I’ *I'
|I' 1I' ‘I. li.'f H —lil'—1 1H H=- |.I'—I H
H-r=i0H MH=¢=igg H=-C=0H  H=(=iH =i [l
| i
|:—4|'—|]|| H={'={iH iHr—JI'—II Hi1—¢-H HU-(I'—H HI:—LI'—H
||| H-el--rm H-{I'-HH H:J—t'--H H-:|-1llr H-I,I'-IZJH
1
H--:I'—(m H-JI'-I'?IH H=¢={H El-l:l“-'llll H-|,I'-I.JH
| 1 | |
||| H={=0H  H={=0H  H=0=0H  H={-=0H
[ [
H EI H H= rl'-null
[
H
Sugars can have any number of carbon atoms, each with an oxygen stom
) bomded o it One of the oxygen stoms has o double bond.
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Different S a rs Carbohydrates with
monosaccharides u g hydroxyl groups
(1) Aldoses RNA (2) Ketoses Different isomers
D-Ribose (Rib) D—Xylose (Xyl) L-Arabinose (Ara) D-Ribulose (Rub)
HOCH, (HOH Glucose
0 OH C:O 0. " CH,OH
- OHH H— c OH S CH,0H I
H HOHzC H 0 2RO, on
OH OH e C oH OH OH l/' |
Pentoses CHon C\OH H /|
HO I/ H
D-Glucose (Glc) D-Mannose (Man) D-Galactose (Gal) S D-Fructose (Fru) C —fli
HOCHZ HOCHz HOCHg I _20 H OH
HO é H 1 R
OH H OHHO OH H | HOCH,,  on |
H—C—OH _ 3 z HC—0OQH
! Y CH,0H
H OH H—C-Olial " ? 5 HO-CH
Hexoses CH-OH
2 OH H % H T_ OH
@ Deoxyaldoses DNA O Acetylated amino sugars 5 HC—CH
" 2-Deoxy L-Fucose (Fuc) N-Acetyl-D-glucos- N-Acetyl-D-galac-
b-ribose (dRib) amine (GIcN?’-\c) tosamine (GglNAc) G CH,OH
HOCH2 H HOCHZ D-Glucose
0 Hl—0 HO —0
H H cHD H
H Y, H HO }~OH OH H )~~OH
OH H HO H 2
OH H H HN—G—CH; H HN—C—CH

~

Energy source and storage.

~

OH

f-D-Glucose

OH

a-D-Gluooss

Cell wall (mechanical support)
Glycoproteins, glycolipids (surface adhesion, extracellular signaling,
cell-cell interactions)
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sSugars

monosaccharide
Polymerization
OH HO H,0
VAP st glyto:ldk bond
in disaccharide

— B. Disaccharides

CHZOH CH20H CHZOH CHZOH
OH op
H
OH H 4OH OHHTO4OHH
1. Maltose 2. Lactose 3. Sucrose
o-D-Glucopyranosyl- B-D-Galactopyranosyl- a-D-Glucopyranosyl-
(1+4)-D-glucopyranose (1-4)-D-glucopyranose (14»2)-B-D-fructofuranoside
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sSugars

— A. Polysaccharides: structure

HOCH> HOCH,
HF—0H  H}—oH LyCagen -
¥ _ ¥ ranched
OH HJ 4C0H H)T homopolymer
—O0 a O Oa
H OH : Ho6|
HOCH2 Reducing end
H} —OH H
OH H/! OH
—O0 a O
H OH
HOCH,  HOCHp . HOCH 3 HOCH,
H}—0 H }—o0 H }—o0 H /lfo
oo NN A NN A NN A AN\
O N\OH HA ! O 4 HA! O4ANOH Hp! O 4 2H O
3 N
H H H H
H NHCOCH3;/ H NHCOCH; H NHCOCH3/ H NHCOCH;
0 O
HBC_é_ =0 H3C—'C—C:O Murein - linear
| | prke heteropolymer
H 'NH H l?IH

|- Peptide
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— B. Important polysaccharides

sSugars

Poly- Mono- Mono- Linkage | Branch- | Occurrence Function

saccharide saccharide 1| saccharide 2 ing

Bacteria

Murein D-GIcNAc | D-MurNAC" | B1—4 — Cell wall SC

Dextran D-Glc — 2l—=6 | al—3 [Slime WB

Plants

Agarose D-Gal L-aGal? B1—4 | p1—->2 |Redalaae(acar) | WB

Carrageenan | D-Gal — B1—3 a 1= 4http://www.irmed.ir WB

Cellulose D-Glc — B1—4 — Cell wall SC

Xyloglucan | D-Glc D-Xyl (D-Gal, | B1—>4 | p1->6 [Cellwall SC
L-Fuc) (B1-2) (Hemlcellulos_e) SC

Arabinan L-Ara —— al—5 a1—>3 | Cellwall (pectin)

Amylose D-Glc — al—4 — Amyloplasts RC

Amylopectin | D-Glc — al—4 | a1>6 |Amyloplasts RC

Inulin D-Fru B2—1 —— Storage cells RC

Animals

Chitin D-GlcNACc — B1—4 — Insects, crabs SK

Glycogen D-Glc — a1—4 | al—>6 |Liver, muscle RK

Hyaluronic D-GlcUA D-GlcNAC B1—4 — Connective tissue | SK,WB

acid B1—-3
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— B. Oligosaccharide inimmunoglobulin G (IgG)

sSugars

D-Gal D-GlecNACc
HOCH; LiSL Core structure
HO O H O
H H
OH H 0] OH H
H H H
H OH H NHCOCH; http://www.irmed.ir |
HOH,C iy i
— [ |
D-Man HH OH HCH3 OH [
0 I-Fuc KH HO e
N-glycosidic
HO 0 bond
OH H|

HOCH2

H NHCOCH3 H NHCOCchHz

D-GlecNAc D-GlcNAc
. C e O

Asn-297
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Sugars
attached to
proteins=glyco
proteins



— C. Glycoproteins: forms
O-linked

NeuAc
Gal

GalNAC —— NeuAc

Ser

sSugars

Man Man Man

Man Man Man

L \../

GlcNAc

Asn

Mannose-rich type

. NeuAc
N-linked I
NeuAc

Gal Gal I
Gal
GlcNAC  GleNAC |

—

Man Man
\../
Man
|

GlcNAC

GlcNAc —  Fuc
|
NH

Asn Protein

Complex type
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Lipids

(]
I
—0o

— A. Classification

Hydrolyzable lipids

i
S T e S e N ¥ e P i

T
C=0=CH
i

—CH

N\/\/\/\/\/\/\/C_O d

Esters
i, Fats Non-hydrolyzable lipids
Z Waxes

Sterol esters

= = R e e T T g

R S Hydrocarbons
0 Alkanes
C-0-H Carotenoids
H{~0—P—0®
&
Phospholipids =
Phosphatidates
Phosphatids AICOhOIS_
Sphingolipids Long-chain alkanols
Sterols -
0 Steroids
P e T a W T T e W W Ot
2 PV Ve Ve " Y sl :
—0-CH o
i Ht=o—b- o—/\l'f:'-bol, Acids 1
o O Fatty acids -
i Eicosanoids
/\/\/\/\/\/\/\/\/\/\/Yﬁm
OH
— &
Glycolipids "
Cerebrosides el
Gangliosides o
OH
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Lipids

— B. Biological roles

Fa‘t Glycerol Membrane 8 Cytoplasm
Fatty acid ADP+P; ATP §
- Fh_c()jspho*
0> ( ipi
Mitochondri IL)I - _8_§ g
itochondrion ilayer
COy H>0 8
1. Fuel 2. Building block
, W Signaling Anch&
CoQ ¥
Cofactor Visual pigment
3. Thermal insulator | 4. Special tasks
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— A. Carboxylic acids

Lipids

Name Number of carbons
Number of double bonds
Position of double bonds
Formic acid % :0 O Not contsinad
Acetic acid 2:0 _§ in lipids
Propionic acid 3:0 o
Butyric acid 4:0 QL ~
Valerianic acid 5:0 Q_~_
Caproic acid 6:0 A~~~ HOOC— CHy—CHy— CHy—CHy—CHs
Caprylic acid 8:0 C NN Caproic acid
Capric acid 10:0 | P N
Lauric acid 12:0 QA
Myristic acid 14:0 e A~ AAAAAAA
Palmitic acid 16:0 O N N N N
Stearic acid 18:0 0 N P
Oleic acid B (O N
Linoleic acid 182 (0 WL P
Linolenic acid 18:3; e s
Arachidicacid 20:0 O N D Y VN
) Arachidonicacid 20:4; 58,1114 O~ ==\
Behenic acid 22:0 A A S S AU
Erucic acid 22:1: 13 O N N N N N e NP
Lignocericacid 24:0 B A A AN
Nervonicacid 24:1; 15 (0 N N P P

‘{333 Essential in human nutrition

Baumketner, BioSim, Lviv 2019

Fatty acids



Lipids

1. Fats

ko 20
Phosphatidate

/_‘\

— A. Structure of fats, phospholipids, and glycolipids

& [Amino alcohol
Phosphatide \7® or sugar alcohol

Sphingosine

®9_ Amino alcohol

or sugar alcohol

Sphingophosphc;lipid
Sphingosine 3
9
2. Phospholipids

i
C—0=CH;
c—0—C—H 0 CHa
0 H—0—P—0—(CHy)EN—CHy
i i
o® CHy
Phosphatide
fphosphatidylcholine.
ecithin)
CHy cocP
@l | @
HO—CHy= CHyN—CHy HO—CHy— CH—NH3
CHy

Choline

@
HO—CH,;—CH,—NH;,

Ethanolamine

ﬂ
]
O~0
e

Lysophospholipid

o

S N N P N N N N X
NH

/\/\/W\/\/c‘ -G~
SCTH oM
Sphingomyelin

H
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Serine

OH OH
H OH

HO H
H OH

myo-Inositol

Amino alcohol
or sugar alcohol

[e] CHy

) Il o
H =070 =0—(C—N—C4

o® CHy




Amino acid

carboxyl
group

/ Zwitterion
H

amino
group

\ H
I
C—

o pH7 |
&'I, CH,
a-carbon /
side chain (R)
nonionized form ionized form
(a) H O H

o}
(| (|
*H;N—C,—C— 0" + *H,N—C,—C—O"
| I

R, R,
k‘i H,0
H O H O
([ Il
*H,N — Ca—C*flr— ¢—-C—o0

| I

R, H R,

Peptide

bond

Proteins

A Q
» /
C \
polypeptide backbone | side chains =
t\ CH, CH,
R ] boxy
f carboxy
::“:.“;:::EE"’ H—=N—C—CTN—C— —c—c —c—: terminus
I-II ‘ I-II l-[I | ' Ill \ or C-terminus
CH, CH,
JH peptide | peptide bond
i 2 bonds / \
5 H4C CH,4
|
CH, polypeptide backbone
SCHEMATIC
nonpolar
side chain
SEQUENCE Met — Asp — Leu —  Tyr
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— A. Amino acids: functions

Proteins

Components of:

Peptides
Proteins ‘
Phospholipids

OOOOUOO

Neurotransmitters:

Glutamate
Aspartate X ‘
Glycine =

L-Amino acid

Precursors of:

Keto acids

. Biogenic amines
Glucose
Nucleotides
Heme, creatine

Transport molecule for:

’ NH:z groups

&

Baumketner, BioSim, Lviv 2019




Proteins

— A. Orbital hybridization and chemical bonding

S Py Py Py s
] I 1 g \ U
sp3 9 - anuivalent sp2 3 gqUWalent
Hybrid- 9 sp .atornic Hybrid- sp ptomic
ization ‘ orbitals ization orbitals
(tetrahedral) (trigonal)
1a 2a
1s Orbital sp? Atomic 4 Bondin 5 Bondin
f orbitals o-molecular o-molecular ‘
of orbitals orbitals
carbon

Bonding
n-molecular
orbitals

]

Methane Hydrogen phosphate  Ammonium
lon
H 0] H
| [l 4@
H—C—H ©0—P—0OH H--N--H
| | ¥
H o H
1c

Alkene Carbonyl Aldimine
compound
R\ /H R\ R\
c=C =0 C=N
/ \ 74 / \
H R' R' H R'

2c
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No rotation
around double
bonds!



— A. Peptide bonds

Seryl alanine
(Ser-Ala, ®H3N-Ser-Ala-CO0®, SA)

Proteins

— B. Resonance

\/H

C—N
4
3 %

Resonance
structures

=N

F —
&_/ Mesomeric

structure

No rotation around C-N or O-C bonds.

Cost of rotation
is 90kJ/mol.
Compare to
2.5kJ/mol of
thermal energy
at 300K

The peptide bond is planar and rigid!

Phi/Psi angles are the only real degrees of freedom of the protein backbone
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Ramachandran plot

— D. Conformation space of the peptide chain

@ (Phi): Rotation about
N- Cq
W (Psi): Rotaéion about

te . t

.
B-23
D o OC
120
2, ﬂp?
60
Qey
Vo — ¢
:{
- O
-120 d-
A-9 B-20 o B-8
180 -120 60 0 60 120 180
1 ¢
4 Pleated sheet (antiparallel) o Helix (right-handed)

Pleated sheet (parallel) o Helix (left-handed) Collagen helix
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H H o H o
(o] 7 v
H o) W D e e H3N"'—£‘—C/ B H3N+—+—<
T s 3 &Hy © o~
H3NT—C—C H3N"—C— é ~o— H> H3C—CH
CH3 & o CH H2
H3 H3 SN tl:
HzC Hsz Hz
Glycine (G) Alanine (A) Valine (V) Leucine (L) Isoleucine (I)
Nonpolar Gly Ala Val Leu lle
side chains
Les° ;
rd 0
H3N+—C—C H y
? -_— H N+—é—c¢° H3N+—+_c< = T iz
CH2 3 [ No- i © HaN*'—C—CT
Ha CH2 H IC éH °
! NH R
? CH»
CH3
Methionine (M) Phenylalanine (F) Tryptophan (W) Proline (P)
Met Phe Trp Pro
H H
o H | o
i o + 7
H H H3zN*+*—C—C | 49 H3N+—C—C
| //o é & - | /0 ¥ ] \0— H3N+—C—C< \0—
H3N"‘-—?—-C\ H3N+—I—C\ H3N —?—C Ha (':H o— Ha
« = e o~ 2
Polar side ?-lz 9 /C{-] b OICHz Ic fﬂz
chains CH s
OH 3 SH X C\
HN O N
OH 2 HoN o
Serine (S) Threonine (T) Cysteine (C) Tyrosine (Y} Asparagine (N) Glutamine (Q)
Ser Thr Cys Tyr Asn Gin
Acidic Basic
H
I O HaNt— I s H3N+—C—C
HaN+—c—c? 3 i H3N*—C—C < _— T H o
I No— ; | o CH2 é v
. CH2 H3N+t—C—C
Electrically _ | H2 L Ng=
charged 7R ‘I:l'lz ‘|5H2 CHzn
side chains o~ o CH2 | [[
| NH NH
CH2 =*NH2
+
NH3 NH2
Aspartate (D) Glutamate (E) Lysine (K) Arginine (R) Histidine (H)
Asp Glu Lys Arg His

Figure 3-5 Biological Science, 2/e

© 2005 Pearson Prentice Hall, Inc.
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Primary structure

...-ASP-ALA-VAL-ILE-ASP-SER-GLU-PRO-THR-...

...DAVIDSEPT...
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Secondary structure

H- bonding between N-H and C=0 groups without involving side chains.

Alpha Helix Beta Sheet

amino acid

C=0 of one residue bond to N-H of the ™ "

fourth residue C=0 of one residue bond to N-H of a
3.6 amino acid residues per turn. residue on another strand

Helical pitch is 0.54 nm. 0.48 nm between strands

0.35 nm per residue
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Tertiary structure

* Helices and sheets often combine in various ways.
* Certain combinations of a and 3 repeat over and over, called MOTIFS

Four Helix Bundle Beta Barrel Coiled Colil
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Protein folding

Driven by noncovalent
bond formation and

hydrophobic effect

Folded state is the
energetically stable state,
spontaneously occurring

in water.
polar nonpolar
side chains side chains
I
| o o t ‘@ 3
D=g® o — T
5 ¢ -
. o) ‘Z
o e 88__4¢ :
3D shape of a protein is ga Y Vo sadiophelitc polar sidechains
. - - > re r m
determined by its amino r it o of the molecule
1 nonpolar can form hydrogen
acid sequence. S chakss ot 0 watdr

Baumketner, BioSim, Lviv 2019 Yloliedt pelypeptide folded conformation in aqueous environment



Interactions between proteins

actin molecule

. Minus enc

plus end
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Function of proteins

Enzymatic proteins

Function: Selective acceleration of chemical reactions

Example: Digestive enzymes catalyze the hydrolysis
of bonds in food molecules.

 Enzymes are a type of protein that acts as a
catalyst to speed up chemical reactions

* Enzymes can perform their functions
repeatedly, functioning as workhorses that
carry out the processes of life

e http://www.biotopics.co.uk/other/morinf.html
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Function of proteins

Storage proteins

Function: Storage of amino acids

Examples: Casein, the protein of milk, is the major
source of amino acids for baby mammals. Plants have
storage proteins in their seeds. Ovalbumin is the
protein of egg white, used as an amino acid source
for the developing embryo.

/ \
' ‘;
. .
\ —_—
\ A\
\ \,
- -
|

Ovalbumin

1:31\,
Amino acids
for embryo

® 2011 Pearson

Education, Inc.
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Function of proteins

Hormonal proteins

Function: Coordination of an organism’s activities

Example: Insulin, a hormone secreted by the
pancreas, causes other tissues to take up glucose,
thus regulating blood sugar concentration

Insulin
secreted

Normal
blood sugar

Insulin protein entry:
https://www.ncbi.nlm.nih.gov/protein/AAA59172.1

Baumketner, BioSim, Lviv 2019



Function of proteins

Contractile and motor proteins

Function: Movement

Examples: Motor proteins are responsible for the
undulations of cilia and flagella. Actin and myosin
proteins are responsible for the contraction of
muscles.

Actin Myosin

L -

b

100 um

Muscle tissue
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Function of proteins

Defensive proteins

Function: Protection against disease
Example: Antibodies inactivate and help destroy Recognizes
viruses and bacteria. pathogen

(antigen) via

Yrf . Antibodies\_( :C 2 fragment
e Y antigen binding
Virus /;' Bacterium —(—9 motif

2011 Pearson Education, Inc

Transport proteins

Function: Transport of substances

Examples: Hemoglobin, the iron-containing protein of
vertebrate blood, transports oxygen from the lungs to
other parts of the body. Other proteins transport
molecules across cell membranes.

Transport
protein

Cell membrane

5 2011 Fearson Education, Ing
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Nucleotides

Phosphate
HoN Nucleobase
N—(
2 | 1L
HO—P—0 N~ N
- $r::;jl
O Sugar ring
(ribose or
OH deoxyribose)
Nucleoside
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Nucleic acids=poly-nucleaotides

D,: o~
o”h
- Hi Ny ANH;
\l i
\D - N"‘{#c"\
0”\ O NZC
c c M
/ h"
H H
OH OH
, triphosphate = ribose adenine |
. adenosine
Uracil
O
ﬁj\/ﬁ
N @)
H Oligonucleotides (DNA, RNA)

ACTGU — primary
bases

Cellular energy (ATP)

{ ACGT - DNA
ACGU - RNA

5e
-o—p!-=n 0
t!-' N NH .
nin
s'r.I:H;. (H H'LHH, & guanine
4K 1
L 3
i
0—P=0 NH,
c!'p N N
e <, @ K adenine
0
-ﬂ—L=ﬁ 0
‘!“zl :: "l - thymine
i
ﬂ—lli':ﬂ NH,
0 N
SéH, : rﬂ“""’o - cytosine
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ATP as energy source

phosphoanhydride bonds

e a8 48
1:4—Lmr—|!’—t::-|i'—|::—c1»|2

5
energy from H,0 m

sunlight or
from food

- o— -
H' + 'D*}—DH + "t‘.)—III’—t::i—lil'—t:J—Ci-'l2

inorganic
phosphate (P,)
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energy available
for cellular work
and for chemical



DNA structure

AT and GC . y
pairings are .
possible due to minor
HB geometry groove
sugar-phosphate :
e major
H
o /N —H i ﬂﬁc . groove
\N _,,(f \N = il H*C —H
/ W /
3 fc = c\ ;: c\ -
Hf N \ﬂ e —MN H

2nm

* Forms a double helix.

* Each turn is made of 10
nucleotide pairs.

* 3.4 nm between adjacent
nucleotide

Play DNA packaging movie!
S O ST A http:/f'www.youtube.com/watch?v=ghSIBhFw(4s
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Genetic code

Multiple codons
for
the same AA

Tyrosine

be

Cysteine

Some codons
are silent, or
are they?

Unique
equences

Arginine

Figure 1.4 Physical Biology of the Cell, 2ed. (© Garland Science 2013)
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How is genetic information stored?

[eH — Ko ansa ogHoro abo Aekinbkox binkis. m
%
. /s

DMA (Deoxyribenuciels Acid)

!lcj‘x

——* Bame Pairs

46 total chromosomes in each
normal cell, grouped into 23 pairs,
referred to by number
Corresponding sets of maternal and
paternal genes in each pair of

chromosomes *

A specialized pair of chromosomes ) [, =

that determines a person's sex: 5 1\\

females have two X chromosomes < .+ Chromosome

and males have one X and one Y. % e
- - _.._L%H__J'I =T

Canlrarmare

0 A —

Chrematdid  Chriomatid

S Cali during Prophase

Baumketner, BioSim, Lviv 2019



Transcription + translation

1 ) DNA synthesis

I (replication) )
R Proteins
(transcription) DOGMA
RNA Proteins
™I I T TY
3)
———————————— protein synthesis
(translation) p .
PROTEIN roteins

amino acids DNA transcription and mRNA translation
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DNA replication

DNA primase

DNA-ligase RNA primer
DNA-Polymerase (Pola)

(R Ilh‘\' Rl

2] \lll
Okazakl fragment
w'|I|I|I|'|I|I|'|| LA -

DNA Polymerase (Polb)
Loosening

Helicase I
/ Single strand, -
Binding proteins the SuperCOll

Unzipping

Lagging

strand a

N

il

Leadlng
strand

Catalyzing the
elongation by
one unit
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DNA replication

template strand

template strand

Show DNA polymerase advanced
http://www.youtube.com/watch?v=19ArIJWY ZHI&feature=related
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Transcription

RNA polymerase
Transcription factors Speed of 10-100 nts/sec

Coding
5 g Strand
e AEEEEEEEEEEEEEEEER
emplate
MRNA Strand

1.RNA polymerase, together with one or more general transcription factors, binds

to promoter DNA.

2.RNA polymerase creates a transcription bubble, which separates the two strands of the
DNA helix. This is done by breaking the hydrogen bonds between complementary DNA

nucleotides.
3.RNA polymerase adds RNA nucleotides (which are complementary to the nucleotides of

one DNA strand).
4.RNA sugar-phosphate backbone forms with assistance from RNA polymerase to form an

RNA strand.
5.Hydrogen bonds of the RNA-DNA helix break, freeing the newly synthesized RNA

strand.
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Protein synthesis=translation

__ amino acid growing polypeptide chain

[tryptophan)
\T/ STEP 1 incoming tRNA STEP 4
loaded with

specific
NA 2 ~ amino acid 2
molecule — tRNA . -‘
binds to
its codon }

K:l_;;; N\ Of‘ mRNA

| R two subunits STEP1 new tRNA
base-pairing bringing
' o

 F— |
codon in mRNA

NET RESULT: AMINO ACID 15
SELECTED BY ITS CODON

Transfer RNA (abbreviated tRNA)
is an adaptor molecule composed
of RNA, typically 73 to 94
nucleotides in length, that serves
as the physical link between the
nucleotide sequence of nucleic
acids (DNA and RNA) and the
amino acid sequence of proteins.
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Proteins modifications

— B. Post-translational protein modification

D: Pyroglutamyln‘ B: Oligo- B: Oligo- D: Phospho- D: Acetyl- B: Pyridoxal-
Acetyl- saccharide saccharide Methyl- Methyl- Liponat
Formyl- (O-glyco- (N-glyco- y-Carboxy- yHydroxy-  Biotin
Myristoyl- sylation) sylation) (Glu) Retinal

Ubiquitin
OH CONH; Co0° ®NH;
HoNe b b b b
Ser, Thr Asn, Gln Asp, Glu lys
D: derivative  B: bondswith Pro (O
FI
Tyr Phe His Gys
©00C i
X D: 3-Hydroxy-
HN” N SH
4-Hydroxy-
\_/ Hydroxy
OH

D: Amido- D: Phospho- D: 4-Hydroxy- D: Phospho- D: Disulfide

(CONH?2) lodo- (Tyrosine) Methyl- Prenyl-
Sulfato- B: Flavin B: Heme
Adenyl- Flavin

Baumketner, BioSim, Lviv 2019

Modification
Phosphorylation
Acetylation
N-linked glycosylation
Amidation
Hydroxylation
Methylation
O-linked glycosylation
Ubiquitylation

Pyrrolidone carboxylic
acid

Sulfation



AODEeTKM XUTTH

NUCLEIC ACIDS PROTEINS

ALPHABET
nucleotides
codon
A T
WORDS

gene

I - 1
SENTENCES (JUO00000, 00000000

Figure 1.2 Physical Biology of the Cell, 2ed. (© Garland Science 2013)
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Metabolism

[Mpouec nepeTBOpPEHHS eHepril B KIiTUHAX

food the many molecules
molecules that form the cell

CATABOLIC ANABOLIC
PATHWAYS PATHWAYS
: or \ O AHaboni3m
KaTaboni3m e X 3
' BN

the many building blocks
for biosynthesis
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[Mpuknap katadboniamy: [Nikoni3

[Tpouec nepeTpaBnioBaHHA LYKPY (MMOKO3KM) AOCUTb CKaaHun. B pesynberarti
yTBOpOTLCA Moniekynu ATP Ta nipysat. CnoXuBaeTbCs KUCEHb OS5 peakuil okcuaadii

Ta BUAINSAETLCSA ABO-OKNC BYTITELIO.

R
!i'wﬁ a e
"e 0 B
Pymuwaie 4 o v oF i 02
i - —
1-\.| Eymir L o : o o | f.ﬂ [pme
ATff- B ™ R "_\~,'LT':7~ _h-e. ;lh_ -q-...______i % /
acs S MR Suoose 0-phasphate “ @
wl &

Frucioss S-phazphose B8

CO2 ~ = %@

ﬁh a i
¥

mmmaemh',m.'aaeﬂ h ﬂ

..-r

A

Ra
2-phasphaglycarate = g ——
¢ a =
e - @
Legend L X
& Hhydmgm il (Lgaf=aganlye- g -]
Ao Shake o, ¢
-ﬂ g e
I-E:H Frasphe s gran s I:.:::l‘:ll
1 g IrrwElp pheEd s — .II.".'\-lI'\iilllll'i:l-l- n
Mg T Magresd umim o dxice] :'.'IJI"":I“.I i # ! T m
[T ‘-I.II:I.IILI-I'H'JII e Rl i 13-hisd i L 2P ﬂ (]
Fane .:m ::_I-:u oy bt Difryd moryaceion e phasphafe
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-

e

o

How to model biological molecules

gtructures

3

ling behawior of man

Mes —————=
Ensrgy dominancs -s—————ap=

Amlstu: 107 &
i
Ll
o
o E i
m
= 107" m ‘-l’ / .
o - 10-% 5
il Guantum
Ll #
b

K

Praprotink M, et al. 2008.

Annu. Rev. Phys. Chem. 59:545-71.

Classical ferce hiald MD, MC
Embedded atomistic-guantum methods
CarFamnello MD

Cluanfum MC

Cluanium chamical methods

For harmonic
oscillator, for
instance: —_

(- W)
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MACRO : : :
$ 5 i [ S P Very I!ttle chem!stry .happens during the
£ m .l . Continuum hydrodynamics majority of all biological processes so the
B 5 e Eﬂi;E;:EﬂEE ﬁtjgi;:ffﬁamiﬂi appropriate level of description is
= Bl bl classical. This entails:
: ;
g 10%s
- m;m e 1)Ad|§bat|c approxlmatlop.
Malscular - MC staticsidynamics Nuclei are moving in the field
g ey ' MD, NEMD created by the electrons.

2) Relaxation processes

taking place on picosecond

timescale and slower.

MICRO

When are \A j/ @

QM effects
important? -+ -
Closs\ a L 1 ___L
SR 8 DL, T
) £ Vs ) >> ) pd
at T=300K



Separation into bonded and non-bonded energy terms

Intermolecular Forces

Intramolecular Forces

Potential energy is divided
into bonded and non-
bonded contributions!

(forces between molecules) (forces within molecules)
I Il I
WEAK MODERATE STRONG VERY STRONG
1] 2 5 10 20 100 400 1000 *
dispersion H-bonding ion-ion
’ dipole-dipole ’ covalent bonds '
ion-dipole * units are in kJ/mol of interactions
E* Electrons shared by two nuclei
3
11
~300kJ/mol
Perturbation theory H,
doesn't’ work. _ _
Valence-bond theory, Chemical bonding
LDA, Hartree-Fock : : -
ﬂ -
_2//__-—’_’—-——_ 4
7 Hlu'lﬂ-ﬂ
~1A

This part of the curve needs to be handled differently from this part!

Baumketner, BioSim, Lviv 2019

Dispersion
H+H interactions
_ Perturbation theory.
10kJ/mol Many QM treatments,
/ LDA DFT, HF don't
Z ﬁ' work
>3A



Non-bonded energy

Multipole expansion for point charges

Potential energy of the set of charges qi
interacting with charge q at the origin

N N 1
q4; v
U= ) —— = CIZOIier‘V—
—~ |R + 7| i R
1 1
where e’”V— =, TV _ = l_.‘é VA
R IR + 7| e = 1+Tl‘7+2(7”l‘7)(7”1‘7

In a more compact form

= q®P(R) =qQ

where

the origin

.1
R’

is the potential created by the charges at
CI) (R) ,0 y g

- the translation operator

A=Zqie’”7§=Zqi(1+ﬁ\7+%(ﬁﬁ)(ﬁ\7) ) Q+d‘7+zzQ“Baxa

N
Q= Z q; total charge d= z qlrl dipole moment Qaﬁ = Z qlxaxﬁ

Baumbketner, BioSim, Lviv 2019

quadrupole
moment



Potential energy then can be written as series:

U=q®R) =qon(R) +qpa(R) +qpo(R) + ...

1
O = g potential created by the monopole=total charge =~ —
R
dk tential created by point dipole (at vector—R !
Qg = _F potential created by point dipole (at vector—R ) Nﬁ
1 3X, X5 1 | | 1
Qo = Ez Q ap (T — 0 o ﬁ’) F potential created by point quadrupole ~ F
ap

Another way to look the interaction energy is to compute interaction of point multipoles with the field created

by the charge at the origin

q
U=QE

potential created at
the location of the
charge distribution
by point charge at the
origin

Monopole ‘interacts”
with the potential

. > ol
—dE ) af a Xa p
=~ ap
N -1 qK
E = _CIVE — ﬁ derivatives of the
field created by the electric field created
point charge at the by the point charge
location of the dipole Quadrupole
“interacts” with the
Dipole ‘interacts” with field derivative
the field
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Apply these formulas to two distributions of charges

To simplify things use the following abbreviations: @ charge 1 dipole . quadrupole ‘ octopole

J—

Potential at site A:

Electric field at site A: __ generated by o+ 1 + . + ‘ + ... at site B

Field derivative at site A: —

U = o0 + .1 + ol + .‘ + .. \M”. / |
Q QB d_B\}? 1 1 ultipole expansion
A PN w— N w—
R _QA R3 R3 R 4 Interaction
energy as a
?ﬁ * 1 + 1 ~ i + ... — series in
B - 1‘ 1 NE ' 1. R> powers of
R3
! 1 ! L
He - .1~F ' = ~Rs = ‘NF B RN
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A table of the order of different interactions

1 1 1

@ ~RZ WE ~ Rt
1 1 1 ~i
R R* R

1 1

L] "’E Nﬁ
3 1
" R7
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Interaction energy between two atoms ,
Each atom is

electrically neutral
Full Hamiltonian: Atom A Atom B
iz, R=R,— R, 7
7 iJ 7 3 A B B
La Ep — 7T
0 = S Y A e= "
|Ra — Ra| sl |Ra + rai — R — |
/ A / B # of valence electrons and nuclei’s charges
lz_;lﬂa-i-l'm Rpg| E R4 — Rg —rgg| |nA > |nB > eigenfunctions
EA EB :
n Ln eigenvalues of energy operators
Compute the total energy by the perturbation theory: H\ -~ _ zero-order
o = Hy +Hpg Hamiltonian
s 0 (1) 2 —~
E = E( ) +E +E( ) e U  perturbation term

! \ T
" i B second-order term
E® =E{ + Ej. .
ground state of E(O) =< OAOB| HO |0A0B >

individual atoms Baumketner, BioSim, Lviv 2019

first-order term



Using the translation vector formula:

1 1 ZA £R ;
er.-h?e—rﬂj?_ s 1 —_— T = ZZ (Frruv ~1) (r-l‘ﬂj" - 1] ok
R |R+r4i —rpjl o R
Z A
Upon introducing charge operators: Q A= Z (e"V — 1)
=1
Perturbation term can be written as: U = Q 1(:)4% l Multipole moments of
AYB D atoms A and B

First-order term: / \
1

_ . A R _ 1
EM =< 0|0[0 > =< 0405 QAQJ’BE 0,05 > =< 04]04]0, >< 05|QF|05 > -
Let see the first few terns explicitly:
A =3 AT+ 2 (AT (7 A7) 4+ .. — 1) =dAT + L A 0 0
0,=7, (1 + (rl |7) +- (rl |7) (rl \7) + 1) = A7 + 3 S Qs 55 57+

G = 3,1~ (757) 1 (99) (99) 4~ 1) = 057 4 25, 0 s

_ — = ——+...
If atoms have non-zero charge: QA QA + (d V) + 2 Z“ﬁ Q“ﬁ 0Xq 0Xp
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Taking the expectation value:

A AP o1 A 0 0
< 04)Q4|04 >=<dA>V + —Yap < Qap > T
AL _ — — 1 0
< 05|Q*,|0p >=—<dB >V +-%ys < Qys >Ea_&s+"'
3X, X o) 1
A B ﬁ ap
) 1 /Zﬁ:«z ><dl > (et -
1) — _ FRE Y/ R if dipole moments are non-zero. true
E (< dA > V) (< dB > V) R for molecules but not for atoms
1 . . o o1 _1
- B _ A -~ =
+ZZ{(< dy>V)<Qbs> —(<dg >V)<Qps >}axan5R =3
)4
N 1 Z < 04 >< OF d d o0 d 1 1. 1
4 L Cap=< Qys = 0X, 0Xg 0X, 0X5 R R® “electronic
apy interaction
/ energy” due to
c® c@ 06 0,40 c@ c® c@® 6 permanent
= + + + ... = A*B + + + 4+ — 4+ .. multipole
R3 R* R> R R?2 R3 R4 RS moments

multipole expansion

expansion if atoms have uncompensated charge
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Second-order term:

matrix element is over double indices

T “3
(2) _ |[—‘mn |“ ~
m(n#m) —n — —m

Correction to the ground-state energy . A
relies on the matrix entry: U m0 — (’ I | U

0) = (’”A|QA|()A><’”B‘Q—1§|()B>ﬁ-

which has to be substituted into the energy formula:
note that since the denominator

' i 112 . .
2 _ Z |<'”A|Q-{|(-)A)(”’B|(33|()B>ﬁ| @) 2) is always negative and
0o - E- 1 E- A 1+ E B _ o B — EO,ind + EO, disp nomlna_tor_— pos:t/v_e the
ma,mp 0 m A 0 mpg correction is negative and

corresponds to attraction

Induction enerqy

Summation is performed while keeping one of the E. (A E. B
atoms in the ground state ina (4) ina(B)
; 5t 1,% xs 5t 1,
|< 04]Q4]04 ><mp|Q" 5|05 > 5| |<my|Q4|04 >< 05|Q7 5|05 > 5|
) ) :

0,ind ~— EB _ EB EA _ EA
mp 0 mpg ma 0 mgy

non-zero starting from non-zero multipole. o _
Baumketner, BioSim, Lviv 2019



The induction energy is non-zero starting from non-zero multipole terms.

Examples:
P L X TG
1) Atoms have non-zero dipole in the ground state E;, ;(A)~ |< d4 >V < mBl Q+B 0p > R = R6 + -
is the lowest term in expansion
which has to squared
2) Atoms have non-zero charge and may or may not have dipole moment
— N
QA +<d4 > V+. ® 1 is the leading term
'/ 1]° \ 1.2 @
A A+ _ A+ —
Eind(A)"’|< 0A|QA|0A ><mg |Q 5|0 > Rl = Qa4 < mp|Q7 ;|05 > Rl = e + -
A convenient way to view induction energy is by introducing the concept of polarization.
Assume that the dipole moment induced by external field can be written as:
/j = aF where « is the polarizability constant (tensor in general)
. . . . . [E- — AE = —q EZ
The interaction energy of that moment with the field then is: ind 2
1 1 nteract
e ) interaction of charge
If polarization is caused by point charge, [ ~ ﬁ and so Ein d~ F @ ¢ with induced dipole
. . 1 1 ¢ interaction of dipole
If polarization is caused by a point dipole [ ~ =3 and so Ein a~ F with induced dipole
Baumbketner, BioSim, Lviv 2019



A formal expression for the induction energy:

molecular polarizabilities

1 1
Eina(4) = =5 @ap (DL (A)Ep(A) = 3 Aq 5y (A)Eq(A) gy (4) -

12 a, A, C
6 abys (A)E“B (A)Eys(A) + .. specific for the molecule
3X, X ﬁ 5a ﬁ o
E,(A) = QB + z dy(B) + - electric field due to atom B
3XaXp 5063 derivative of the electric field due
Eqp(A) = _( RS >QB to atom B

Dispersion enerqy

Second-order correction when the summation is performed over excited states of both atoms:

o)

A A 1
|< my|Q4]04 >< mp|Q* ;|05 > §|2
0,disp ~— = Z

E64 _EﬁllA +Eg _ETLr?lB

mygmp+0
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Keeping only the lowest-order dipolar term: Q A= dAv Q + B = —dBV
Dispersion, London, van

der Waals interaction

- ~ —= = 1
£ z (< my|d?|04 > V)(< mg|dB|0g > \7)§|2 D®
0,disp = A _ A B _ B = R6 Has dipole-induced dipole
ma,mp#0 Eo = Em, + Eg = Emg interpretation. Not
everyone agrees with it.
1 See J. O. Hirschfelder; C.
F. Curtiss & R. B. Bird
For charged systems (1954), Molecular Theory
- . of Gases and Liquids, New
QA — QA + d4V 0 because of orthogonality condition York: Wiley
<mA|@A |0A >= QA <mA|0A >4+< mgy dAV OA > =< mA|dAV OA >
1
SO ~ F is genuinely the lowest order term in the dispersion interaction

Some general properties of dispersion interactions

attractive regardless of molecule orientation
weaker than normal covalent and ionic bonds

strength is proportional to the polarizability of the atom
additive and cannot be saturated

short-range forces and hence only interactions between the
nearest particles need to be considered Baumketner BioSim. Lviv 2019



Extension to molecules

Nuclear interaction A A 7 e2 B
z{7f 2475 74 7F iy i 5
R RP+ A R—REARAl IF—RP+RA 4 4
IR—R{ +R{| |R—RS+R{| |R—RB+R§‘| e=1
AyB
+ 222 = (0, + ZA)(QB + ZB)_ Z, = Z8 + 72 valence of molecule A
IR — RB + RA|

Zg = Z8 + 78 valence of molecule B

Electrons with nuclei QA — ZA R1 n ZA RZV — 74 nuclear

‘charge”
Zy Zy
—12{ —t—————1}+ ~ _ A7 e
i1z, |R RB +7” IR _Rg _|_riA| qa = Z (et —1) electronic “charge
i=1,ZA
z# z4 _ —~ — . 1
1Y e ) = (@ + 24) (45 + 25) + (0F + 2) @ + 2} 3
et R+R1—rj‘ IR +R§ — 1P
Electrons with electrons
—~ — T " — 1
z Z = = (qaqs +Zaqs + Zpqy +ZAZB)E
= 1ZA] 1ZB l |
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Full perturbation potential
EG) #0,E88 =0
S
U={Q40Q% +7aqs — Qaqp — ﬁZQE}E
t t t

Additional terms:

_ 1 1 N®
1 P —
Eé,,z =<0 |QAQE| 0> R QAQEﬁ =

5 - -
Eé,,2~ <my |QAQE| 04 > = QaQf <my|0y >=

— 1 A
1 = —
Eg =< 0|0aq5|0> 7= Qa < 01g5[0 > ==

R

2) 5 LT 1
B2~ ) 1< 0|Gagi|m > R| = ) |G <olgE|m> <

m=+0 m=+0

multipole expansion for the nuclear subsystem.
Starts with dipole-dipole interactions for neutral
molecules

0 because of the orthogonality of the excited states to
the ground-state wave function

cCN®) _

+ ... cross terms.

R3 combined effect
—  of electronic and
6 nuclear

CN ©) permanent

~ T Ré T dipoles

2

Nuclear degrees of freedom contribute additional terms to the multipole expansion corresponding to the

permanent moments
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Putting all summands together one arrives at the most general representation of the interaction
energy between two molecules:

both positive and

electronic subsystem

QA QB C (2) C (3) C (4) C (5) C (6) permanent
U= + — + + —F + — + + .-+ multipoles.
N R R? R3 R* R> R® Electronic

Q ﬁ ® and nuclear

"% - i ¢ 1 ‘ 1‘ L] ‘ systems

% t

2 L] o1 .

4 1(6)
— +— 4+ — 4+ , _ Constants
R4 R6 induction energy

o cWO 1O p®

>

: od ¢

> a) Can be

< - computed in QM

2 studies. Difficult

g for large systems.

© (6) Almost impossible

n D n dispersion energy for dispersion
— _R 3 force.
1¢ b)Obtained by

fitting. Empirical
parameters

Baumketner, BioSim, Lviv 2019



Atom-pair potential approximation

Proteins are modeled at the classical level. 1) Not much chemistry happens but 2) QM calculations are
way too expensive

U ( R) can be used to model the dynamics of the nuclei in the Born-Oppenheimer

Interaction energy approximation. Adiabatic approximation.

Two options of how to proceed:

Option #1:

Assign proper (valence) charges to each nucleus and a certain number of permanent moments. These can be taken
from QM calculations or some other source (from experiment in case of dipole moment for instance). The moments
have to be attached to the local geometry of the molecules. As the local reference frame moves (rotates) the
moments have to be recomputed.

Drawbacks:

1) Algorithms are not always straightforward to implement. It may be difficult to compute forces acting on each
nucleus, especially for higher moments. See Stockmayer fluid for example. Torques are not always computed
in a pairwise summation (i acting on j is not the opposite of j acting on i).

2) The procedure is tedious and expensive. Each molecule has to have its moments recomputed at each step
as it rotates in the course of the simulation.

3) A large amount of data needs to be stored.

4) A large number of parameters — dipole, quadrupole and higher moments, makes parametrization very
challenging.

Baumbketner, BioSim, Lviv 2019



Option #2:

1) Assign partial charges to each nucleus. These
will generate multipole series of permanent dipoles.

c c @)

qdi
= = + — 4+
Z R-7| R R
‘ +
c® c@
R T
+
c®) c(©6)
RS T RE T
Important: the series will contain all powers of 1/R,
not just ones specific for a particular dipole.
2) Add polarization and dispersion interactions to
each nucleus. —/

3) Add repulsion at short distances to prevent nuclei
overlapping
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2lgcos(0)
R?2

R/l
The field created by two charges is different
from the field of a point dipole !
4 6 7 8 12
p» p® p&» p®  pi2)
J 2 2 2 tj
+ 6 + 7 + 8 [N N + 12 )

4
= . r.. 1A T;:
7] i i L Lj l
Parameters: qi ---qn
m) = _ ]
Dl.j ,n=4,6,78 ..12 for each pair q;, q;




Can the atom-pair approximation work?
The method of Clementi
1) Approximation: cut all terms with powers 1/R” and higher. This will lower the number of parameters

2) Compute potential energy for a two-molecule system in QM calculations.

B
A= amino acids and some other systems. 25 in total
B= water molecule
interaction energy as a function of mutual distance
AEAB (R’ 0, ('0) and orientations. 10,000 different values
water
The interaction potential molecule
6 12 12
AE= X I (c/Ryp+cld)/Rep+cP/RG+c{/R3p)
aX) (W)

Results:

1) Way too many parameters to perform a fit for all atoms. Introduce atom types. Typical types:
sp3, sp3 hybridized carbon, carbon in aromatic residues etc. ~30 different classes

2) Electrostatic contribution can be well approximated by charges:

) =daap
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3) Keeping the 1/R* term doesn’t improve the quality of the fit
4) Certain rules for cross terms seem to work well. For instance:
B =<3 {1
BB =<2 82y
(6)

5) Coefficients Cab are too small and can’t be determined reliably. This is the consequence
of the dispersion interactions not being well described by the QM approximation.

Conclusions

The following model of potential energy will work well for proteins:

Adjustable parameters

CILCIJ (12) (6) ,..6
U= z{ i / —C / Tij d1 ..-qn partial charges
(12) c®
Cij Cij~ > 0
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Examples of when this approximation will fail

oxygen, nitrogen ...

charge is zero

at each q=0

nucleus [
because a) the

molecule is q = 0 q+ 0
neutral b) (for instance
charges are metal ion)
equivalent

benzene

Molecules that
have zero
charge, zero
dipole moment
but non-zero
quadrupole
moment

Actual energy

polarization term.

Atom-pair model
D (©)
R6

dispersion term.

Q0:

Actual energy

c(5)
‘RS T

Atom-pair model

D)
R6

dispersion term.
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Bonded energy

QM calculations predict certain geometry for the studied molecule. Distortions from that geometry are described by
a number of potential energy terms that collectively are known as “bonded energy”

Bond-stretching potential

Morse potential (some basis in QM calculations) bon d

2(1) = De{1 — exp[-a(l = b))}’

\ \ / Harmonic approximation (typically used)

Three parameters. .
Not convenient R I} (I ID}

- Bond Io (A) k (keal mol 'A2) Force constant. Reference
A e cop? 1523 217 Source: norm_al bond length.
lO Csp}Cspz 1.497 317 mode analysis of Source:
- Copy =Csp 1337 630 QM, vibrational crystal
Csp =0 1.208 777
N Csp®—Nsp? 1438 367 spectra structures,
C-N {amide) 1.345 719 QM
L ' : ' 4 calculations
Table 4.1 Force constants and reference bond lengths for

selected bonds [Allinger 1977].
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Angle bending potential

Harmonic approximation

k
(8) =7 (6 — 8o’

Angl
Force constant. ngle

) Reference bond angle.
Source: normal

3 a_ 3
Source: crystal Csp®—~Csp’—Csp

mode analysis of Csp>—Csp®—H
) . structures, QM H—Csp®—H
QM, vibrational . S
f calculations Csp’—Csp?—Csp
spectra Csp®—Csp?=Csp?
Csp” —Csp?=0

to

109.47
109.47
109.47
117.2
1214
122.5

k (kcalmol 'deg™")

0.0099
0.0079
0.0070
0.0099
0.0121
0.0101

Table 4.2 Force constants and reference angles for selected angles

[Allinger 1977).

Higher-order approximations approximation:

k ) I i
o(6) =5 (0 — Bo)2[1 — K(6 — o) — K"(0 — 60)* — K" (0 — 6,)° ..
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Dihedral angle potential

Several functional forms are in use

N
o(0) = 3 2% 1+ cos(nd — )

= 2 / \

The phase factor,
Determines where
the potential
passes through a
minimum.

=4n=2,y=180

| | ] ]

Barrier height.
Provides an Multiplicity. Determines how
idea on many minima the potential
qualitative has. Depends on the
level about the  chemistry of the central two
barrier to atoms. For sp3 atoms, n=3,
rotation around  giving 3 minima. For sp2
particular atoms, n=2, leading to 2
bond. minima. %
40 4 L V"
35
z= 30
% 20+ 5
515 s
"E 1.0 g
05
0 1 ! I i 1
0 60 120 180 240 300 360
Torsion angle Vy=2in=37=0
AMBER force field with O—C—C—0O torsion angle E 0 GlU
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Torsion angle

360

|

AG

Butane

\ %

Hy
H
|
60

H
H N
| |
1

| H| ;
\ Dihedral angle
b =027 b =1
CH, CH, H CH,
™ F RS 7
C=C L=
7 A B
H H CH, H

cis-2-butene

trans-2-butene



Improper dihedrals Cyclobutanone

Chemical compounds in which four non-
consecutive atoms have to lie in-plane.
This can’t be achieved with the help bona,
angle and dihedral energy alone.

Improper dihedral energy:

: ;{Q) = EﬁlZ% / Conformation Experimentally observed
2 favored by bond- conformation. Four atoms
angle terms (1)(2)(3)(4) lie in the same
plane.

Bonded cross-terms

Apply in Class Il force-
e fields as opposed to
O Class | force-fields

relying on fixed-charge
Stretch — stretch Stretch - torsion model

4 Typically used in highly
specialized force-fields
Bead=tend such as MM2/MM3

Stretch — bend Bend - torsion
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Parametrization
Partial charges

1) First principle approaches:

a) Partial charge is not an experimentally observable quantity. Can’t be determined directly

a) In QM calculations partial charges can’t be determined unambiguously. Many schemes exist. Mulliken
charges are meant for intra-molecular interactions. They depend on the molecule chemistry, number of nuclei
etc. Can't be used to describe interactions between molecules.

2) Fitting :

a) Partial charges are fitted to reproduce certain thermodynamic properties of the studied system.
See for instance OPLS/AA.

b) Partial charges are adjusted to reproduce electrostatic potential created around the molecule of
interest. The latter are obtained in QM calculations. See AMBER and CHARMM.

reference QM potential
: N 1
*\"pu:ﬂh \Z A€ alc i _+_ Z}' 1 "'Il'

0; e
R= " wie - o) A = T
e \
r partial charge potential
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In principle there is no guarantee that such fit should be successful. Much depends on how fitting is
performed. In all cases errors will be present.

(2)
Potential fitted to reproduce Molecule C_ dipole-dipole interactions
the long-range region. The fit Molecule R3
will reproduce the dipole A B
moment and will do a bad job_____| /

for the intermediate distances \
because the partial-charge \ Potential fitted to reproduce

model and actual potential . > = _----=-coooocosesssssEsS the entire curve. The long-

have different functional D(R) \ T range potential is not right but
forms. at a better agreement is seen

at intermediate distances. The
dipole moment produced by
such fit will be larger than the

AN True potential measured for certain anticipated. This is equivalent

orientation of molecules A and B to the effect of polarization on
the molecule. So the fit

includes, in a way, the effect
of polarization. Although not in

will tend to

Electric field created ’CZ;C) e/zsn?, (f/,; eent a controlled manner.
by this dipole / of this dipole
A

A\
A low-energy configuration of two

dipoles in a medium Baumketner, BioSim, Lviv 2019



c) Charges that are buried are statistically underdetermined.
Difficult to obtain meaningful values.

Such fits lead to poor
performance of the charges when

/ they are placed in a different
environment.

The problem can be addressed by introducing weight factors for the charges. Example
RESP charges of AMBER

d) The same set of charges cannot describe the potential equally well for different configurations of the target
molecules.

Some force-fields consider multiple configurations so that the fitted charge produces
the best agreement for the entire ensemble of structures. See AMBER.

e) The best performing fixed-charge model produce 5-15% relative error in electrostatic potential with
respect to QM results. For comparison, polarizable force-fields can achieve less than 1% accuracy.
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Van der Waals parameters

In almost all force-fields the vdW parameters to reproduce
a) Constants in molecular crystals

b) Heat of vaporization

c) Liquid densities

Bonded potentials

3 12 - 6
Vg (ry;) = 4dei; ((iﬁ) : (?) )
ij i

Combination rules

%=V L,
g; (0; + gj)
ij v/ Ci€j

)

Lorentz rule

Bond-stretching, angle bending — normal modes, vibrational spectra. Most transferable part of force-field

Torsion potential.

QM calculations of potential energy as a function of the particular dihedral angle.

General scheme

Typically, parametrization of a force-field proceeds in three steps:

1) Bond-stretching and angle-bending parameters are set. Perhaps by borrowing values from AMBER.

2) Charges are fitted

3) Vdw parameters are fitted. The rule for 1-4 interactions is set. use torsion potentials

4) Torsion potentials are fitted on QM simulations of dipeptides:

These are coupled. Don't

obtained in one force-field
in a different force-field!
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Force-fields in general use

TaBLE I
Other Force Fields for Peptide and Protein Modeling

AMBER Force field Potential type Key references
CHARMM BUFF All Atom Carlson, 2000
OPLS CEDAR All Atom Hermans et al,, 1984; Hu et al,, 2003
CVFF All Atom Kitson and Hagler, 1988
DISCOVER All Atom Maple et al, 1998
ECEPP/3 All Atom, Torsional Némethy et al., 1993
ENCAD All Atom Daggett and Levitt, 1993;
Levitt et al, 1995
GROMOSS87 United Atom van Gunsteren and
Berendsen, 1987
GROMOS96 United Atom Scott et al., 1999
MM2 All Atom Lii et al., 1989
MM3 All Atom Lii et al, 1991
MM4 All Atom Langley and Allinger, 2002
MMFF All Atom Halgren, 1996a,b,c,d
NEMO Polarizable Hermida-Ramén et al, 2003
PROSA Polarizable Stern et al., 1999
SCHRODINGER Polarizable Kaminski et al, 2002
SDFF Polarizable Palmo et al., 2003
SIBFA Polarizable Gresh, 1997; Guo ¢t al, 2000
SPASIBA All Atom Derreumaux and Vergoten, 1995
TRIPOS All Atom Clark et al, 1989
UCSD-WILSON All Atom Mackay et al, 1984
UFF All Atom Rappé et al, 1992
UPJOHN All Atom Oie ¢t al,, 1981
YETI United, Torsional Vedani, 1988
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AMBER

History

ff84 united atom

94, 96,99 afl-atom B = Y, Kfr—
bonds

ff02 polarizable

Charges

Fritted to reproduce electrostatic potential of
model peptides, ESP and then RESP charges.

In ff99 refitted using higher-order QM energies

vdW parameters
Eij =/ EiEj

O-ij =E(O'i+0'j

Combination rules:

angles

Energy function

dihedrais

I"/n A'.. B.
7o) + E Ko(0 —~ 6,,)" + Y. =1+ cos(ng — y)] + Yy [._}_ ool

RESP with the neutrality

of AA enforced.

Rc=9A, no
switching

geometric mean

) arithmetic mean

Density and enthalpy of vaporization of CH4,C2H6,C3H8 and
C4H10 liquids -> sp3 carbon and aliphatic hydrogen. sp2 carbon
and aromatic H from liquid benzene. All others borrowed from

OPLS/UA

1-4 interactions

Scaling factor of 0.5 in ff84 and 0.83 in all-atom force fields

Bonded

QM data and vibrational spectra

fi";"?j}
i<j RU 12 R{fﬁ € Ru
QM HF-6-31G* set. Multiple conformations.

H[C L H My
HEC——CT !cl—;'-m \T

HC o, R v " H Hy

ACE AR NME

The side-chain is varied.

Alanyl and OM-otimized strict
lycyl dipeptide -optimized structures
VY for GLY and ALA
Torsions

QM on GLY and ALA dipeptides as a function of
rotation angles
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NMA water complexes

CHARMM o
A H3 ” © F 0 Backbone: QM yields geometry +

History How % _CB o force constants for bonds,

harmm19 nited atom My ‘j“m” "*;"HH angles. Water is important for
cha united ato / | H12 geometry.
charmmz22, charmm27 all-atom H1 H8 Charges + vdW parameters
charmm36 polarizable H20

Charges

Alanyl dipeptide with water

Supramolecular approach. QM energies are computed for AA-Water

complexes. For neutral systems the energy is divided by 1.16. e B e H20
Charges are fitted to reproduce AA-Water interactions. TIP3P with B N ',e‘“

non-zero vdW on H is used for water. o Cﬁs H1{ gn Hfa

% ® \ 7Y H20
L. Hom = G5 C9 N1Z, &
vdW parameters combination rules I N s R Lo
_[7.5-8.5A W-W o / | ” \
Density and heat of vaporization. Re= { 8.5-9.5A S-W switching H1 H8 013 Hz2
€ij = \/€i€j geometric mean + simulations of proteins in
gas and crystal phases
0ij =3 (0; + ;) arithmetic mean |
Bonded b, Y
Torsions J

QM data and vibrational spectra
QM on dipeptides. Matching of energy of different

1-4 interactions minima, C7, aR etc.

No scaling. Scaling factor of 1.0
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OPLS

History

opls-UA united atom
opls-AA all-atom
Charges

NMA is used as the
model of peptide
bond. Geometry
from crystal
structure. Charges
from solute-water
interactions.

Fitted to reproduce interaction energy of model compounds with water estimated in QM
simulations. Dipole moments are set about 15% larger than in gas phase to take
polarization into account. TIP4P water is used in MM part, but TIP3P and SPC are also
suitable. Concept of neutral groups is introduced, which reduces the number of

requisite charges,.

1-4 interactions
Scaling factor of 0.83 in OPLS-UA and 0.5in  Rc= 10-12A
OPLS-AA

vdW parameters

Experimental density and enthalpy of vaporization in liquid state are
reproduced in MC simulations of model compounds that correspond
to the peptide bond and side chains .

€ij = 4/ €i€j 0ij = 4/9i9j geometric mean

Bonded
Borrowed from AMBER94 force-field

depending on
the substance

neutral block
&
1.229 1,449
122.9° 121,9°
—~ N
IR TR
116.6° 39-3‘\:.95
1,522 H
C

Parameters of CH3(C-0O) are taken from
hydrocarbons. After charges are fitted,
the number of unknown parameters is
equal the number of experimental
measurements

Torsions

Adopted from AMBER94 in OPLS-UA.
Fitted to QM energy functions computed for AA
dipeptides for OPLS-AA/L
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Convergence of force-fields

United-atom force-fields show large variation in charges:

TasLE I
Comparison of Fixed Partial Charge Models for Serine Taken from Current and Previous Generation Protein Force Fields

Amber 84 Amber 94/99 CHARMM19 CHARMM22/27 OPLS-UA OPLS-AA GROMOS96 BUFF
|

x

o N Fo.4157 (057 | [-050 ] ~0.28 ~0.749
S | HN 0.252 0.2719 0.25 0.51 0.37 0.30 0.28 0.328
L] ca 0.035 ~0.0249 0.10 0.07 0.20 0.14 0.00 0.189
S | HA 0.048 0.0843 0.09 0.06 0.048
Q| c 0.616 0.5973 0.55 0.51 0.50 0.50 0.38 0.828
O 0504 ~0.5679 ~0.55 ~0.51 ~0.50 ~0.50 ~0.38 ~0.679
CB 0.018 0.2117 0.25 0.05 0.265 0.145 0.15 0.296
HB 0.119 0.0352 0.09 0.06 0.006
OG  ~0.55 ~0.6646 ~0.65 —0.66 ~0.70 ~0.683 ~0.548 —0.764
HO 0.31 0.4275 0.40 0.43 0.435 0.418 0.398 0.491

|

All-atom force-fields appear to converge
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Problems, ways to improve One additional

charge=good

-Ld

Two additional
charges=better

@ 2z +2") z =z
H

N

Intrinsic deficiencies

The ansatz of partial charges placed at positions of
nuclei not always is appropriate. It may not yield
proper permanent dipoles. This can be fixed by adding
more charges. Also atom-based multipole moments.

Example: nitrogen molecule

7=35.2366

Has no dipole Potential energy r=40469 0633
moment but has
quadrupole quadrupole-
moment. quadrupole 1
interaction ~ F
@
-0 QM potential
® ) 17 1 energy map
\ g =0 R6
ki

the fixed-charge model has no moments
So the first term is dispersion energy
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Problems, ways to improve

Polarization

Molecules in condensed-phase environment acquire additional moments. This is a very strong effect that is seen
even in molecular geometry, Polarization causes N-C distance in peptide bond to shorten while that of C-O bond to

lengthen.

Table 1. Comparison of Peptide Bond Geometries from QM and Experimental Methods.

Experimental MP2/6-31 G(d)®
Gas® Crystal* Survey® Gas iH,0 H,0,2FM

Bonds

C,—C 1.520 (3) 1515 (3 1.52 (1) 1.514 1.510 1.512

C—N 1.386 (4) 1.325(3) 1.33 (1) 1.365 1.339 1.337

N—C,. 369 (0) [L.454 (3) 1.45(2) 1.448 1.454 1.454

C=0 1.225(3) 1.246 (2) 1.23 (1) 1.232 1.255 [.254
Angles

Co—C—N 14,1 (15) 116.3(6) 116 (2) 115.3 117.1 116.6

QO=C—N [21.8 (4) 121.7(6) 123 (1) 123.1 122.1 122.6

C,—C=0 124.1 121.9(6) 121 (4) 121.6 120.9 120.9

C—N—C,, 119.7 (8) 121.3(6) 122(1) 122.1 121.1 121.3

L

Polarization is taken into account implicitly by:

1) Errors in QM theory

2) Adding water molecules to the model compounds in QM calculations

3) Taking molecular geometry from crystal structures

4) Increasing the dipole moment of studied compounds by about 15%

5) Optimizing dihedral angles against NMR data in liquid state or proteins in solution

Still fixed-charge force-fields are only about 5-15% accurate. The chemical accuracy of 1kCal/mol is out of reach.
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Polarization in local environment

Better parametrization is unlikely to improve fixed-charge models by much. The fundamental
problem is that they include polarization in an average sense.

Molecule in gas. Small Same molecule in polar medium, perhaps its own liquid. Increased

dipole dipole.
\

What happens during protein folding s
The environment of target molecule changes. Could be transferred from polar
® @ medium where it's polarized to non-polar medium where it’s dipole moment is
® o small. ®
® ®
© - o ® ® ®
® @ & ®
. 4
@
w o of
W A o® - e %
2 @ e ® @ &

Polarization has to be included explicitly in order to make progress Baumketner, BioSim, Lviv 2019



Polarizable force-fields

Three basic methods:

. H CHs 0
1) Fluctuating charge model CH, CH, rlq /u\
2) Drude oscillator N Tl N e,
3) Induced dipole models O//" \H S ,]{
H /'o - P!i o
\N —c/ Cs N P
G oM L
3
v 0 CHs H
Energy Model cis-NMA B-sheet AE
OPLS-AA -11.5 ~16.9 ~5.4
CHARMM?27 -11.6 -16.9 -5.3
Polarization seems to get the ordering AMBER /194 -11.3 -14.8 -3.5
of different structures right AMBER f/02 -13.5 -14.8 ~1.3
AMOEBA -18.5 -12.6 +5.9
SIBFA ~18.7 -17.1 +1.6
MP2/(CEP)4-31G+(2d) ~20.5 ~17.5 +3.0
BP/DZVP (BSSE corrected) -16.2 -8.4 +7.8
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Two different types of physical processes, deterministic and stochastic

Deterministic behavior: Stochastic behavior:
The outcome of an experiment can be The outcome of an experiment cannot be predicted
predicted exactly. Applies to many exactly. This could be an intrinsic property of the
laws of physics: Newton’s laws, physical object — qguantum mechanics. Or, the lack
Maxwell equations etc. of knowledge about the object= statistical

mechanics. Fundamentally, all processes in nature
are stochastic.

Example:  Dice o _ _
1) The outcome of rolling dice “experiment” consists

of 6 different realizations. It can be fully described by a
discrete variable g that takes on 6 values:

B

941, 92,93, 94,95, e

2) Although the laws of solid body mechanics are
known, there is no way of predicting exactly the
outcome of any experiment. Too many unknowns are
involved: asymmetry in the mass distribution in the
dice, temperature/pressure fluctuations, convection
etc

-

For quantitative description of stochastic processes one needs the concept of distribution.
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Distributions:

Are easiest to introduce for discrete variables.

Bk R %M possible realizations
of quantity g

If after M experiments value g; is seen
Mp(g;) times then

p(g;)= probability distribution function

Important properties:
p(g;)>=0, always positive or zero

S paye

1=\

has to be normalized, the
sum is finite

P(g;)
;=1 P(g;)

Most generally:  P(g;) —

Averages: .
4> seen 3 times

(—A—\

By definition:

1
‘:Q}:EZQ}; :E(QI-I_QE +0:+9+gz+)=

k= sum over different
experiments

l A AT
=~ 20 Mp(g)9:=27 p(9:)9:

i= sum over different realizations
of variable g

For any function of g (k) = 'i .ni—(% Y F[% )
and normalized dist.: -
iélf(ﬂi)fo(gi)

For any distr. funct.: < f = =

For continuous variables sum are replaced with integrals:

x ¢ L, 47

¥ [% ) =probability distribution function
6

Normalization condition: S i)\ =
W

PLx)Dx is the probability of seeing x in the interval Ly; V*‘b\lyj

b
(6= AL T O ax
O

Averages:
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Some basic definitions for distributions

Geometrical interpretation

S = jk-?h{\f 3% mean value
. 2 standard A\
¢ - (v - (33 geviation

= 6
l
“ oA 3 n-order moment l — !
KVV“ = j\x UhB (1> ohs (may or may not Y
exist)

|\, ¢

- _A

can be estimated from sampling

Say we have a sequence of measurements:
1‘}< \ P \>‘:|: s T \%Lﬁ
Average over the sample will approximate the mean value
N R T
b VoMb
Square deviation from the average will approximate the standard deviation:

— |

-

\ ” v (n-1 comes from Bessel
— L Wi =) 2 &
> \l l { E correction for finite n)

=
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Error estimate

Independent measurements

S
= — sample error
SE @ P
c
Sb = :”(; standard error

Correlated measurements

SE - = \K 3{“4\'?—1

™ 1 f

{ =)  correlation coefficient
4 - - - forindependent events
Examples: _!l"‘:_f“j
T4 26
(WD) =\'—x
¥ lx \16“ w &
Sp

DB =
J

Relative error:

declines as inverse square root of the number of

normal
distribution

)
> ©

measurements. n must be large to achieve good

accuracy

C=p

Accuracy of SE

“ N
7 \ L “'SF
£ E\ LS

It’s safe to use SE to estimate the
error in the measurement for n>10

Wide distributions require larger
number of steps to converge

e = &

Lo

0

e -

w | A

6=00 T [,

)
L
|
‘L{J!e-n'u -
2,1
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Transforming distribution functions

Y - is astochastic variable characterized by }D (‘x’ \

= ‘Q—(’k ) Q: what is distribution | ( =1
i 0’7 -

From the definition of the P(x)a¥X = f (ﬂo\ A “5 ~5)
probability distribution:

P(vfna\\

i\ (probability density
S gk (% \\ transformation theorem)

This can be written in a more convenient form :

f:'(\zf"a‘a\
PUn="Te . 17\ Sla-dbaVFhaase =L Ky 4D
1 Séﬁ_ [vfna\\\ S ?1

AN
change of variables rule for delta function \ y' = f(x), dx = T
] 5(9())f(g))g'(x)| dx = \a <x<;v’>>\
| seoraodn

!

dy
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Examples of probability transformations

4
1) Normal — }5,
distribution with N
L B =€
zero meanandc=1 "% 2.1 B B
Q: what is the distribution of the linear transformation of variable x? M= s b x

TR Ve S SO St

% = —_— I’L l 1
< Y- — e 7 §
— Plyl= ==
—L"“( _ 4 40 @2’
Normal distribution with
) x> = zero mean and unit
The shape of the distribution A standard deviation can
doesn’t change. But now it is : ) be use.d to ggneratg
characterized by new mean 4 Gaussians with arbitrary

mean and variance
through linear

Vs transformation of the
variable!

and variance [
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2) Uniform distribution: F,'(X\“ = {‘l 0LX ¢ 5’1 (e
© otherwise

f’f.'ho)»ukﬂa - f’lfx\n\y
E’i"‘D\ t)é{%{ﬂa\\ since I, = towns !

3) Exponential distribution: Pf'ﬂ\j: e arbitrary constant

_ VA ;,»3
i}’{\: :‘3,? —) y:&?kc;} Aa:—«(ﬁa[xf(\ \f’("g\]f&
>

set. € =0 toget xl={ , ¥(red)20 D M= - Ly (%)

4) Gaussian: F(AC\ ~ ;43 For negative numbers,
N ] . . use the property:
IV a{ijj:azfﬁg“ﬂﬂd 'z Lylg) Ay O V=04
&~ S T Ye T =4t 2 K. ‘a
""a i) =0 y(+e0)=] O ' Two random
~| ; numbers x € [0,1]
”QL = A {»\  will generate normally distributed positive numbers. \l/
inversion of the error function can be costly numerically - ,Lé)
e
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5) For distributions of arbitrary shapes: cumulative distribution transformation theorem

.. ) v
P(y),y € [y,,y,] targetdistribution. Define: F(y) = f P(x")dx' cumulative dist.
W1

indeed, the desired
distribution

N

Pu(2)dz = 1dx —> Fa(2) = %x(z), x(z) = F(2), g = d;f} = P(z), B,(z) = P(2)

—_ 1
z=F"(X)  \hat's dist. for this variable B,(Z)? \

uniform [0,1]

Multivariate distributions

Multiple events can be observed simultaneously. For two variables x and y one introduces:

[ (\;-é’ ; M(} \ to denote a joint event
Joint distribution function f ( Y, '?) \ is introduced so that f( Y, "a \ Ay dub
is the probability of seeing v % [}4! ) 'a\:»}] and a W [aej na t d.uajj

Distributions for individual variables: Normalization condition:

P = | Rl Pl = SEOPI DT Telxg) a2
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Conditional probabilities

Assume 2-D for simplicity

Event A Ly! W JrE.':-fj ABf % Ng;&}
Event L. \U\G, »Qi-' L"é_] — ,:, Lr \ ﬁ
/ VAR y\u
My

b
N =  total Lo 20  events

3 . .
Hﬁs - Llr ot A Mﬁ,itj & of both A Dyla \‘g occurring at the same time

L-’\n = w .u,.f.- n Mb‘b
. PLA \I:_'J joint probability

Define conditional probability:

P[ﬂ‘s\lL) - prob. of A  once %z, occurred =
Mﬁa"& E—k— HE—*E P(A LE \I

e = P (AN
L ter ke PR pay
prulhy = B PR Pty P8
“hoEIs) PIAY
‘5;(}%\\5\ = P(WA) — Bayes’ theorem

P(1%)
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Concept of independent events

Assume that event A is not conditioned upon event B. The conditional probability then is equal
to the simple probability of event A:

PLAIB) =P [AD

The joint probability then becomes:

P(a 1Y) = PIA) PR

If this condition is met the events are known as independent. The distribution can be used to
judge the degree of independence or correlation.

Quantitatively this can be measured by [ A é‘he \ where x and y are two
correlation coefficient: { = - —r//\ stochastic variables and
\Jﬁ‘u;ﬂﬂ"ﬁ ) (x> 8% = @ LD
ANC = X7 / 4% - r-a

Case 1: x and y are independent:

mv-f&@ 2 S}W,L‘% >, 7 ﬂ-P(x,'a\]‘@Mé’f} =

\ AV,
SSY-"&-E’M-PLD)W&'B _ (Jag : Syf{m‘yﬂn‘;x ’va

A S "O-ff’ba‘rf(jﬁxia X LxBLUE K P{gftﬁfm%a
K%‘ fix) I SMJH”TD%U) - ’z,éy)ai;a) FLX')L?> —
= L‘;C)LB")H éy)éﬂ} - ©

-
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Case 2: x and y are fully correlated x=ay, a>0

a - )
Sty DI BRI = {2 =\

(Fag g

Case 3: x and y are fully anti-correlated x=-ay, >0

d"ia."a* )

What multivariate distributions can be used for

Generation of normal distributions. Let x and y be random variables uniformly distributed between 0
and 1. Introduce new variables:

i r_———FF\m "i a "
X = \luziaa[?’(\ 35"'{:"@\ 3(” g wa\—)ﬂ_a X = e,"'i\{ J’Afj )

‘ _ + Y
q = e gl V™ C5)
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Transformation of the joint distribution function:

“"“_F“‘” Fg-ro JOPS

X = ‘
iy = ””O‘ Mg — \‘iﬁﬂgju\
Fhl »”G J \?%(%1 \ '%\y“““l”a - A 4’9 Jacobian of the transformation

!
| FE—Y'I = - -L L cos (19 'D\] 2 - f:t:am oG siw(97 ‘ﬂ \
0% Zhgh > / ?”U \ B
]
) S

*L“El - ,L___.iﬂ-‘;%uiﬁ‘[]} ra’,jr_—, f\lg%lwﬂ?f’ﬂs'ﬁn _IM

| 3% U"fﬂﬁ ) / “0
f \i} [\ two uniformly
F O~ z“‘b = = distributed numbers
: xandy

RS }

v\ F _JJ’K\ -
L = L ;/j;(‘»é 7 5 _ ,L&L ) Le «O,; P () ‘\fi(ﬂ]) two normally
2K B3 (> distributed
numbers x” and y’
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Statistical mechanics = theory to extract macroscopic properties
from microscopic variables

Microscopic description: 2N-D phase space:

Coordinates + momenta fully define the state of a
system with N degrees of freedom

Measuring property A(I') always yields time average (take pressure in tires for example):

Aolo oObservation time

A= (Adu, = CAMB), = b ;-t“ \A(*"CHM%

ods Fiwe Fiun
—E of S—-! FeP o
real or virtual experiment

Observation time t,;¢ is always finite. Furthermore, in practice it is always discretized so that the

integral can rrier .
integral can be carrier out must be large

_ g = Fa of steps/events in the enough to eliminate
tots = SE-Tohs i observation dependence on the
initial conditions
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The expression for the observable now reads:

A vb g T is now just a blind index
(%) A — ¢ A )}LME - - - 2 A( r(ﬂ) that enumerates all
o4t Tl o /" measurements

Recall how we computed averages for random variables:

M
1 1
<g~> :Ezgk :E(‘gl +0,+9:+ 9, + 95 +) it’s the same formula
K

On one hand we have time evolution but on the other — different realizations of some random
variables that can be described by certain distribution. Both descriptions lead to the same average. The
one based on distributions is the subject of statistical mechanics.

The concept of ensembles

Ensemble = Multiple copies of the system at time t=0
Time evolution of one system ~ @
Points in the
phase space are Q Q
T distributed ¥ Feab Fomegt

according to |
certain function

/ &L-s'[r \I'
. ") L

The same state point I can be

visited multiple times Baumketner, BioSim, Lviv 2019




At first glance the connection between time average and ensemble average appears to be
straightforward. But there are important subtleties.

Let us consider N members of the ensemble, each corresponding to a gamma point I'i. Consider that in
general the distribution function may have explicit dependence on time. See what happens in a certain
volume oI" when the time changes from t to t+dft.

Npoints = NP, (T, t)éT t+ddt

2) Some will leave it
P
1) Some points will enter the volume x
3) Some will remain
4) None will be created or destroyed within the volume

The balance equation for the number of points:

change in the difference between ,
number of points leaving/entering per sink/source term
0 unit time
NoT En P,,s(I,t) = N(enter) — N(leave) + F(T,t)
f N
=0, not present

can be computed as
surface integral of
the flux
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Let’s forget about momenta in I" for the moment and focus on Cartesian coordinates only

Enterin
Vs g

A5 points

component of the

Leaving points

I . g inward
velocity along n oo normal
NP Ve . vector outward
P = NlEens - looking
density of points i # of points entering normal vector
through surface
all those contained in element dsn
this parallelepiped
N(enter) = p dS dl _ P dS v, dt _ fﬁ s J=pp flux =.the num'ber
dt dt of points passing
. through the
N(leave) = fn' ds surface divergence boundary per unit
integral of theorem surface area per
flux l/ \/ unit time
N(fnter) — N(leave) = — ffﬁ = — f(ﬁf)dV ~ —N(_v)\7PenS)6F

_jﬁ dS outward looking normal vector
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Putting the estimate into the balance equation:

9] S
Né‘l_'a Pens(l“, t) = —N(57P8n5)5r
d Lo
Epens(r; t) + (DVP,,5)=0
a lo a
a Pens(r: t) + Fﬁpenszo

If we add momenta back to the equation we will get (by analogy):

d 5 0 5 0
Epens(r‘: t) + 1ﬁpens + pa_ﬁpensz
o .0 .0 o .
a + 7 ﬁ +p a_ﬁ P, (L) =0 Liouville equation
dP,..(T,t) dpens (L, t) B The probability
qt =0 dt — Y. distribution is constant

along any trajectory
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In equilibrium the probability distribution can not depend on time. Because otherwise the averages
would depend on time as well. That contradicts the definition of “equilibrium”. Therefore:

d
Pons(L,t) = Pops(I)  ——— —P,,([t) =0

dt
for any point in the phase
N(enter) — N(leave) = 0 space. The number of
points occupying it is
conserved.

The system is evolving in is such a way that

P,,.(I') = const ateach point

As one point exits certain cell in the phase space, another
. . . . NN
point immediately enters it. As a result, all points are _ .

moving in concert in what resembles a Conga line.

The line snakes around the phase space as time passes
by. How this happens has important consequences.

Option 1. The snakes passes through all points
available in the phase space. The entire phase
space is accessible. Ergodic behavior.

Option 2. There are regions in the phase space /
from which the snake cannot break out. It \

. . . i/
moves in a circular manner. Non-ergodic S
behavior. \
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In ergodic systems, all phase points are visited multiple times during a simulation. Only in this case is
the time average equal to ensemble average (with particular distribution function)

A, ()

. — - - r_
| A —_ ™ | = —
Aﬁ;é.& =\ <A )a!r-in'w-ﬁ. < A “ens) ? J (Y
o — Tenst

1) Determining whether or not a system is ergodic is not a trivial task. Rigorous proof
exists only for a few model systems, such as coupled harmonic oscillators.

2) There are different reasons for non-ergodicity
a) Frustration — multiplicity of potential energy minima of the same depth
prevents their thorough exploration
b) Low temperature. Creates very high barriers in the free energy
landscape that can be overcome. The system becomes locked up in
certain parts of the phase space. Glass transition is one example.

3) Certain models are known to be non-ergodic. For instance, certain lattice models
of proteins

4) It’s easy to design a non-ergodic system. All it takes is to arrange a circular

movement in the phase space. Can be achieved through specific Monte Carlo
moves.
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Stat mech. .vs. thermodynamics

Normalization constant of the probability distribution is not needed to compute averages. Consider

pens(I)  and another distribution proportional toit  p’,,, () = apens(T)

According to the definition:

<A> "= AP ens(T) ) P ong®) = Y AN WPens(T)/ ) @pens(1) =
r r r r

= Z A(F)pens(r)/z pens(r) =<A>
r r

But this quantity is central to establishing link between microscopic description in terms of
coordinates/momenta and macroscopic description in terms of thermodynamic functions

partition function=
Qens = 2 Pens(D) /
T

the sum of p,,(I")
over all possible states

<A >eps= z A(D) pens(T)/Qens
r

Thermodynamic potential of the
given ensemble

Wens = —10g(Qens)
The function that reaches
minimum in equilibrium.
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Common ensembles

Microcanonical ensemble (NVE) all configurations
Distribution f . with energy E are Physical equivalent= an
istribution function: equiprobable isolated system
f-"'l_allh -~ dh'r-E _ Hl'r]'—l:l:l NVE
Hamiltonian:
-2
HD) =Ee+E, =Y 22U, qv)

:_ 2m;
Partition function:

Oyvve = Z 5(E — H(T)) volume of the hypersurface
o — - that corresponds to energy E

proportionality constant first introduced on the grounds of
dimensionalities. Then recognized as the Plank constant when

QM came about

1 . -
QnvE = %W /ifﬁff?ﬂﬁg —H(l'))

g\ b 2
takes care of the distinguishability of the particles " JL = v l}
Thermodynamic potential: entropy
/ the integral counts
Wyye = —klog(Qnyg) = —S(N,V, E) these contributions

twice

Bolizmann's constant Baumketner, BioSim, Lviv 2019



Canonical ensemble (NVT) Physical equivalent= system
exchanging heat with the

Distribution function: environment

1 A T H r‘"r
payr(D)~e PHD, B = kT ;/ I » _“"“:i Y
? ( L) ek by
external parameter that is associated with temperature L/«J s
Partition function: density of —_—

/ states multiple hypersurfaces
Qnvt = Z e FHI) = Z n(E)ePE are populated with the
probability ~n(E)e FF

r E

separation of the partition function
1_ vdae” 1 = — -
Qnvr = thN!fdpdqe BH(T) — h3NN!j/\dpe BEx J/\dqe BU@) —
kinetic part configuration

mtegral

N

|4 NVT —
Wor X Qfor Qlr = g A = VRZ/2mmkT Qffyr = =0 Zyyr = j die-PU@

Thermodynamic potential:

Yhyr = F(\N: V,T) = —kTlog(Qnvr) = Fia(N,V,T) + F,x (N,V,T)
Helmholtz free energy ideal gas part  excess part (due to interactions)
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Isothermal-isobaric ensemble (NPT) Physical equivalent= system

under a piston

Distribution function: o
pypr (D)~ e~ BHTV)+PV) lf’w s
'GIRJ — /
external parameter f\
Partition function: associated with pressure \
_ —B(H(T,V)+PV) _ Z —BPV ' -
Qnet Z Z Onvr both energy and
: VT : v volume are allowed to
separation of the partition function change
H(T,V)+PV > _BE
Qnpr = h3NN|V Jav [ dpdge~ BEHTVIFPY) = h3NN!VOfdpe BEk X
X [dVe PPV [dGe BU(@ = — /13NV Z(N,P,T)
Z(N,P,T) = jdve—ﬁpv Znyr configuration integral
Thermodynamic potential: ideal gas part excess part (due to interactions)
LIJNPT — G(N) P, T) — _kTIOg(QNPT) = Gid(Nr Pl T) + Gex(N; P; T)
Gibbs free energy (both contain contributions from configuration integral)
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Grand canonical ensemble (uVT) Physical equivalent=
system exchanging heat

Distribution f . and particles with the
istribution function: environment

(D) ~e BHTV)—uN)

p,uV
external parameter
N _ associated with chemical ' g \
Partition function: potential / }:
[ ‘
Quvr = Z Z e PHITY)=1N) = Z QnyrePHN \ /
N T N .

no separation but the kinetic part can be integrated energy and number of
explicitly 1 particles are allowed to

_ N N change

QuVT —zeﬁ“ QNVT NVT_zeBﬂ N,AgNZ(N,V,T) J

N N ' ’\
key property to be evaluated
Thermodynamic potential:

WYyr = Pe(wV,T) = —kTlog(Quyr) = F —uN = =PV
grand canonical \
potential chemical potential
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Summary on ensembles/thermodynamic functions , _
IS not an ensemble. it

, , . HUTP  contains only intensive
Microcanonical (primary) variables some of which
are related
S(N;<V’E) =log(QnvE) entropy
Canonical
F(NTV) = —kTlog(Q(NTV)) = E — TS Helmholz free energy
Isobaric-isothermic
G(NPT) = —kTlog(Q(NPT)) =F + PV Gibbs free energy
Grand canonical
— _ — I _ — _ Grand canonical or Hill free
& (uTV) kTlog(Q(uTV)) = F — uN = —PV enoray
Link to thermodynamics
Fundamental law: Gibbs free energy ~N because it's an extensive variable
aG
TdS = d¢U + pdV — udN G(NPT) = Nf(PT) — f(PT) = TN s =pu
dF = —pdV —sdT +udN— 25| _ v
' ON Ity G(NPT) = Nu
oG v
dG:Vdp—SdT+/.ldN$a—NTP=1u ®=F—-uN=G—PV —uN =—-PV
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Monte Carlo method

Monte Carlo — a class of algorithms that rely on random sampling to obtain numerical results

a) Developed by Ulam, von Nuemann and Metropolis in the 40's to model diffusion
of neutrons in fissile material.

b) The term is the codename coined after Monte Carlo casino where Ulam's uncle used
to borrow money to gamble.

c) Many flavors exist designed to address specific problems

d) Use in math: applied statistics — the inference problem, integration, optimization,
inverse problems etc.

e) Under the name of Markov Chain Monte Carlo (MCMC), used widely in physics,
chemistry, biology, finance, quantitative linguistics etc

t
The main idea: use stochastic methods (random sampling) e
to solve deterministic equations. Q)
How is that possible? Why is that needed? /
Example: Buffon’s needle experiment (: \ fI [
!

A needle of length 7 is thrown onto a striped field. What is
the probability that the needle

will cross the middle line? Two outcomes of the experiment:

a) Needle crosses the middle line
b) Needle doesn’t cross the line
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The state of the needle is defined by two variables: |

a) x — the center of the needle |

a)p— the angle it makes with the vertical axis

x and ¢ are random variables, independently distributed.

O J:r._ -2 ,1':
P(z).P(¢), P(z,¥) : are all uniform distributions — no preferential x or . 2D configuration space
. ‘ 1 1 o
Pz, p)=—"-5 fpﬁ-rumfﬁrfﬁ@ = { x € [0,2t]
p € (0.7

The needle crosses the line when x coordinate of points 1 and 2
satisfies the following conditions:

(1) = / \ (2) = / i
Q)
T T
2 ' 2 surface
‘ \ area
0 0 0 \

! . ¢ W . r_i
T+ 5 -sinfw) =1 . 2

TC
2
0 t 2t 0 t | 2¢ Or t 2t 1
Puys = [[ dxdopr ) = —5.@) -
T

[
xX=t— Esin(go)

12lj_ d_2l_l
—i%3 sin(x)dx = =

w2t mt
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Full probability:

21 |
Pcrossing - 21)1/2 — E

I ! ! |
| | | L )
f.-:' I_ 1- ._f.l- U 1| 'i_ .afl"

21
T = | —— follows from a stochastic process

A tP&ossing |

/

deterministic result=exact number

-~

355 _7
T = 113 — 3.1415929 10 accuracy

Lazzarini's experiment:3408 trials

Example: hit and miss integration

Throw particles(generate pairs of random numbers) on this square and
count how many fall within the circle r =1. The goal is to compute .

If particles are distributed uniformly then:

Pym Sy =7
P, - probability to hit circle o .
P; - probability to square B f
PA SA T
Baumketner, BioSim, Lviv 2019 PB SB 4



If the number of particles hitting the circle is n, and those hitting the square is ng:

4TlA
T=—
Np
Accuracy estimates:
Convergence tests
-4
v 10~* accuracy
Hit & miss: 3.141 7 3 after 107 shots
3.146 throwing needles
3.145} s
1073 accuracy 31440 °
4 error ~1/\/ng
Needles: 3.14 0 472 after 107 shots s § s 6
3.14.%:-—- ——ﬂ—c-_ﬂ_ - _.A_:‘_‘_‘.‘..L“_A_A
3.141F 4 Lok 4 A @ o g ©
. .. . - A A e O 8 e S
Conclusion: Lazzarini was able to compute 7zwith 107 3.140f N
~104 - &
accuracy after ~10% shots so he: 3139t & miiss o
Mg g o 4 g 3
a) cheated 0 5%10° 107
b) had a VERY lucky afternoon with numbers! U
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Sample mean integration

Hit & miss experiment is an example of the “sample mean” integration method.

Goal: compute F = f flz)dx

-

-
p(x)—arbitrary

Rewrite F' = L%f flz)dr = fxf :;:‘j,’: cplz)dr = § distribution

h function

If N; trials are performed to sample random variable ¢ , distributed according to p(¢§), then

th [
F = f(f) > rials = f(gl) — tatliearllvg\rlzgedilf?‘erent
P(f ) ~ p($i) trials

Example:

) ] ] ) o E‘giﬂ!‘]_ Iy ‘:_i o ‘:_i Iy xz — xl
uniform distribution p(x) = { —> [ = N f (&)

0 otherwise
.
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Compute = number by the sample mean method:

" 1
S=-ml
1 4
flz)=+vV1—222¢€[0.1], f V1—2?dr =
l N 1T
7~ 3.1416p for N = 107 same accuracy as the hit and miss method
N
10~* accuracy
Simpson’s integration rule:
m = 3.141593 hfter 10* steps! The stochastic method is not competitive!
\

107° accuracy

The cost of Simpson’s rule (or similar quadrature method based on interpolation) is
prohibitive for multi-dimensional integrals!

D=n —> jf(a?)dxl ..dx, ng— number of sample points per n — number of function
dimension evaluations

ng = 10 particles astronomical number that no computer

{ n =300 for an ensemble of 100 103090 function evaluations. That’s an
can handle!
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For integrals of high dimensionality stochastic methods remain the only viable option

Two steps involved in the integration using uniform p:

(in math this method is known as random Monte
Carlo integration)

1) Pick a point in the configuration space (77 ...7y )

by generating 3N random numbers uniformly

2) Compute the potential energy U(r; ...7y) and the

integrand for select g

Repeat these steps N, times and compute the
configuration integral as:

Focus on the configuration integral of the
canonical ensemble.

Z(N,V,T) = J e FUCL-TN g7 . dry

!

Cartesian coordinates

NS
Z(N,V,T) = NLZ e‘ﬁU(T_f(i)---ﬁv)(i))
Si=1

Problems with the uniform p :

1) N, has to be VERY large. For most systems of practical

interest in physics convergence is not attainable.
Y Ae Pl
D e—BU;
N\

2) Ensemble averages < A > =

the integral has to converge with N

for many evaluation points e #U~0

are even less accurate and in most cases

meaningless

a number with large uncertainty in the denominator

Baumbketner, BioSim, Lviv 2019




Importance sampling

To reduce the number of zeroes choose a distribution function p(I') that has a strong overlap
with the integrand.

: _ pnvr(I) r bad choice

For the canonical ensemble: p(I) of p(I)
< A> — fA(F)pNVT(F)dF — <A PNVT/P>trials
NVT JpnyT(T)dr <PNVT/P>trials

pyvr (D) better
: o choice
p —sampling distribution
p(I')
- : : : . PNvT
Specific choice p(I') = pyyr(I) is known as importance sampling: < e >triats =< 1 >triaqis= 1

<A >nyr=<A >rials

How does one generate a sequence of configurations I; ...[y that satisfy the given
distribution p(T") ?

Answer: design a Markov chain of states whose limiting distribution is p(T")!
(the corresponding method is known as Markov Chain Monte Carlo (MCMC) )
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Markov chains

What does it mean “Markov chain”? Stochastic

process in which: 34(1)

a) there is a finite (countable) set of

configurations in the phase space { I; ...I'y}.

path J 7T34(j)
b) transition from state i to state j does not depend ' 7
on the history prior to state i. There is no memory.

Correlation only between neighboring sites.

T34(0) = m34(j) = 734

Transition probabilities among states make a matrix 7:

Tmn probability of making a transition from state m to state n.

Z Tlmn probability of transitioning to any state

n#m

Tmm probability of remaining in state m.

z Tmn = 1 consequence of the phase space finiteness

n
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How are m,,,and p(T") related?

Example: prediction of computer’s up time

Computer can be either up or down. So the phase space
consists of two states | T>and | 1>

Computer has:

Day 1:

Day 2:

Day 3:

Day N:

Transition matrix

60% chance of being up today if it was up the
day before

. (1) =n(Tl)
70% chance of being down today ifitwas T = (n(n) n(u)>
down the day before
computer is up, p(T) =1,p(1) =0 p(1)x &

p(M) =0.6,p(1) =04

p(1) = 0.6 %0.6 + 0.4 0.3 = 0.48
p(1) = 0.4 0.7 + 0.6 * 0.4 = 0.52

row vector

J VA

p(2) = (pMp)) = (0.6 0.4) = (10) (813 819

0.3 0.7
pB)=p2) - =p) -7 -7 =p(1)
. ﬁ.N—l

T~ probability on day N depends on probability on day 1
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from day 1 to day 2

0.6 0.4
0.3 0.7
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y
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Is there a limiting probability for large N in which the dependence on the initial state disappears?

lim p(N) = p  does this limit exist?

N—>oo

If it does, then the probability becomes independent of time so it is equal for day N+1 and day N:

pPIN+1) =p(N) =p

However,
pPIN+1)=p(N)-&# —> p=p 17 an equation for the limiting

distribution

E'igenvector = A limiting distribution p'is the left

eigenvalue p=p-7 eigenvector of the transition

problem matrix 7 that corresponds to the

_ eigenvalue 1
pTl - pmnmn
m

f  is a stochastic matrix — its rows sum up to 1. We will also assume that it is an irreducible
matrix which means that all states are accessible leading to ergodic behavior.

Perron-Frobenius theorem for stochastic irreducible matrices: The maximum eigenvalue is
A(1) =1. It’s simple (non-degenerate). Its eigenvector is real. No other real eigenvector exists.

Consequences: a) limiting distribution 5 exists

b) eigenvalues A(n),n > 1 control the convergence rate to p
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Application to the canonical configuration integral

The transition matrix 7 is unknown. But we know the limiting distribution p,,, = pyvr (L)

Some rules for constructing 7

_ not needed for averages
a) avoid the need to compute Qnyr = Xm Pm

may be impossible to compute if the
size of the phase space is large

# transitioning from n to m

b) Detailed balance : p,7;m = PmTmn

# transitioning from m to n

Take the sum over m:

eigenvector condition

Z PnTlnm = Pn Z Tpm =t Pp = Z OmTmn pn IS the desired eigenvector
m m

m

A number of methods are available to build 77 that satisfies detailed balance

Metropolis-Hastings Wood/Glauber/Barker Kawasaki
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Metropolis-Hastings method: asymmetrical solution

Tmn = ('mn Pn > Pm M # n
Prn ,
“mn =Qmnn°'— Ppn<Pm M # n
Pm
Tmm — 1 - Z Tmn ——> E 7Z-mn :1
m #n

n

Amn = Anm  a symmetric stochastic matrix underlying Markov chain

Proof that the solution satisfies the detailed balance:
(m — n for lower final p)

r (n = m for higher final p) 0 5
n n
Pn = Pm' PnTnm = Pnlnm =|PmPnm— = PmMAmn — = PmTmn

Pm Pm

m
Pn = Pm: PnTlaum = Pnlnm — = AaymPm = AmnPm = PmTmn A
(n = m for lower final p) Pn (m — n for higher final p)

Important point: 717, depends on the ratio p,,/p,, but not on these quantities individually

One needs to know p,,up to a multiplicative constant to arrange a Markov chain. The normalizing
factor Qnyr = Xn Pn 1S NOt required.

Baumketner, BioSim, Lviv 2019



Symmetric solution

(g, P
{ T o+ P

Tmm = 1 — Z TTmn
\ n#m

m¥*n

Amn = nm  a symmetrical

stochastic matrix

Proof that the solution satisfies the detailed balance:

2

Which solution is better?

n*nm nnmpn_l_pm mmnpn_l_pm mmnA

Statistical inefficiency to measure the rate of convergence to the
limiting distribution: low inefficiency=fast convergence

s is anti-correlated with the off-diagonal entries in 7 matrix

Wood & Jacobson 1954
Flinn & MeManus 1961

Glauber 1963(Spin systems)

Asymmetrical Symmetrical
Pn
> Amn > Ay —————
Pn = Pm e
Pn Pn
< Ay —| > An——————
Pn < Pm mn  ———"
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Barker 1965(liquids)

— Trun02(< A >run)
a%(A)

[t1)wm > [Rolm M F D

s(my) < s(my)

Metropolis algorithm has
faster convergence rate




MC in canonical ensemble

Let’'s see how Monte Carlo can be applied to simulate liquids, in particular Lennard-Jones

liquid.

Configuration space:
Probability distribution:

['=(71,..7Tn) ,

MN~e BHD) p —
pyvr(D)~e b T

N
1
U =5 ) Uy ()
i#j
Periodic boundary conditions (PBC) are applied
to remove the surface artifacts

5 it (x(i).ge. box) x(i)=x(i)-box
—————— : , “====== i (x(i)t. 0.0) x(i)=x(i)+box

w L

L . * PBC

one cell
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U, () = 4e((2) —(

F

0.21/6

o

r

6

))

infinite lattice



How to design MC moves

In order to run MC one needs to select the symmetric matrix a. | o

For simplicity the matrix a,,,, = a.,, = a iS assumed to be a constant

One possible choice for this constant is related to how new configurational ~ |
states r,, are generated. , [

Assume new trial states are generated by random displacement of atomi i by vector: §7 =
(&16x,&,6x,E36x) where 6x is the maximum allowed displacement gnd &; € [0,1] are random numbers

If the initial state is n, then the final states m will make a cube with side 6x. This cube will contain a
large but finite (on computers) number of points N;,.

Any one of these points will have an Niprobability of being occupied upon transition.
k

Therefore random displacements occur with transition probability Ni = Tpm = Apm
k

A natural choice: “=N, Ny ~5x3 so awill be set by the
magnitude of éx
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Simulation scheme

The system is in an initial state n. Potential energy is available.

—> Step 1: pick a random displacement vector. This will happen with probability a.

Step 2:  If the resulting p,,, > p,,, accept the move as this means m,,,,, = a transition probability.

—— Step 3:  |f the resulting p,, < p,,, accept the move with 22 probability. This means

Pn

Pm " -
Toym = ap— transition probability
n

For p,~e BEn and AE = E,, — E,,, the algorithm can be written as follows:
pn m n

Accept n — m move with min{1,e="2¥} probability

How to decide whether a given move should be accepted or rejected based on its desired
probability P?

The outcome is stochastic so it has to rely on a stochastic/random process. The simplest
method is to flip a coin or roll a dice.
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Coin example:

If we don’t want/are unable to make a decision we leave it to chance.

Decision is
made with P = %

If we flip a coin, the positive outcome of the
decision will have %2 probability

Positive
outcome(s)

QOutcome 2

If we roll a dice, the positive outcome of the decision may have probability 1/6 or a number of other
values

o
[l
| =
~o
[l
| DN
[l
| =

or 6

Outcome 1
Outcome 2
Outcome 3
Outcome 4
Outcome 5
Outcome 6
Outcome 1
Outcome 2
Outcome 3
Outcome 4
Outcome 5
Outcome 6
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In general, a dice with N sides may encode N — 1 distinct probabilities:

1 N-1
P = N P = —
or
2 @ D o [l o @
= £ |E 1 q £
gl **° |8 |8 HHE °°° H 8
3 a3 =1 = ] 5
o) [@ o) O
Generalization to continuous P:
¢ €[0,1] arandom number \’\ P
PLS)
L
P (5 uniform distribution // ‘
44 r | .
The event that ¢ is below P will occur with P probability o / £ / | 7
Generate a random number £ . If it is below P - accept

anywhere anywhere
here there

P 1-P

the move, otherwise — reject it.
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Complete algorithm large acceptance
probability P,..

—>Step 1. Generate new positions for particle k: small ox slow movement in
¢ the phase space
. renew = rae(k) 4+ (2 x rand([0,1]) = 1.0) x dx
R small acceptance
E:_':. { rynew — f‘y{llt) -+ (2 X ?'L’]"I?ﬂ'( 0 J.) — 1{]) X {E.‘IT |arge ox prObablllty Pacc
1_%‘“ waste of computer
R & 9] . 0 11y . '
| rznew rz(k) + (2 % >md( 0,1]) — 1.0) x dz time

random number from O to 1
30% < P,.c <50%

Step 2: Compute the resulting change in potential energy

AE = E,, — E,
2F = Z Uy (rij) = Z Uy (1e) + Z Uy (7iej) + Z Uy (7iy)
i#] J*k k#j L]k j#k evaluation involves

only a sum of

208) = ) Uy () + ) Uy () = ) Uy () = ) Uy (i) o) not o)

j*k k+j j*k k+j

—Step 3:  If AE < 0, accept the move. Otherwise, generate ¢ € [0,1]

If § <w = e PAE accept the move

If&>w reject the move
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Implementation example in Fortran. One particle moves at a time

daeltaE=Enew-Eold _
deltab=deltaE/ (k*T guard against overflow

—if (deltab.le.75) then
| don’t generate the random number if

| if (deltab.le.0.) then AE < 0. Saves time
' e=e+deltaE

' rx{k)=rxnew
| ry (k) =rynew
| rz{k)=rznew

f naccp=naccp+l
alse

‘ rif (ranf().le.exp(-deltab) )} then
| | e=ae+deltaE
| | rx{k)=rxnew

H H | rv (k) =rynew
rz (k) =rznew / update the counter of accepted moves

/ generate the random number

/ reassign coordinates

h ‘ | naccp=naccp+l
rendif Extensions:
andi f
Le ] update the counter of total trials. a) multiple-particle
ndi £ / moves
ntrial=ntrial+l
b) all-particle moves
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Isothermal-isobaric simulations

The goal is to reproduce the NTP ensemble. Volume now has to be treated as a dynamical
variable.

Phase space: 1o T V) Iy TV + 8V)
After relaxation, particles
¢~ will fill up the box
—_—
(i Ty, V) (ri... TN,V = 8V)
PBC will return the
articles to the main
P

simulation box but there
will be many steric clashes

The box will experience uniform

Alternative approach: introduce scaled coordinates : :
expansion or contraction

old variables: new variables: .,
(?"1... m, V) (Sl"' ﬁ, V) Coe o . ’
. * —_— .
ri . . .
T =V3.F, (5,.5,,5.) €[0.1], dr; =V .ds; ., -

Baumbketner, BioSim, Lviv 2019



How to compute NPT averages?

[aVe BPY [dre=BU@A@)  [dVe PPVYN [ dse FUGA(S)
[dVe=BPV [dite=BU®  —  [dVe=BPVYN [(d5e—-BUG)

<A >npr=
NVT average
J‘dVdg.’e—ﬁU(é')e—ﬁPVeNlog(V)A(Sz) J‘dVdg.’e—B(U(é')+PV—kTNlog(V))A(§)

- ] dVdse—BU(S)g—BPV gNlog(V) - [avdse —B(U(S)+PV—KTN log(V))

=< A >SV

Sample from NVT ensemble for the extended system defined by phase space
coordinates T = (51 ... sy, V) with the limiting distribution function:

p(l-') — e—ﬁ(U(§)+PV—kTN log(V))

Algorithm:

Simulation is conducted as in NVT ensemble except that now we have two types of moves.
1) Coordinate moves: ?;n — ?“ +02(2-&=1) £ € [0,1]

these are expensive so should

2) Volume changes: Vm =V 4dV(2-&—1)e— | attempted rarely

Moves accepted
with the probability:

v
P = min{1,e~PAF}, AE = Ey = Ey + P(y — V) = kTlog (1)
n
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Grand canonical ensemble
Both coordinates and the number of particles are allowed to change

, , . Adsorption onto a porous surface
It's more convenient to introduce P P

dimensionless coordinates as this will make Very large system required Focus on the surface
distribution function dimensionless as well.

This is important when comparing systems P B . L
with different number of particles, N and N + MUreservoir |* < . 7 .
1 for instance, as they have different . . *
volumes of the phase space. m
Hsurface | N . . .

Parameters of the ensemble: u,V,T

Phase-space variables: (r{ ..y, N) ——>  Scaled variables: (s; ...5y, N) (u,V,T)
Ensemble averages: si= V73
co
1 BuN vt 20—BUG) A (2 :
<A>ury= ﬁe 13N dse A(s) [Quvr = de Broglie length
=1

A = Jh%/2mmkT

Yn=1] ds e~BWU(S)-uN-KTN log(V)+kTN log(4®)+kT log(ND) 4(3; N)

0o 3 o—B(U(S)—uN—KkTN log(V)+kTN log(A3)+kT log(N!)
YR-1)dSe

Limiting distribution in MC chain:
p(s_l’...ﬁ? N) = o ~B(U()—uN—KTN log(V)+kTN log(23)+KkT log(N")
There are a number of implementations of GCMC that differ in how particles are added to/removed from

the system
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Three types of moves:

1) Coordinate moves: @™ = I 4 §x(2-£& — 1) £ €[0,1]
P = min{1, e FAU}
2) Particle creation: N N+1
——
s;,N+1 %
PmlS e t)_ min {1,9"‘8‘“”“03%}
pn(s,N)
3) Particle destruction: N N-1
——
JN -1 N
p~~ m@ﬁ ) = min {1,e_BAU+1°gﬁ}
pn(s,N)

v \%

Direct computation of free
A/N = pu—(P)uwrV/{(N)uwr

energy in GCMC:
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z=ePH/23

for fastest convergence choose

1
P1=P2=P3=§

insertion at a random
positon. Difficult in dense
fluids because of steric
clashes

AU=UG,N+1)—-UG,N)

activity

deletion of a random
particle. Difficult in dense
fluids because the particle
may experience strong
attraction in the media

AU =U@,N—-1)—UG N)

averages obtained from
simulation

may not be accurate because of
large fluctuation in <N>



Gibbs-ensemble simulations

This method is designed to simulate phase equilibria.

P 1 — Pg N . .
Liquid Gas .
Tl == Tg .
Hy = g LT
The best choice for these experimental conditions is uPT “ensemble” Such ensemble does not
exist!
One of the state variables has If both N and V are allowed
to be extensive (N orV) to change a simulation box

can'’t be defined uniquely
Consider two coupled systems with the total V and N fixed:

Vi=V-="V |-, V2 Exchange of particles and . 7 'H%‘-.
. . N volume is allowed. This ='
2 enables coexistence

between two phases. The
. i . . advantage is that there is
. "\_/ no interface. Molecules in

. " system 1 and 2 do not
. " . interact with one another.

N1=N—N2 *
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The partition function:
Variables:

1 (ﬁ...s_mi,nl,Vl)

Q(N,V,T) = Z e nl)'[dVlVl YV — VN x

(57 - 3wem.)

fds ‘e 5["(51)[(15 M, —BU(sz)

o _ scaled coordinates of system 2
Distribution function: /

VW —vp)N-m
— _B(U(S )+U(S ))
P, V1,51, 52) ny! (N —ny)! ¢ 1 2

scaled coordinates of system 1

MC process that samples from that distribution:

1) Coordinate moves T =T 4ox(2-£—1) ¢e[0,1] P = min{1, e 52U}
applied in both systems
independently: o o ® ® b
o =
[ aaed o o
o @ L ® L
@ ® ®
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2) Volume change: prm————— e ¢ P < 10%
e o o | 5
o L] o | ¢ |
Vit =V1 + 6V «® o ° ® V=Vt -8V
@ [ ] [ ] | I
m\N—11
- e . Vm nq V _ V
Probability of n to m transition : p— min{l,( 1) ( 1 )N_n e—B(AU(S1)+AU(52))}
(V)™ (V - n) 1
3) Particle exchange: c o © . ° P <10%
°
@ ° ®
® o °
N =NI'—1 ° L ® NI* = N} +1
! ! e o (o e 2 2
: n(V —-"1;)
P ili iti . P = 1, —ﬁ(AU(Sl)+AU(SZ))
robability of n to m transition min{ N —m T DV, e }
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Typical results:

After initial relaxation, densities in the two boxes will settle down to their equilibrium values

P1

MC cycles Pc

In the coexistence region T < T, there will be two distinct densities corresponding to two distinct
phases.

In the supercritical region T > T, there will be only one density. Boxes may have different sizes
and numbers of particles.

Large finite size effect for gas-lattice models. Minimal effects for continuous models. Systems
with <100 particles are OK for LJ model in both 2D and 3D.
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Electrostatics in biomolecular systems
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Poisson-Boltzmann (PB) model

In canonical ensemble: Partition function:
Ideal part excess part
payr(D)~e PO, B - _ 1! 3 e—BHT) Vet
VT ’ kT Qnvr = WJ dpdqe = Qnvr X Qnvr
id _ vy 1= \/hz ex _ Znvr — > >—BU(Q)
NVT = NNt = [2emkT NVT = W:ZNVT = jdqe

Free energy splits into two parts as well: .
gy sp P F = —leogQNVT =Fld+Fex

Gibbs free energy: G = F + PV = Fi@ 4+ F* 4+ (P! 4+ P*)V = G'4 4 G°*

Chemical potential: u=—=u+u%*  \here

N excess part due to interactions
ticl
p— particle density an;ng bet j/c = &
id — 3 — 1
u'* = kTlog(2°) + kTlog(p) = leOg(nQ % = [JeX — TSeX 4 pexy

Ng = 173 —
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Negatively

Assume the following approximation for the ions

solvated near a charged wall: : :
number density of ions

\/
. p -
u=U%%+pue=qe + kTlo g(n—) surface charge
/ ¢
total interaction energy is ,\
approximated by the excess parts of entropy and
electrostatic potential. The pressure are neglected (not too

potential needs calibration. bad)

Consider system of ions confined between two surfaces. All
properties depend on coordinate x.

In the state of equilibrium, or more generally stationary state,
the chemical potential should not depend on x to avoid

exchange of particles between different parts of the system.

u(x) = const
X
qe(x) + kTlog M = const
|
p(x) = ple~Fae( pLe=0)=0
= p(x =0)=p°

Boltzmann distribution prescribing how
density of ions will change depending on the calibration conditions
potential

-
Baumketner, BioSim, Lviv 2019 Coordinate x



Density and the potential are connected by laws of electrostatics:

displacement created by \

charge distribution charge distribution

In polarizable media: D(x) = e(x)E(x) = —e(x)\7¢(x)

Poisson equation for computing potential

For vacuum: —VE(x) = Ap = —4nqp(X) < qreated by charge density

2 — — — constant charge
d?Ap I — p(x=0)=0 o5 = const boundary
dx?2 nqp-e condition

as = f(¢)

constant “potential”
boundary condition

Poisson-Boltzmann (PB) equation

PB gives ion density, potential and electric field at any point within
the system
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How well does the PB model work?

Analytical solution:

p(x) = poe™P?) = py/ cos?(Kx)

2K on(K2) =, equaionork
_— — | = eqguation 1or
B an | — os €q

PB underestimates the density at the surface

Broken line=PB
Solid line = MC

1

T ek (M)

S P

The agreement is remarkably good for
concentrations in the range up to 16M!

Distance x (nm)

Extension to mixtures

Assume that we have a mixture of ions with varying valency. The condition on the constancy of the chemical
potential has to be satisfied for each component.

Pi)

Wi =qip +kTlog(—)  ———  p.(x) = plePaie®

g

Baumketner, BioSim, Lviv 2019
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Poisson equation
Ap = —4m z qipi(x) —— Ap = —4nz qiple B9 PB equation
i [

Linearize the RHS

Zero for electrically neutral systems

e_ﬁCIi‘P(x) =1 — ﬂql(p(x) + ... /

4ﬂz qiple Par® = 4ﬂz qipY (1= Bqip(x)+ ) = 4”2 qip; — 4ﬂz q?p? Bo(x) + -+
i i i i

= —KZQD

k= |4nf z qiz,Dlp inverse screening length
[
After putting everything together:
Ap — k29 =0 linear PB (LPB) for multicomponent
systems
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Limitations of the PB model

The key approximation: u=U + e = qgp + kTlog (i)

P -

1) The total energy is approximgtéd by the electrostatic component only. What's neglected:
a) other energy contributions, excluded volume, vdW etc. The size of the ions is missing
b) the electrostdtic energy is included at the mean-field level. Approximated by the average value.
lon-ion coprélations are missing

2) Full entropy is approximated by its ideal part. Effect of particle-particle interactions on the excess entropy is
neglected. In particular:
a) steric effects are missing

3) Discreetness of surface charge. May contribute additional attraction when discrete surface charges are
mobile.
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How can PB model be used for hiomolecules?

Extension of the Poisson equation to multiple
media with fixed and mobile charges:

VD = 4n(ps + pm)

\

fixed charges mobile ions
charge density

Electric field in the continuum approximation:
D () = e(EF

V(eE)) = —4n(ps () + ppr ()

l

sum over fixed-charge points
that make up the interior of the

V(e®Vp(F)) = —4n(ps(F) + X, qiple F1e® ) t make up
sSolute moleculie

7 (eVp®) - k> = —4mpp(P) LPB equation
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LPB can be solved numerically subject to specific boundary conditions (constant charge):

Continuity of Region |

el (1r) = —47T,0f(7) Pr |Q = P |Q potential

%| — . Ay
on 1a I on g

enlo () — k@) = 0

displacement |

Region I

=
Boundary between two media: ()

Computation of the charging free energy

Recall that the potential in solvent (continuum approximation) is :

AG ([‘) is the free energy associated with turning the solvent “on”.

UM(F) = Uv(r) + AG(T) where

Uv(r) electrostatic energy in vacuum

Also recall that  AG(T") = AG.,(I') — Uy, (T)

AGcp () = j dq @ ‘;‘5&%2‘9 free energy. Work needed to create charge in a
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Since the PBL equation is linear: AGch ([‘) = %2 CIi‘Psol(i)
[

.

potential acting on charge qi obtained
for particular solute in solvent with e = 80

Potential energy in vacuum:

1 .
Uy = Ez q; Pyac(i)
i S

potential acting on charge gi in vacuum

or solvent with
e=1

Combining the formulas:

1
AG(T) = EZ Qi(‘psol(l) - Qovac(l)) = AGpp
[
\ this is the term that needs to be added to the
potential energy in order to include the effect of
the solvent.

The approach that combines certain force-field with PB equation for solvation energy is
known as PB/MM model
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Limitations of the PB/MM model

1) All that apply to PB equation.

2) Error due to continuum approximation for water. Model breaks down on length scales comparable to the

size of water molecule.

3) Missing non-polar solvation forces

4) High computational cost

Fine structure of the potential is due to
the finite size of water molecules

All implicit solvent models are missing
local minima, including GB which is
parameterized against PB

=10 — ——— —_— e

B —— e ————

saoNTeaaNTEeEnOMTERONTEOONTERONTEDOMTEADO NGO
S R R R e Ll L L N N e L Lt

1722 = J. AM. CHEM. SOC. 2003, 125 1722—-1730 ™%
AL
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Generalized Born (GB) model

Numerical solutions of PB for real molecular shapes are very costly. Much faster implicit solvation
models are needed.

Draw an analogy with the Born solvation energy: AGgorn

1 q?
€

( —1);

mlr—\ N =

1
Approximate solvation energy for a molecule: AGgp = E

qid;
1) f _ Generalized Born (GB) model
L

Empirical function:

/ Still’'s formula
—r2 R :
fi = 1 + Rikye /4R

R. is the effective Born
L radius for atom i
If there’s only one atom in the system:

1/1 CIiZ Born energy f i
.. = R. __|=Z_ A y for particle
fij = Ry, AGgp =5 (E 1) R, AGporn with radius Ri

For two charges at a large separation: 712 = R{,712 = R, fij X Tij

1(1 i 1(1 a; (1 4192
AGprp==—|——1]—+-=-|——1]|— ——1
GB 2(6 >R1+2<E >R2+ € 12
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Full electrostatic interaction then is:

1/1 2 1/1 2
Ueie(r12) = q;qz + AGgg = E(E — 1>q_1 + _(_ _ 1>q_2 n 4192

12 R, 2\e€ R, €Ty,
| | ]
f
Self-energy of the two ions Coulomb interaction in

a continuum

To retain their physical meaning, Born radii are introduced
via charging free energy:

No atoms except number
| have charge
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Coulomb field approximation for the Born radii

Another way to compute electrostatic work is via scalar product of the displacement
vector with the vector of electric field:

Assume that the displacement vector created by charge qi retains its Coulomb form
even outside of the solute molecule:

Work needed to move charge gi from infinity to its proper location:

1 1 ¢ 1 q;
W J(D/a) DAV ~ SwLﬂ gy o JM

8 8m rig
To compute electrostatic solvation energy one needs to -1
subtract the same quantity evaluated at c=1 > AG.p= (
i

One then arrives at the following formula:

Baumketner, BioSim, Lviv 2019
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charged line that extends
to infinity

The Born radius in CF approximation can be evaluated exactly for the spherical
geometry. The integral can be taken analytically to yield:

. Ar , < 11 1+p>‘1
= = a n ) p =
CF foutr—z}dv 1-p2 2p 1-p

The spherical geometry has an exact solution. In particular, the
reaction field is a sum of the field created by Kelvin image and a
charged ray:

Prr (1) = Qg (1) + Qline(7)

N

terms of order 1 terms of orders

and 1/€ higher than 1/€
2 aq _
Kelvin charge image: r,, = K g =Y — y = 1—e¢
Ts Ts 1+e€

) 0% 1—€ aq
Reaction filed at the location of the source charge: @rp\ls) = =
J ¥ rg—1, l14+e€a?-—r?

. 11—€ agq? 1 (1 q?
Charging free energy: AG.y, = j dq Qrp =E 1T ez 5 = E
a“ —r.
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GB radius in the Kelvin approximation then is:

e

1+¢€
~ a(l—p?)

R
K=

a(1-p?)

J. Chem. Phys., Vol. 119, No. 9, 1 September 2003

1

good
approximation for
water with
eps=80

Exact radius for arbitrary dielectric constant:

(1+7)p*"

1 1—"‘;’ 1 1
R. 2 a(l—p3)+ ﬂZ:D]—

v+ 2n

Kelvin solution also leads to a better
expression for the Born energy of multi-
particle systems:

CF works well for 0.5
atoms near the
center of the

sphere.

0.9

0.8/}

For atoms near the molecules boundary, the
CF approximation overestimates the Born
radius 2 times

fij = \/rl%. + RiRj <—— Grycuk’s formula

2
_ 2 —1{:/4RiR; i
fij — \/Tij + RiRje ij/ *itj <= Still's formula
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To evaluate Born radius for non-spherical objects, an empirical formula is proposed:

1 - 173
E_ 4?1_ —ECIV) . this leads to

ex!

this is still an approxmation. Works exactly
only for a sphere in high-dielectric constant
medium. Perform tests for everything else!

Uniformly good performance
for any location of the source

a(l-p?)

for a spherical molecule

Deterioration of quality for
charges buried inside the
15 . molecule

- charge
_ 1/R6 GB
/

~15 Numerical PB
@
=]
@
| =
o}
o 10

5

0 5 10 15
distance from the center (A)

7

0 5 10 15 20
distance from the center (A)
J. Chem. Phys_, Vol. 119, No. 9, 1 September 2003
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Comparison for varying dielectric constant in the context of a protein

1) CFA is not accurate for any eps

2) R6 is accurate for interior dielectric of 1
but much worse for dielectric=20

[ interior dielectric = 1 [ interior diefectric>0
08 / o.s
| ] CFA o
~ I Cra < ~ R6 >
Zosl . i o’ Loell " % : '
5 . 5 “
E [ U E
m i m [
L&) 2 i g
‘E o4 r i IE 04 _— L
3T B oo
g [ e 2 [
= 5 =
02 0.2
| (a) | 2
n_']""l""l""l""l" D||[b|'|I||||I||||P'||||Il:||'ﬂ|
0 D2 04 08 08 0 E 04 _ b6 . D8
inverse of Poisson-derived radii ( A- ) inverse of Poisson-derived radii ( A™)
3) Small shift of inverse R can improve the 1 1 o _1
agreement with PB a lot. Reason — unknown — =—+ 0.0284~

R; R;
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Non-polar solvation

Non-polar molecules tend to minimize exposure to solvent. As a result,
configurations with minimal surface area are assumed. Solvation free
energy is assumed to be proportional to the surface area exposed to

solvent:

solvation energy of the molecule
with all non-polar groups hidden
from water

SASA constructed as the surface
area of a figure swept by the center
of a probe molecule rolled on the
surface of the solute molecule

R, = 1.4A typically used for water

WA SA%A
l o ﬁ
AG,, =v(SA) + b :
empirical parameter. May \
depend on the curvature of the ‘K
solvent molecule. Typical value Nw@wﬁk
vdW surface = SASA v lace

v =72cal mol'A~

to zero

1) Parametrizations by many groups (Sitkoff, Sheraga etc.)

2) Only part or the whole molecule can be treated as non-polar. Separate

parameters can be introduced for polar and non-polar groups.

3) Several definitions of “accessible surface” are in use.

AG - AGPB/GB + ]/AS

with the probe radius set

Molecular surface is
made by the points of
closest approach of the
probe to the solute

common models PB/SA or GB/SA
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Weighted histogram analysis method (WHAM)

Temperature
P <E >

Assume that we have a number K of different _ _ b Bk &
simulations, each performed at a separate E?]grgy binned into
temperature B k=1K a histogram |

hk (E) | |
The number of sampled conformations for each : :
temperature is N | |
Each simulation produces an energy histogram / 'AE ' E

hy (E)

where the bin sizeis AE

® O oo 0 O
Iy Iy

Z hk (E) == N Conformation 1 Conformation N
E

The energy can be obtained at a discrete set of temperatures < E >ﬁk

Q: How do we compute energy (and other functions) at )

intermediate temperatures? Is there new information hidden in
these data?

L J
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Sampled histograms can be used to estimate density of states:

_ —Br(E-
hi(E) = Nny (E)e~FrE=/i) E— ne (E) = hu (E) eBr(E=fi)

/\ N
density of states. fr is the free energy
Most accurate for at temperature g,
energy levels close
to<FE >Bk

Let us combine histograms at all temperatures in order to obtain a more
accurate estimate of the density of states:

K K
n(E) :Zwini(E) Zwi —1
i=1 i=1

some weight ,\ o N
coefficients for each normalization condition
temperature that the coefficients

needs to satisfy

If the density of states is known, energy distribution at any temperature can
be computed as follows n(E)e_BE

Ypn(E)e PE
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How to compute the weight coefficients?

Energy binned into

a histogram

Let us estimate the error in the density of states and
try to minimize it. This will produce an optimal set of

weights.

If we perform multiple experiments = sets of measurements,
the resulting energy histograms will fluctuate. This will lead
to fluctuations in the estimate of the density of states.

n,(E) =

hy (E)
N

eBrE=FI)—> dn, (E) =

Ohie(E) py(E-ri0)

N

fluctuation in the
density of states

The average of fluctuations across many experiments is zero

< 6y (E) >epp= 0

Fluctuation of the weighted density of states:

K
s5n(E) = Z w; 5ny(E)
i=1

Temperature 8}, Fluctuations in
} histograms
across different
experiments
/1
@ | <
|
|
|
I .
/ 'AE' E
[y ® O ®
o O ®
° ° ®
° ° oo ®
° ° o
o ® ®
r, @ O ®
Experiment  Experiment Experiment
1 2 M

K
< on(E) >= EWL‘ <én; (E)>=0
i=1
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The error can be estimated from fluctuation squared:

K K
(6n(E))” = Z wiw; Sy (E)Sn;(E) — < (8n(E)) >= Z wiw; < 6ny(E)én;(E) > =
i=1,j=1 i=1,j=1 1

since measurementsat > < (&n; (E))?) > Oij
different temperatures are

K
z wi < (6n;(E))?) > uncorrelated
=1

Average fluctuations in the density of states at fixed temperatures can be
estimated as follows:

(6hi (E))? < (8hi (E))* >
N2

NZ ezlgk(E_fk)

(6ni (E))? = e?PkE=N1) ——— < (8, (E))? >=

Let us rewrite the squared fluctuation of the histogram in explicit form:
< (6hk(E))? > =< hz(E) >—< hy(E) >

By definition:

N 1 1 if E<E <E+AE
hk(E) = z 5E,Ei where 5E,Ei = E(G(Ei —E)+O0(E + AE — El)) = 0
=1

otherwise
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The square then is

N
< (hy (B))* >=< Z OpEOpE; > = <

N
i=1,j=1 i=1

J

N

< Z 555, >
i=1

J

< h, (E)>=Ng

For canonical distribution, quantity g can be evaluated directly:

[ 8 5 n(E)e PEE

I J n(E)e=FE ~ n(E)e PE-FIIAE

Average square:
N N
<h,(E)>2=< Z 8pp, >< 2 8g; > = N*%g*
i=1 j=1
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2
525 > +< Z L

SO

under the assumption

i#j

! \ that conformations i
N and j are independent
z < 8g g, >< Ogp, >
i#]j

\

N(N — 1),92 g =< 6E,Ei >
\

number that shows how likely a
random conformation at temperature S
IS to have energy €[E € +AE]

Jim,g =0



The difference then is

< (6hg(E))? > =< hi(E) >—< hy(E) >>=Ng+ N(N — 1)g? — N?g? = Ng — Ng*?

if 2 « which can always be achieved by making
g 9 : :
an appropriate choice for AE

Going back to the estimate pf error in the density of

states:
< (Bhe(E))* > _ < hy(E) > _
< (6ny (E))? >= e e2Br(E=f1) = 4 e e2Bk(E=fk)
The best estimate of the average histogram can be < (Shk(E))z > = g, < h(E) >

obtained from the improved density of states:
more general expression where the g
<hy, (E) >— Nn(E)e_ﬁk(E_fk) — NeBrE-Tr) Z{V win; (E) factor may include the effect of energy-

l energy correlations

n(kE
< (6ny (E))? >= %eﬁk(ﬁ'_fk)

The error in the improved density of states finally:

K K
(E)
< (5n(E))2> = Wiz < (6n;(E)?) > = Wiz n_eﬁi(E—fi)
2 2
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Let us consider the relative error in the density of states estimate:

n(E)

l

K K K
< (6ng (E))? > 1
F(wy, .., wg) = (O (E)) +)LZWi= Wizﬁeﬁi(E_fi)-l-/lei
i=1 =1 i=1

Minimize the cost function: und_efined coefficient
designed to enforce the

normalization constraint on

oF (wy, ..., 2 .
(wq W) W eBUE-) L 1 = 0 l=1K weight factors

an - N \l/
— A7N e_:[))l(E_fl)

Wl:

Use the constraint to determine A

AN 1 e_.Bl(E_fl)

K /1N K
- -BI(E-f1) — — — _
W; = e =1 - wW; =
; L 2 ; 2 {{zle_ﬁl(E_fl) l lee_ﬁl(E_fl)
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: : _ h:(E
The best estimate of the density of states: i(E) o BiE=F)

n;(E) =
N pi(E) = hi(E)/N
K . —_— . —_— . —_— .
n(E) = ZW n.(E) = > ny(E)e PiE-TD _ Y n(E)e AilE=TD _ Y pi(E) normalized
— ! o K ,—Bi(E-f; _ K ,-Bi(E-f; ~ VK ,-Bi(E-f; energy
i=1 Li e FuETY i e PET) i e PulE=Io histogram

: WHAM equations can be solved by iterations:
Density of states can be evaluated from energy . y

histograms at all temperatures and free energies. Step 1: Adopt some values for the free energies f; ...f,
By definition: Step 2: Compute the density of states using eq. (1)
Step 3: Obtain more accurate free energy from eq. (2)
e Bifi = Z n(E)e—ﬁiE
Step 4: Go back to step 1. Continue until convergence.
E

Non-iterative WHAM: JCP 135 (2011) 061103
WHAM with faster convergence: Mol Sim 42 (20016) 1079

Then one obtains a set of coupled equations:

K
(E) = Zi pi(E) ) Outcome:
2{( e Bi(E-f}) 1) Relative free energy for a set of temperatures. f1 has to be fixed.
2) Density of states so energy dist. for any temperature
e Pifi = Z n(E)e PiE  (2) Pitfalls:
E 1) Temperatures have to be narrowly spaced for energy distributions
(E) —BE to overlap
n e
Reweighting: Pﬁ (E) = — 2) Energy distributions have to be converged. Problems at low
2 n(E)e PE .

E temperature may arise in some systems
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Two-dimensional WHAM

Imagine that it's some structural parameter X for which we seek temperature dependence.

To obtain reweighted function one needs to consider joint distribution of that parameter with E

n;(E, X)e BiE

P.(E, X) = = n;(E,X)e PiE-fi ——> n.(E,X) = P,(E,X)ePiE-f0)
l( ) ZE,Xni(E’X)e_BiE /]\l( ) ,\ l( ) l( )
Z p; (E,X) =1 2D density of states free energy
=N P00 = ) Pi(E,X)
. . E
histograms at certain
temperature
Following the WHAM dure, build e PUETTD
ollowing the procedure, build a n(E. X) = zw,n_ E X Wy =
better estimate of the density of states: (E, X) o i(E,X) L Ik<—1 e—Br(E=fk)
1 =
Distribution function at any temperature by reweighting:
2D WHAM equations: yemp Y Jning <X?>p—< X >p

Y P,(E, X) Py(X) = Y on(E,X)e PE

n(E, X) = (P T. Yo wn(E,X)e PE i
YK e=Bi(E-fD) / K /\‘

-Bifi = ~hiE
e Fif —Zn(E,X)e g <x>B=ZXPB(X),<X2 >ﬂ=ZX2Pg(X) / g
X X

E.X

transition point
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Umbrella sampling

The idea of combining multiple trajectories can be used to obtain distributions along selected degrees of
freedom with the help of biased simulations.

Recall that for a degree of freedom X: Not normalized distribution function

—BE
P(X) — ZP(E,X) — ZEn(E,X)e PO(X) — PO(X)B'BF(B) P()(X) — ZTL(E,X)B_'BE
E

/I\ ZE,Xn(E;X)e_BE ZXPO(X) —

.- : /Y : free energy at B

oint normalized 2D density of _ ,—pF

Jolistribution states ’ temperature z Py(X) =e
1/beta e

Imagine that we apply external potential to bias the value of coordinate X sampled in simulations

a
E+E+5M—&V

I\

biasing “umbrella” potential

Distribution in the umbrella simulation:

a a
P(X) = Z n(E, X)e BEe Fz(X~X0* eﬁf i = Py(X)e F2X XD ofi z Pi(X) =1
E X

some normalization constant specific to Xi
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Unbiased distribution can be recovered as follows:

. a _
Pé (X) — Pi(X)eﬁE(X—XL)Z e~ fi ZP(’j (X)Q_B%(X_Xi)z _ o fi

AN

this is normalized histogram
from biased simulation

Let us now conduct multiple biasing simulations to obtain improved distribution:

Po ()= ) wikS(X) Y wi=1

Follow the WHAM procedure to estimate the error and then minimize it:

. a .
(6P (X))? = (5Pi(X))zeZB7(X_Xi)2 e~2fi = pO(X)e,Bg(X—Xi)Z o—fi

A
(8Py (X))’ —Ew%apo (X))? —sz FRUX0 o= F1 py(x)

The function to be minimalized:

0BT X=XD+f)
2, B5(X-XD? —f; Z% w, =
F ZW +/1 Wl l Z_e_ﬁ%(x_xi)z-l_fi
i i
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WHAM equations:

Let X be some generalized coordinate. By definition:

2i Pi(X)

_JePldry  z(x)

P(X) = j6(X—X(F))e—ﬁUer—1 =T e Far = 2

Py(X) =

o(X) Y. e—ﬁ%(X—Xi)2+fi

l

—fi — —B5(X—X;)? differential over variables

et = z PO(X)e 2 dI‘X other than X (orthogonal dX 0([‘1 FN) dx dx
X variables) 0(X, x5 ... xy) 2 AN
The average force that corresponds to the coordinate: _ .
o Jacobllan often difficult
- t t
Reweighting: - fﬁ e ﬁUdFX oEvaa®
<Fxy >x= [ e-Puar Z(X) = P(X)Z
(X) conditional / €
0 X
P(X) = S Py(X) average. 1 1 d f ~BU g
Coordinate X == — e %
s fixed T B[ e FUdly 0X

Potential of force (PMF): ‘force” 11 0 i,

otential of mean force (PMF) _ Ema_xz(x) _ - leog(Z(X))
F(X) = —kT log(P(X)) P

\ = —a—X{—leog(P(X)) — kTlogZ}
function that can be used as free energy profile %,
generalized potential along along one variable - - ﬁ F(X)

degree of freedom X

‘potential” that generates it
Baumketner, BioSim, Lviv 2019



Free energy estimation
Key thermodynamic function that helps to describe stability of condensed matter systems

1) Phase equilibria, transitions

2) Binding strength for macro complexes ...

By definition: : :
Excess part=due to interactions

Partition function Ideal part

A 4
F(N,V,T) = —kTlog(Qnyr) = Fiq(N,V,T) + E,,,(N,V,T)
T T . VN

— Nnid ex ]
Helmholtz free energy Qnvr = Qnyr X Qnvr QllVdVT = N! 13N’

A =\ h2/2mmkT

FLNV.T) = log(o) + S log—= | = N
id 'V - 0g\p 08 /—{3 ﬂ' p_v

B B
Z
F,x(N,V,T) = —kTlog(Qfyr ex  — %, Iy = J dle-BUD
\

A
/ 3-N dimensional space
Configuration integral

Not formulated as an average over ensemble so difficult to estimate in simulations
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1) Hit and miss method

ZnvT is an integral in multidimensional space. The most efficient integration method is sample mean.

sampling from the given distribution

The scheme can have multiple realizations:

1) Uniform distribution in the phase space p = i j de(F) =1

VN’

ZNVT == VN < e_'BU(F) >

CON

Con_figurations are generated_by randomly displacing Due to overlaps between particles, very few
particles anywhere in the available volume V entries in this sum will be non-zero. The sum will

never converge
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2) Non-uniform distribution in the phase space p= e —BU)

[ e=BUM gBUM gr B [e=BUM) gBUM) gr [ e=AUMqr <P >, Zyyr
VN B VN [e=BUMdr VN
VN

ZNVT = < e,[))U(F) > \

The sum will never converge!

1=

The weight function is non-zero where
U(T) is large and negative. But exp(beta

U(I)) is zero precisely at those points!
No overlap between the

weight function and the
integrand
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2) Thermodynamic integration

1) Integration over density

oF
dF = —PdV — SdT ——> P=—< )
T

v
v p
P(p N
FW)=FWVp) =~ | PONAV =N | dp—35" <«—— dV = ——dp
P p
Vo Po
| .
P(p)
F(p) = F(po) + N fdp p
/ Po
s ey s o e T S

exactly for this density known

Let’s pick density sufficiently low so that the system can be approximated by ideal gas

N

N 1\ N
F(po) = Fia(po) = Elog(po) + Elog (ﬁ) -3
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Then the ideal part at low density can be written in terms of the ideal part at any density:

N N N N 1\ N N N
Fia(po) = 7 log(p) — 7 log(p) + Elog(po) + 7 log (ﬁ> 5= Fia(p) + Elog(po) — Elog(p)

| | e
p
N 1
Fia(po) = Fia(p) — 7 f dP;

(p) _ (p) _

F(p) = F(py) + N ia(p)

ld<p>——fdp N

p
BP —p P“*(p) P (p)
+de = Fiu(p) + N ::-()+de
p P57 ld%ﬁ 2 ia(p J P2
0 0

P the integral converges in the limit of low density

pe* = p — =
p

p

pex

Fox(p) =N jdp gp)
0
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2) Integration over temperature

ex _ dTe—BUD) aQﬁ’)‘C/T 1 d pU(T)
NVT_VN e — B ~yN ru(Me~
—BE(B)
7

ol i
og(Qnvr =—< U > (B) — log(Qh+(B)) = log(Q&%r(By))

op

v

=—< U > Qfvr

B
—Jdﬂ<U>
Bo

free energy difference

BE(B) = BoF (By) + j QB <U> (B) <

a) Integration from high temperature

Blémo BoF(By) =0

F(ﬁ)-lfdﬁ<v><ﬁ>
=3

For potentials that diverge at zero, the

between two temperatures

Uij(r)

~
Pe

average energy will diverge at high

temperature/low beta
For potentials bound at the origin /

the average energy will also be
bound
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b) Integration from low temperature

B Bmax temperature at which
,Bmax e harmonic approximation
F(B) = 5 Fo(Bmax) — E f dg < U > (B) becomes accurate
'\ B N/ number of the
_ i degrees of
Up =Uo + 2 kT feedom

Free energy in harmonic approximation. Involves Hessian
matrix. Easy to compute for a single structure, for instance
in crystals. For liquids, an ensemble of local minima has to
be considered

ground state U
energy 0

L J

Thermodynamic integration: integration paths should
not cross phase boundaries!

Suggested paths to Additional
determine absolute options for
free energy in liquid S bound S
and solid states T »>e L potentials
G T
GH
p p
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3) Thermodynamic perturbation

Assume that we want to measure free energy difference between two different systems described
by Hamiltonian A and B
Uy, Ug y =Up — Uy

7(B) = j dTe-BUED) — j dTe~BUAM g=BUBIMD-VAM) —< o=BAU 5 7(4)

l

—BF(B) = —BF(A) + log < e BAU >,

1) Only trajectory for one system A is
required to compute free energy
difference

1
F(B) = F(A) — Elog < e PAU >,

2) Energy difference has to be small in
order for the average to converge

Free energy of system B is
expressed in terms of free
energy of system A and some
average obtained in ensemble A

3) A path between two states A and B
can be constructed that contains
intermediate states with mutual overlap
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4) “Artificial” thermodynamic integration

Let’s consider the same problem with two different systems A and B. Uy Ug

Introduce a variable that transforms one system into another  [J(A) = U, + A(Ug — Uy) = Uy + AAU
UL =0) = Uy, Ul=1) = U

Partition function that depends on 4

0Z (A
Z() = j dle PUa+AAU)  — L j dl' —BAUePUA+AAY) — _ B < AU >, Z(A)

dlog(Z(D) = —B < AU >;dA  —> 10g(Z(2)) = log(Z(0)) — B j < AU >, dA

1 The most reliable and widely used method
F(B) - F(A) + j < AU >; dA 1) Integral has to be evaluated for a number of intermediate
0 points. Each point has to be computed in a separate simulation

2) May have issues with integrand not being smooth enough

3) Applied to a large variety of tasks, for instance mutations
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Perturbation and artificial integration are equivalent when the difference between the systems is small.

Free energy for a small A*
A*
F(1*) =F(A) + j < AU >3, dA =|F(A) +< AU >, X if 1*~0
0

In perturbation theory:

UBI == UA +A*(UB - UA) —> AU, = UBI - UA = /’{*(UB - UA) == A*AU

1
B

1

log < e PAU" > = F(A) — 3

F(B)) =F(4) — log < e PVAU > ~F(A) + 1* < AU >,

log(1 — A" < AU >4 + ) = BA* < AU >4
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5) Method of Einstein crystal

The system is

Can be used to compute absolute free energy of crystals defined by a set of

positions on a lattice

Introduce an artificial Hamiltonian that will drive the system

into a state with known free energy

UA) = AU + (1 — D)Uy

UL =0) = Uy

UA=1)=U

4bag
__+__I+__+_+I_
+4-¢-1-
aade

system where particles are
held at their positions by
harmonic potentials

actual system

N
1
Up(M) =5 @ ) G = )

A

F(A)=F(0)+J<U—UH>,1dA

0

free energy of harmonic

oscillator

\

the integrand is well behaved if
particles occupy the same position at
the start and the end of the integration
(in both Hamiltonians)
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6) Widom’s particle insertion method accessible in simulation through virial

v

Free energy can be computed from the chemical potential:  F(NVT)=G —-PV = Nu—PV

According to the definition:

G(N,TP) = Nu #=G(N+LPT)-G(N,PT) Volume distribution function:
G(N,PT) =—KT log(Q(NPT)) 1 =—KT IOQJ(Q((DI\(II\I+ 1F’,_FI_)-)I-)) P(V) = e ™ Z(NVT)
!  [dVe™Z(NVT)

Recall the definition of the partition function in NPT ensembile: _
canonical

=pU (- an)
1 iy «— configuration Jda,dg,...dg,e
Q(N,PT) = NLE, Z(N,PT), Z(N,PT) :jdVe MZ(NVT) integral
Evaluate the N+1 term first:
1 1 average over
_ _ Py _w __ configurations of N
Q(N+1PT)= (N + 1)Ly Z(N+1L,PT)= (N +D12MNV jdVe jdql...dq,me — particles starting from
° ' ° 2.
1 -V -pJ -pU (20 ) 1 — PV —-pU l/
[dve ™ [dge ™dq,...dq, e """ = [dve™ [dg, <e™ >Z(NVT) =
(N +D)LA"HV, 1/\ ’ " (N +D)LA"HV, '
interaction of the first this quantity is the same for
particle with the U, =U(N+1)-U(N) all particles and independent
remaining N particles of their position. So the
1 integral over dq, brings V

[dve ™V <e™ >Z(NVT)
(N + D)LV,
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Similar expression for the N-particle term:

Q(N,PT) = : ];N J‘dve—ﬂPVZ(NVT) average over PT U, is eva_luated by adding
NIV, ensemble with N a particle to thde
Combining them one obtains: particles system at random
\ position
/e dve ™V <e™™ > Z(NVT
J= KTlog( N ] <€ >ZMNVT)y_ rjogl b cver ») =
(N +2)1p™ jdVe MZ(NVT) (N+D2
V <Ve ™ > <Ve ™ >
— kT log(————) — kT log(———— * =—kTlog(———
i) Tl —) |« o)
u =—kT Iog(i) pressure evaluated in
PA the ensemble with N
_ _ _ _ _ _ particles
Chemical potential can be evaluated from simulations in canonical ensemble: 1/ average in
ex ex ex ex ex ex ex Canonlcal
wu*=G*(N+1LPT)-G*(N,PT)=F*(N+1LTV)-F*(N, TV)+(P*(N +1) — P*(N))V ensemble
with N
F*(NVT)=—-kTIlog(Q(NVT)) — F*(N +1VT)—F*(N,VT)=—kT |Og(Q(N +1'VT)) particles

Q(N,VT)

|

—KkT log(<e™ >)
1 <e™ >Z(NVT)=<e”™ >Q(NVT)

N

Configuration integral explicitly:

V],\:+l Z(N +1,VT) = V]’:Hl jdqle*ﬁuldqz."quJrlefﬂU(qz...qNﬂ) —

Q(N +1VT) =
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Pressure contribution:

N +1
V

dP”(p)

ex ex ! ex N
P*(N +1)=P"(p = )= P (p=)+
V do

/

bulk modulus K * :de (p)

do

7
——(p —p)=P*(N)+ PR

p—p==

V
K* 1

=ap’+bp’+..

from virial expansion

Two terms together:

ex

u” =—-kTlog(<e ™ >)+

ap+bp® +..

P =_

At low densities:

1" =~—kTlog(<e™ >)=F*(N+LVT)—F*(N,VT) =

the original Widom’s formula. Due to large
fluctuations it applies only at low densities.
So it’s safe to use it there. At high
densities, large variations in U, resulting
from particle overlaps hinder convergence.

this summand vanishes at low densities
but doesn’t disappear when N tends to
infinity

Fo(N+LVT) = F*(NVT) _OF*(NVT)| .
N +1— N oN A
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7) Chemical potential from the Gibbs ensemble simulations

Two boxes in GEMC simulations are maintained at constant temperature and pressure. The Widom
formula for the NPT ensemble can be used to estimate chemical potential during the transfer move.

o o o °® ® when a particle is added to box1 a

o o presumed change of the box’s energy
] ® IS computed
® @ L] ® @
L
e o (@ e Uy =Un +1)—-U(y)
box 2

V,, s V,,ny box 1

The volume and the number of particles change so the average includes both of them:

—BU
u = —kTlog( 7 < Ve PUi>) —— U= _kT]Og(i < u >)
NPT Gibbs ensemble

1) The identity of box 1 can’t change during chemical potential evaluation. If it’s vapor it has to remain vapor
to the end of the simulation. Similarly for liquid. This is easy to achieve unless the system is near critical
point.

2) If box 1 contains all particles of the system (the other box is empty) one should still attempt to add a
particle to it to evaluate U; . This step is not executed in normal GEMC.
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8) Multiple Bennett acceptance ratio (MBAR) method

Imagine that we have a number of trajectories simulated at a set of temperatures. WHAM can be used
to combine the energy histograms and obtain a) density of states and b) relative free energies. The
relevant equations are:

Yi pi(E)
n(E) = Z{{ e~ Bi(E-f7)

e Bifi = z n(E)e—ﬁiE

E

energy histograms

Histograms are built assuming certain size of the bins AE. The bin size has to be a) small so that the
density of states is constant within [E, E + AE] and b) large so that reasonable statistics of n(E) is
obtained. The finite size of AE introduces errors. If only the free energies are of interest, the error can be
minimized by taking the limit lim AE — 0. The WHAM equations then can be reduced to a simpler form.

Let us introduce an indicator function which is unity if energy of a given configuration k is within AE of E
and zero otherwise:

1 1 if E<E,<E+AE
SE,Ek=§(G)(Ek—E)+G)(E+AE—Ek)):{O . k

otherwise
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The energy histogram for temperature i is _
pi(E) = 5E,Ek

summation runs over all sampled conformations
The density of states then can be re-written:

K
n(E) = Sipi(E) _ Zi X%k,
Z{(e_.gl(E—fl) Z{{e—ﬁz(E—fz)

for sufficiently small AE' the indicator
function will kill the summation over E

Let us substitute this expression into the second WHAM equation;/
R LR P 23
ZK ﬁl(E fz) Bi1(E-f1) ZK Bz(Ej—fl)

_ summation over summatlon over all
MBAR equations all trajectories conformations in trajectory
I
e BSE] . . .
— ] 1) Non-linear set of equations for f; General solution
Z AR 2) Can be solved by iterations
Bsfs + A

3) No binning is required
4) Solution is not unique. Only relative free energies are obtained
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Other methods:

9) Grand canonical ensemble (covered)
10) Methods for approximate evaluation of the free

energy: chemical Monte Carlo, lamba dynamics,
linear response theory, ....
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MC simulations in generalized (non-
Boltzmann) ensembles
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Qutline

e Introduction

e Generalized ensembles:
-multicanonical ensemble
-Tsallis statistics
-Wang-Landau method
-1/k ensemble
-J-walking algorithm
-eXxpanded-ensemble method

e Replica-exchange (REX) approach

e Applications:
-replica-exchange simulations of peptide aggregation

-folding of a short /-peptide in explicit water
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Introduction

e Why do we need generalized ensembles ?

e Two ingredients of a successful simulation:
(I) accurate representation of the system and solvent

(Il) adequate sampling of the conformational space

|

Simulation times must be at least 10 times longer than the
relevant relaxation time !
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Side-chain rotations

PHE

Loop closure

Time scales

Protein aggregation

Helix formation
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Protein folding




Brute force approach

Y. Duan & P. Kollman, Science 282,(1998),740, “Pathways to a protein
folding intermediate observed Iin a 1-microsecond simulation in
agueous solution”

e Villin headpiece subdomain,256 CPUs of Cray T3E.

; .
Ir e 4

RMSD~10A RMSD~4A RMSD<1A
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Rugged potential energy landscapes

e Why are the relaxation times so long ?

-number of local potential energy minima grows exponentially with N

=10€XP(AG/KpT) 15~ 1pS

1 kcal/mol:~1.2 ps
3 kcal/mol:~1.5 ns
10kcal/mol:~1 ms and longer

-each minimum acts as a kinetic trap. The relaxation time is determined by
the escape time from the minima
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Generalized ensembles

Canonical
(Bolztmann)
distribution is
narrow!

Broad distributions
facilitate escapes
from minima !
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Multicanonical ensemble

e sampling on a “deformed” potential energy surface W(E) :

p'(E)~n(E)e " V() 0

e flat energy distribution for multicanonical ensembile:

P'(E) = P,(E) ~ const

W, (E)="?

e equation (1) can be rewritten as a non-linear equation in W (E) (valid up to
a constant which drops during normalization):

Wﬂ(E)=%[In n(E)-In Pﬂ(E)]=%In n(E) (2)

e density of states is estimated from a simulation. It depends (as a functional)
on W (E) and simulation parameters:  n(E)[W,; param] . Simplest solution
to equation (2) is given by successive iterations:

W, (E) =%In n"(E) 3)
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Multicanonical ensemble

1

ﬂln[Pﬂo(E)---Pﬂ"(E)] (4)

e final result; W, " (E)=W,’(E)+

e an example: WﬂO(E) =E , zero energy distribution PﬂO(E) IS
canonical and equation (4) is the standard multicanonical recursion:

W, (E) = E+%In[Pﬂ(E)---Pﬂn(E)] (5)

e canonical distribution can be recovered from p, (E) through a reweighting
procedure:

p,(E)~P,(E) e WulE)E) ©

e three steps of a multicanonical simulation:
(i) generating W ,(E) in successive iterations
(if) equilibrium sampling
(iif) recovering canonical expectations for various observables
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Monte Carlo studies of spin glasses

e B. A. Berg & T. Neuhaus, PRL 68,(1992),9, “Multicanonical
ensemble: A new approach to simulate first-order phase transitions”

e B. A. Berg & T. Celik, PRL 69,(1992),2292, “New approach to spin-
glass simulations” - multicanonical recursions

e 2D 10-state Potts model PL{(s)

multicanonical

1000 ;
e No exponential increase | \
in the tunneling time . 02 latt ice
between two free energy / | /
minima \

o 4/ \\hgﬁgonlcal /

e Speedup up to 2 orders —

L} H T 1 L} T T
1 1.6 S

of magnitude compared to o . o
) ) FI1G. 2. Multicanonical action density distribution P79(s) to-
standard simulations gether with its reweighted distribution Pro(s).
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Molecular dynamics simulations

e U. H. E. Hansmann, Y. Okamoto and F. Eisenmenger, Chem. Phys.
Lett 259,(1996),321, “Molecular dynamics, Langevin and hybrid Monte
Carlo simulations in a multicanonical ensemble”

e N. Nakajima, H. Nakamura and A. Kidera, J. Phys. Chem. B 101,
(1997), 817, “Multicanonical ensemble generated by molecular
dynamics simulations for enhanced conformational sampling”

e Equations of motion:

| _%_& - . f_ﬂ:_GWﬂ(E):_dWﬂ(E) OE :_dWﬂ(E) ‘
Gi = m _m./ f(r;wrgetlcanomca i o E & E
). = f4—£n. -
b=t ggl\ factor to keep 5: Z fiﬂ G

kinetic energy ZZ pi2 /2m

constant

e The only modification is in how forces are calculated !
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Simulations of met-enkephalin
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Summary

e Advantages:

(i) multicanonical simulations do not get trapped in local minima
(i) various thermodynamic quantities are obtained as a function of
temperature from a single run. No need to run multiple simulations at different

temperatures

e Disadvantages:

(i) the energy transformation function
W,(E) is non-analytical. Several

preliminary simulations are needed to

generate it

(if) these simulations can not be run

in parallel

(iif) convergence is sensitive to the

details of numerical implementation.

Can be quite poor if P,”(E) is not

accurately determined
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Tsallis energy transformation

e U H. E. Hansmann & Y. Okamoto, PRE 56, (1997), 2228,
“Generalized-ensemble Monte Carlo method for systems with rough

energy landscape ”

e analytical form for the multicanonical weight factor. Non-exponential
falloff at large E:

1
wr (E) =[1+ XB(E - Eo)]l Te_ﬂ(E_EO)

e energy transformation: W; (E) = iﬂ Infl+xB(E - E,)]
X

e at low temperature the density of states can be calculated in harmonic
approximation: \
2

n(e)~(E-E,)

e if low-energy states are to be populated: X< x =2/N_

e optimal value for x: X, = 0.5 X
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P.E)

Applications

. . 1 T r T
® progressive broadening of the Canonical Canonical +
potential energy distribution of a met- 01f S, Motz %
enkephalin model as x is reduced ol &
e Tsallis _
e same X does not work for all R I Y - :
SyStemS ! 0.0001 | ° :o +++++ .
. . . . 1e-05 | o , x
e simulations of HT protein model : f
[AB & Y. legtarl,\.]PSJ, 71, (2002), 108 L———— PR a— - !
1001]. MMD iterations
0.2 T T | 0.07 - A | Tsallis ite;'ative MMD
0.15 _ _ 0.05/% 3-rd iteration {;;
- x=0.9/N, 1 } / _
B4 ¢ x=1.1/N, i ol
0.05 4; 5; /
0.04 | x=1.0/N, ! . i
| MlSS|ng State | E'-ia 0.08 i ﬂ Conventional MMD 7
¥ S 0'064% 6—th tteration 5?’_4
x i >
e 0.02
0 Vet e e e
-60 60 120
E (e %100 0 ' 100 200 300
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Wang-Landau method

e F. Wang & D. P. Landau, PRL 86, (2001), 2050, “Efficient, multiple-
range random walk algorithm to calculate the density of states”

e Acceptance probability of a Monte Carlo move i— j: min { n(E)/n(E;), 1}

e Algorithm:

0) n(E)=1 for all E, f~3
1) every time an energy level E is visited, n(E)=f n(E) 800 -
2) simulation is continued until energy histogram H(E)
is “flat”. H(E) for all E is not less than 80% of <H(E)>
3) change the factor f., :\/Ti 600 1 50xp0
4y if > f,(~1.001) set H(E)=0 and return to step 1

e Detailed balance is satisfied at f=1
e Applicable to large systems. The

e(log(g(E)))
S

log((9(E)))

desired energy interval can be | @%

broken into smaller pieces which +— simulation 2D Ising
are simulated in parallel T E’F‘ﬁ model

e Caveat: Make energy intervals large 2 o 1 2 3 4
enough to avoid trapping ! Overlaps | EN

e Application to proteins: [A. Cavalli et al.,Biophys J. 88, (2005),3158]
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1/k ensemble

e B. Hesselbo & R. B. Stinchcombe, PRL 74, (1995), 2151, “Monte
Carlo simulation and global optimization without parameters”

e Acceptance probability of a Monte Carlo move i—j @ mn{w/w,1}

Metropolis (canonical distribution) W, = e PE
Multicanonical, Wang-Landau w =1k k=n(E)
1/k ensemble w=1/k | k= jdE n(E)

e Definitions of entropy:

IITTIIIIIIIIII

S(E)=klog( n(E) ) S'(E)=klog( [dE'N(E) ) uy
E'<E
are equivalent in the therm. limit: H(E)

S"(E)=S(E)+0(log (N) ), N =0 ?

Differ for finite N. Energy distribution is ol i A AR B

not flat. -R - B0 1
Baumketner, BioSim, Lviv 2019
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J-walking algorithm

e D. D. Frantz, D. L. Freeman and J. D. Doll, JCP 93, (1990), 2769,
“‘Reducing quasi-ergodic behavior in Monte Carlo simulations by J-
walking: Applications to atomic clusters”

e |t's easier to overcome potential

- : | Low-f3 distribution provides an “intrinsic”
energy barriers at high T (low B)! size of a global move |
A
e two types of Monte Carlo moves: - low-p
local to sample free energy minima
and global to transition among
minima
e J-walks (global moves) are
' F(x
generated at high T (X) high-B
too high T = low acceptance rate Double-well potential

too low T = ergodicity problems — ; >
X'=X+[E-0.5]A + X 5
> »  “Global” moves would
Localmoves A 222 *  help. But how to pick
get trapped! them?

A
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Expanded-ensemble concept

e E. Marinari & G. Parisi, Eur. Phys. Lett. 19, (1992), 451, “Simulated
tempering: a new Monte Carlo scheme”

e A. P. Lyubartsev et al., JCP 96, (1992), 1776, “New approach to Monte
Carlo calculation of the free energy: Method of expanded ensembles”

e temperature [ is treated as a dynamical variable. Canonical ensembles for
each [ are treated as sub-ensembles of a larger, expanded ensemble.
Distribution function in this larger ensemble is defined through a supplementary
function a(B):

" exp( fa (B)-F H(T s

ppn) -2 L EEEL o ool pa(iz(s).  2p-unifren - HIr)

[
e probability to occupy states with temperature B: P (8)=exp( fa (B)Z(B)/Z

e free energy difference for two temperatures: available from simulations

¢ main result

ﬂZF(ﬂz)_ﬂlF(ﬂl) :ﬂla (ﬂl)_ﬂ2a (ﬂz)_log { P*(ﬂl)/ P*(ﬂz)} <

given by the model -~
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MC in expanded ensembles
e MC algorithm:

() Standard Metropolis moves for fixed . p=mn {exp( -/ AE), T}
(Il) Temperature swaps: b= b with probability:

p= min { eXp( (181 _:Bz)E "‘:Bza (,82) _ﬂﬂ(ﬁl)' 1}

(1ll) Total time spent _at each temperature is accumulated in histograms and
used for estimating|P"(p)

MC of RPM model

e Random walk in temperature is “f"’ g’jt
realized for: '
08 5
a(B)=F(p)=11p log( Z(B))
: . . 0.6 4
e o(p}) are determined in successive
iterations 04 3
: . 0.2 2
e For each B canonical distributions
are recovered! 0. 1
e The algorithm is also known as "% %o @0 3000
simulated tempering Random temperature walk! " steps

Baumketner, BioSim, Lviv 2019



Replica-exchange algorithm

e R. H. Swendsen & J.-S. Wang, PRL 57, (1986), 2607, “Replica
Monte Carlo simulation of spin-glasses”

e M. C. Tesi et al., J. Stat. Phys. 82, (1996), 155, “Monte Carlo study
of the interacting self-avoiding walk model in three dimensions”

e K. Hukushima & K. Nemoto, JPSJ, 65, (1996), 1604, “Exchange
Monte Carlo method and application to spin glass simulations”

e U. H. E. Hansmann, Chem. Phys. Lett., 281, (1997), 140, “Parallel
tempering algorithm for conformational studies of biological
molecules”

e Y. Sugita & Y. Okamoto, Chem. Phys. Lett., 314, (1999), 141,
“‘Replica-exchange molecular dynamics method for protein folding”

Replica-exchange (REX) = parallel tempering = multiple Markov chain method
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Replica-exchange algorithm

e the method is based on the expanded-ensemble idea P’(8,T)~exp( fa(B)- B H(T))

e N independent replicas are considered A
(parallel tempering)
e double-jumps are attempted (,n) & (J,m) Bm . ’ """""""""" ‘
! ( )
) eA’ A<0 A:(ﬂm_ﬂn)(Ej—Ei) Bn .- .‘ .................... ‘
P= 1 A<Q a(@drop in double jumps :X X >
i ]
A Exchange attempted
e uniform distribution
over sampled tempe- BEE& [\ I """""""""" I """""""
ratures (one replica | Y N
per temperature con- I i
dition) L I ------------------ I --------------
L S e
e canonical distribu- Rep#1 II II
tion for each consi- - ---------------- \— ---------------
dered temperature 3 : , : , , >

. Exchange succeeded
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Practical points

e Four parameters need to be set: T, T.., N, 7

Tex — the higher the better(~500-700K). Typical relaxation time at this temperature
should be ~1-100ps
T.. ——— the temperature of your interest (300K?) *
N ———— large enough to ensure 10-
50% acceptance probability
for swaps between replicas P(E)

el

T, — the longer the better. Typically 100-1000
simulation time steps
e \What to look out for:

(i) replica-exchange acceptance ratio is more than 10% Nadler[PCL B 112 (2008)
(i) each replica visits Tmin and Tmax at least several times 4288k 594y C 1n Tona/ Timin

(ii) all relevant order parameters undergo sufficient relaxation
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Kinetic data from REX simulations

e There is no physical kinetics in the REX simulations. A number of
approaches to extract kinetic information:

Andrec [PNAS 102 (2005) 6801]

van der Spoel [PRL 96 (2006) 238102]
Yang[JMB 372 (2007) 756]
Buchete[JPC B 112 (2008) 6057

Muff [JPC B 113 (2009) 3218]
Chodera[JCP 134 (2011) 244107]

e Most approaches rely on the following ingredients:

a) discretization of the available configuration space Very difficult to get a representative
ensemble

b) obtaining rates of transition between the identified { Most often in straight MD simulations.

states Not reliable

{ Relies on assumption on how

) solving master equation to generate reaction time transition rates depend on temperature

Example: ETNA of Muff and Caflisch

Folding time for a #-sheet peptide predicted for varying temperature over a range that spans an order of
magnitude
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Replica-exchange flavors

e REX coupled with Tsallis

I: Hansamann, Chem. Phys. Lett, 281(1997) 140
energy deformation function:

Jang et al., PRL, 91 (2003) 058305

e Muticanonical REX and  Sugita & Okamoto, Chem. Phys. Lett, 329
REX multicanonical: (2000) 261

e REX in constant pressuré  oyape et al. Chem. Phys. Lett, 335 (2001) 435
(CPT) ensemble:

e Mutidimensional REX: Sugita, Kitao & Okamoto, JCP, 114 (2000)
6042

e Ab initio Monte Carlo REX: Ishikawa et al.,Chem. Phys. Lett., 333
(2001) 199

e Hamiltonian REX: Fukunishi, Watanabe & Takada, JCP, 116
(2002) 905
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Replica-exchange flavors

e REX coupled with RISM: Mitsutake et al., J. Phys. Chem. B, 108
(2004) 19002

e Local REX: Cheng et al., J. Phys. Chem. B, 109
(2005) 8220

e Non-equilibrium switches Ballard and Jarzynski,PNAS, 106
REX: (2009) 12224

e Further reading:

1) Review paper by K. Tai, Biophys. Chem., 107 (2004) 213
2) Special issue of J. Mol. Graph. Mod., 22, (2004) 317
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Multiple-histogram reweighting technique

® A. M. Ferrenberg & R. H. Swendsen, PRL 63, (1989), 1195, “Optimized Monte Carlo data
analysis”

® Chodera et al, JCTC 3, (2007), 26, “WHAM for REX simulations”

] . P(E)=H(E)/Ngam
e /=1,m temperatures, Ni samples, Hi(E) energy histograms 1 Tin, T

R(E) = H,(E)/ N, =n(E)exp(~ (E~ 1,) ! /
e by definition, free energy: exp(—4. f.)) = Zn(Ek)exp(—ﬂi E,)—FE) :

simulation at temperature i :
n(E)=PR(E)exp(B(E- ) £

Z gini(E) A f
e improved density of states: n(E) = 'Z—g /

e inaccurate estimate of the density of states from /]

v

e /M(E)*/n(E) is minimized with respect to weightingdi  |c “quide to the eye”

coeff.
> R(E)
e set of non-linear equations in f,: N(E) = i
! 2. exp(-f,(E- 1)

v
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Summary

e Why is replica exchange the method of choice in biomolecular simulations?

e Parallelism

e No empirical parameters or fitting involved

e Access to low free energy minima through accelerated relaxation

e Availability of all thermodynamical properties as a function of
temperature through histogram reweighting techniques
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