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A bit of biology

Ознаки “життя”:

отримання і перетворення енергії з 
середовища - метаболізм

самоорганізація через використання 
енергії – синтез, утворення 
макромолекулярних комплексів 

здатність запам`ятовувати свою 
будову – генетичний код

здатність давати 
потомство - розмноження 
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Diversity of life forms
Prokaryotes= unicellular 
organisms that lack 
a membrane-
bound nucleus, mitochon
dria, or any other 
membrane-
bound organelle

Eukaryotes= cells 
with a nucleus that 
stores genetic 
information. 
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Some aspects of 
archaeal biochemistry 
are unique, such as their 
reliance on ether lipids in 
their cell membranes

Haloquadratum
walsbyi



Structural hierarchy in eukaryotes

клітина

тканина

орган

організм

Клітина – цеглина для всього
живого
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Great diversity of cells
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shape

size

structure

1mm



Cell structure

Кишкова паличка
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Фібропласт – клітина сполучної тканини (колаген для загоювання ран)
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Cell structure



Biological length scales
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Hierarchical organization

Зростання рівня організації

Baumketner, BioSim, Lviv 2019



Cell atoms
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Chemical bonds in biology
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Covalent bonds
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Noncovalent bonds
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Hydrophobic interactions
Гідрофоб – речовина яка не змішується з 
водою, олії, нафта та інші вуглеводні

Явище виштовхування

Гідрофобні частинки злипаються –
ефективне притягання

вода
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Energy scale
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Specifics of biological systems
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1) Processes are driven by free energy not internal energy

2
0–

40
kJ

l/m
o

l

a) Strong influence of thermal fluctuations and entropy
b) Important role of non-covalent and solvent-mediated interactions

Protein folding
Formation of hydrogen molecule

One order of magnitude 
difference!

c) Very little chemistry other than in enzymes



Biological molecules

Proteins

Nucleic 
acids

Sugars

Lipids
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Sugars Carbohydrates with 
hydroxyl groups
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Different 
monosaccharides

Different isomersRNA

DNA



Sugars
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Polymerization



Sugars
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Sugars
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Sugars
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Sugars 
attached to 
proteins=glyco
proteins



Sugars
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Lipids
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Lipids
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Lipids
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Fatty acids



Lipids
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Proteins
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Zwitterion



Proteins
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Proteins
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No rotation 
around double 
bonds!



Proteins
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No rotation around C-N or O-C bonds. The peptide bond is planar and rigid!

Phi/Psi angles are the only real degrees of freedom of the protein backbone

Cost of rotation 
is 90kJ/mol. 
Compare to 
2.5kJ/mol of 
thermal energy 
at 300K



Ramachandran plot
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Primary structure
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Secondary structure
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Tertiary structure
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Protein folding
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Interactions between proteins
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Function of proteins
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Function of proteins
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Function of proteins
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Function of proteins
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Function of proteins
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Recognizes 
pathogen 
(antigen) via 
fragment 
antigen binding 
motif



Nucleotides

Phosphate
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Nucleoside

Sugar ring 
(ribose or 
deoxyribose)

Nucleobase



Nucleic acids=poly-nucleaotides

cytosine

thymine

adenine

guanine
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ACTGU – primary 
bases

ACGT - DNA

ACGU - RNA

Uracil



ATP as energy source
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DNA structure
AT and GC
pairings are 
possible due to
HB geometry
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Genetic code

Unique 
sequences

Multiple codons 
for
the same AA
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Some codons 
are silent, or 
are they?



How is genetic information stored?
Ген – код для одного або декількох білків.

46 total chromosomes in each 
normal cell, grouped into 23 pairs, 
referred to by number
Corresponding sets of maternal and 
paternal genes in each pair of 
chromosomes
A specialized pair of chromosomes 
that determines a person's sex: 
females have two X chromosomes 
and males have one X and one Y.
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Transcription + translation
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1)

2)

3)



DNA replication
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Unzipping

Loosening 
the supercoilCatalyzing the 

elongation by 
one unit



DNA replication
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Transcription
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RNA polymerase

1.RNA polymerase, together with one or more general transcription factors, binds 
to promoter DNA.
2.RNA polymerase creates a transcription bubble, which separates the two strands of the 
DNA helix. This is done by breaking the hydrogen bonds between complementary DNA 
nucleotides.
3.RNA polymerase adds RNA nucleotides (which are complementary to the nucleotides of 
one DNA strand).
4.RNA sugar-phosphate backbone forms with assistance from RNA polymerase to form an 
RNA strand.
5.Hydrogen bonds of the RNA–DNA helix break, freeing the newly synthesized RNA 
strand.

Speed of 10-100 nts/secTranscription factors

mRNA



Protein synthesis=translation

Transfer RNA (abbreviated tRNA) 
is an adaptor molecule composed 
of RNA, typically 73 to 94 
nucleotides in length, that serves 
as the physical link between the 
nucleotide sequence of nucleic 
acids (DNA and RNA) and the 
amino acid sequence of proteins.
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Proteins modifications
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Frequency Modification

58383 Phosphorylation

6751 Acetylation

5526 N-linked glycosylation

2844 Amidation

1619 Hydroxylation

1523 Methylation

1133 O-linked glycosylation

878 Ubiquitylation

826
Pyrrolidone carboxylic 
acid

504 Sulfation



Абетки життя

Baumketner, BioSim, Lviv 2019



Metabolism
Процес перетворення енергії в клітинах

Катаболізм Анаболізм
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Приклад катаболізму: Гліколіз
Процес перетравлювання цукру (глюкози) досить складний. В результаті
утворються молекули ATP та піруват. Споживається кисень для реакції оксидації
та виділяється дво-окис вуглецю.

O2

CO2
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How to model biological molecules

Very little chemistry happens during the 
majority of all biological processes so the 
appropriate level of description is 
classical. This entails:

1) Adiabatic approximation. 
Nuclei are moving in the field 
created by the electrons. 

2) Relaxation processes 
taking place on picosecond 
timescale and slower. 

When are 
QM effects 
important?

For harmonic 
oscillator, for 
instance:

at T=300K
Baumketner, BioSim, Lviv 2019



Perturbation theory 
doesn't’ work. 
Valence-bond theory, 
LDA, Hartree-Fock

Perturbation theory. 
Many QM treatments, 
LDA DFT, HF don’t 
work

Chemical bonding

~300kJ/mol

~10kJ/mol

Electrons shared by two nuclei

Dispersion 
interactions

~1Å

>3Å

Potential energy is divided 
into bonded and non-
bonded contributions!

H2

This part of the curve needs to be handled differently from this part!

H + H

Separation into bonded and non-bonded energy terms
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Multipole expansion for point charges

Non-bonded energy

௜

௜

ே

௜

௜
௥೔ఇ

ே

௜

௥೔ఇ

௜

Potential energy of the set of charges qi 
interacting with charge q at the origin

where ௥೔ఇ
௜ ௜ ௜ - the translation operator

In a more compact form

is the potential created by the charges at 
the origin

௜
௥೔ఇ

௜ ௜ ௜ ௜  
 

௜

 

௜

ఈఉ

 

ఈఉ
ఈ ఉ

total charge௜

ே

௜

dipole moment௜ ௜

ே

௜

quadrupole 
momentఈఉ ௜ ఈ

௜
ఉ
௜

ே

௜

where

q

R
ri

qi
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௠ ௗ ொ

Potential energy then can be written as series:

potential created by the monopole=total charge
௠

potential created by point dipole (at vector         ) ௗ ଷ

potential created by point quadrupoleொ ఈఉ

 

ఈఉ

ఈ ఉ

ଶ ఈఉ ଷ

ଶ

ଷ

Another way to look the interaction energy is to compute interaction of point multipoles with the field created 
by the charge at the origin

potential created at 
the location of the 
charge distribution
by point charge at the 
origin

ଷ

field created by the 
point charge at the 
location of the dipole

ఈఉ

 

ఈఉ
ఈ

ఉ

derivatives of the 
electric field created 
by the point charge

Dipole “interacts” with 
the field

Quadrupole 
“interacts” with the 
field derivative

Monopole “interacts” 
with the potential
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Apply these formulas to two distributions of charges

To simplify things use the following abbreviations: charge dipole quadrupole

Potential at site A:

+ + + … at site Bgenerated by Electric field at site A:

Field derivative at site A:

஺ ஻

+

஺
஻

ଷ

+ + …

஻
஺

ଷ

+ +
+ …

+ +

ଷ

ଷ

ସ ହ

octopole

+

+

ସ

ହ+

଺+

Multipole expansion

Interaction 
energy as a 
series in 
powers of 

௡

R

qiqj

ri
rj

Set A Set B
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A table of the order of different interactions

ଶ ଷ ସ

ଷ

ହ

଻

଺

ହସ
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Atom B

R=

Atom A

R BRA

Interaction energy between two atoms

஺ ஻

Full Hamiltonian:

஺ ஻
஺ ஻

஺ ஻

eigenfunctions஺

# of valence electrons and nuclei’s charges

஻

௡
஺

௡
஻ eigenvalues of energy operators

Compute the total energy by the perturbation theory:

ground state of 
individual atoms

first-order term

second-order term

଴ ஺ ஻
zero-order 
Hamiltonian

perturbation term

஺ ஻஺ ஻ ଴
(଴)

Each atom is 
electrically neutral
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Using the translation vector formula:

Upon introducing charge operators:

Perturbation term can be written as:

First-order term:

(ଵ)
஺ ஻ ஺

ା
஻ ஺ ஻ ஺ ஺ ஺ ஻ ஻

ା
஻

஺ ௜
஺ ଵ

ଶ ௜
஺

௜
஺ ஺ 

௜
ଵ

ଶ ఈఉ
஺ 

ఈఉ
డ

డ௑ഀ

డ

డ௑ഁ
+…

஻
ା

௜
஻ ଵ

ଶ ௜
஻

௜
஻ ஻ 

௜
ଵ

ଶ ఈఉ
஻ 

ఈఉ
డ

డ௑ഀ

డ

డ௑ഁ
+…

Multipole moments of 
atoms A and B

Let see the first few terns explicitly:

If atoms have non-zero charge: ஺ ஺
஺ ଵ

ଶ ఈఉ
஺ 

ఈఉ
డ

డ௑ഀ

డ

డ௑ഁ
+…
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Taking the expectation value:

஺ ஺ ஺
஺ ଵ

ଶ ఈఉ
஺ 

ఈఉ
డ

డ௑ഀ

డ

డ௑ഁ
+…

஻
ା

஻ ஻
஻ ଵ

ଶ ఊఋ
஻ 

ఊఋ
డ

డ௑ം

డ

డ௑ഃ
+…

(ଵ)
஺ ஻

஺ ఊఋ
஻

஻ ఊఋ
஺

ఊ ఋ

 

ఊఋ

ఈఉ
஺

ఊఋ
஻

 

ఈఉఊఋ
ఈ ఉ ఊ ఋ

ఈ
஺

ఈ
஻

 

ఈఉ

ఈ ఉ

ହ

ఈఉ

ଷ ଷ

ସ

ହ

ଷ

ଷ

ସ

ସ

ହ

ହ

if dipole moments are non-zero. true 
for molecules but not for atoms

஺ ஻
ଶ

ଶ

ଷ

ଷ

ସ

ସ

ହ

ହ

multipole expansion expansion if atoms have uncompensated charge

“electronic 
interaction 
energy” due to 
permanent 
multipole 
moments
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note that since the denominator 
is always negative and 
nominator – positive the 
correction is negative and 
corresponds to attraction

Second-order term:

௠௡ ஺ ஻ ஺ ஻

matrix element is over double indices

Correction to the ground-state energy 
relies on the matrix entry:

which has to be substituted into the energy formula:

Summation is performed while keeping one of the 
atoms in the ground state

଴,௜௡ௗ
(ଶ) ஺ ஺ ஺ ஻

ା
஻ ஻

ଶ

଴
஻

௠ಳ
஻

 

௠ಳ

஺ ஺ ஺ ஻
ା

஻ ஻
ଶ

଴
஺

௠ಲ
஺

 

௠ಲ

non-zero starting from non-zero multipole.

௜௡ௗ ௜௡ௗ

Induction energy

଴,௜௡ௗ
(ଶ)

଴,ௗ௜௦௣
(ଶ)
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௜௡ௗ
஺

஻
ା

஻ ஻

ଶ ଺

଺

A convenient way to view induction energy is by introducing the concept of polarization. 
Assume that the dipole moment induced by external field can be written as:

The induction energy is non-zero starting from non-zero multipole terms.

Examples:

1) Atoms have non-zero dipole in the ground state

is the lowest term in expansion 
which has to squared

2) Atoms have non-zero charge and may or may not have dipole moment

஺
஺ +…

௜௡ௗ ஺ ஺ ஺ ஻
ା

஻ ஻

ଶ

஺ ஻
ା

஻ ஻

ଶ ସ

ସ

is the leading term

where a is the polarizability constant (tensor in general)

The interaction energy of that moment with the field then is: ௜௡ௗ
ଶ

If polarization is caused by point charge, 
ଶ and so ௜௡ௗ ସ

If polarization is caused by a point dipole 
ଷ and so ௜௡ௗ ଺

interaction of charge 
with induced dipole

interaction of dipole 
with induced dipole
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A formal expression for the induction energy:

௜௡ௗ

ఈ
ఈ

ଷ ஻
ఈ ఉ

ହ

ఈఉ

ଷ ఈ

 

ఉ

ఈఉ ఈ ఉ ఈ,ఉఊ ఈ ఉఊ

ఈఉ,ఊఋ ఈఉ ఊఋ

molecular polarizabilities

ఈఉ
ఈ ఉ

ହ

ఈఉ

ଷ ஻

electric field due to atom B

derivative of the electric field due 
to atom B

specific for the molecule

Dispersion energy

଴,ௗ௜௦௣
(ଶ) ஺ ஺ ஺ ஻

ା
஻ ஻

ଶ

଴
஺

௠ಲ
஺

଴
஻

௠ಳ
஻

 

௠ಲ,௠ಳஷ଴

Second-order correction when the summation is performed over excited states of both atoms:
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Keeping only the lowest-order dipolar term:
Dispersion, London, van 
der Waals interaction

so 

஺
஺ ା

஻
஻

଴,ௗ௜௦௣
(ଶ) ஺

஺
஺ ஻

஻
஻

ଶ

଴
஺

௠ಲ
஺

଴
஻

௠ಳ
஻

 

௠ಲ,௠ಳஷ଴

଺

଺ Has dipole-induced dipole 
interpretation. Not 
everyone agrees with it. 
See J. O. Hirschfelder; C. 
F. Curtiss & R. B. Bird 
(1954), Molecular Theory 
of Gases and Liquids, New 
York: Wiley

For charged systems 

஺ ஺
஺

஺ ஺ ஺ ஺ ஺ ஺ ஺
஺

஺ ஺
஺

஺

0 because of orthogonality condition

଺
is genuinely the lowest order term in the dispersion interaction

Some general properties of dispersion interactions

attractive regardless of molecule orientation

weaker than normal covalent and ionic bonds

additive and cannot be saturated

strength is proportional to the polarizability of the atom

short-range forces and hence only interactions between the 
nearest particles need to be considered Baumketner, BioSim, Lviv 2019



Nuclear interaction

Extension to molecules

ଵ
஺

ଵ
஻

ଵ
஻

ଵ
஺

ଵ
஺

ଶ
஻

ଶ
஻

ଵ
஺

ଶ
஺

ଵ
஻

ଵ
஻

ଶ
஺

ଶ
஺

ଶ
஻

ଶ
஻

ଶ
஺

஺ ஺ ஻
ା

஻

R

r1

Molecule
A

Z1
A

Z2
A

r1
Z1
B

Z2
B Molecule

B

஺ ଵ
஺

ଶ
஺ valence of molecule A

஻ ଵ
஻

ଶ
஻ valence of molecule B

஺ ଵ
஺ ோభ

ಲఇ 
ଶ
஺ ோమ

ಲఇ 
஺

Electrons with nuclei

ଵ
஻

ଵ
஻

௜
஺

ଶ
஻

ଶ
஻

௜
஺

 

௜ୀଵ,௓ಲ

ଵ
஺

ଵ
஺

௝
஻

ଶ
஺

ଶ
஺

௝
஻

 

௝ୀଵ,௓ಳ

஺ ஺ ஻
ା

஻ ஻
ା

஻ ஺ ஺

஺
௥೔

ಲఇ 

 

௜ୀଵ,௓ಲ

nuclear 
“charge”

electronic “charge”

Electrons with electrons

௝
஻

௜
஺

 

௝ୀଵ,௓ಳ

 

௜ୀଵ,௓ಲ

஺ ஻
ା

஺ ஻
ା

஻ ஺ ஺ ஻
ଵ

ோ
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Full perturbation potential

஺ ஻
ା

஺ ஻
ା

஺ ஻
ା

஺ ஻
ା

Additional terms:

଴,௡
(ଵ)

஺ ஻
ା

஺ ஻
ା

ଷ

ଷ

multipole expansion for the nuclear subsystem. 
Starts with dipole-dipole interactions for neutral 
molecules

଴,௡
(ଵ)

଴,௡
(ଶ)

because of the orthogonality of the excited states to 
the ground-state wave function଴,௡

(ଶ)
஺ ஺ ஻

ା
஺ ஺ ஻

ା
஺ ஺

଴,௖
(ଵ)

஺ ஻
ା

஺ ஻
ା

ଷ

ଷ
cross terms. 
combined effect 
of electronic and 
nuclear 
permanent 
dipoles଴,௖

(ଶ)
஺ ஻

ା

ଶ 

௠ஷ଴

஺ ஻
ା

ଶ (଺)

଺

 

௠ஷ଴

Nuclear degrees of freedom contribute additional terms to the multipole expansion corresponding to the 
permanent moments
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஺ ஻
ଶ

ଶ

ଷ

ଷ

ସ

ସ

ହ

ହ

଺

଺

Putting all summands together one arrives at the most general representation of the interaction 
energy between two molecules:

ସ

ସ

଺

଺

଺

଺

+

permanent 
multipoles. 
Electronic 
and nuclear 
systems

induction energy

dispersion energy

a
lw

a
ys

 n
e

g
at

iv
e

b
o

th
 p

o
si

tiv
e
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n

d
 

n
e

g
a

tiv
e

௜ ௜ (௜)

Constants

a) Can be 
computed in QM 
studies. Difficult 
for large systems. 
Almost impossible 
for dispersion 
force. 

b)Obtained by 
fitting. Empirical 
parameters

e
le

ct
ro

n
ic

 s
u

bs
ys

te
m
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Atom-pair potential approximation

Proteins are modeled at the classical level. 1) Not much chemistry happens but 2) QM calculations are 
way too expensive

Interaction energy 
can be used to model the dynamics of the nuclei in the Born-Oppenheimer 
approximation. Adiabatic approximation.

Two options of how to proceed:

Option #1:

Assign proper (valence) charges to each nucleus and a certain number of permanent moments. These can be taken 
from QM calculations or some other source (from experiment in case of dipole moment for instance). The moments 
have to be attached to the local geometry of the molecules. As the local reference frame moves (rotates) the 
moments have to be recomputed. 

Drawbacks:

2) The procedure is tedious and expensive. Each molecule has to have its moments recomputed at each step 
as it rotates in the course of the simulation.

3) A large amount of data needs to be stored.

4) A large number of parameters – dipole, quadrupole and higher moments, makes parametrization very 
challenging. 

1) Algorithms are not always straightforward to implement. It may be difficult to compute forces acting on each 
nucleus, especially for higher moments. See Stockmayer fluid for example. Torques are not always computed 
in a pairwise summation (i acting on j is not the opposite of j acting on i).
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1) Assign partial charges to each nucleus. These 
will generate multipole series of permanent dipoles. 

ଶ

𝑙

𝑙
−𝑞

𝑞

Option #2:

ଵ

ଶ ଷ

ସ

Important: the series will contain all powers of 1/R, 
not just ones specific for a particular dipole.

The field created by two charges is different 
from the field of a point dipole !

2) Add polarization and dispersion interactions to 
each nucleus. 

෍
𝑞௜

|𝑅 − 𝑟௜ |
=  

𝐶(ଵ)

𝑅
 +     

𝐶 ଶ

𝑅ଶ     + 

 

 

௜
    + 

   
𝐶 ଷ  

𝑅ଷ    +     
𝐶 ସ

𝑅ସ    +   

    + 

   
 𝐶 ହ

𝑅ହ   +   
 𝐶 ଺

𝑅଺ + ⋯  

௜௝
ସ

௜௝
ସ

௜௝
଺

௜௝
଺

௜௝
଻

௜௝
଻

௜௝
଼

௜௝
଼

௜௝
ଵଶ

௜௝
ଵଶ

 

௜,௝
ଵ

ଶ ଷ

ସ ଵ

ଶ ଷ

ସ
௜௝

3) Add repulsion at short distances to prevent nuclei 
overlapping

Parameters: 𝑞ଵ  … 𝑞ே

𝐷௜௝
(௡)

, 𝑛 = 4,6,7,8 … 12 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑎𝑖𝑟 𝑞௜, 𝑞௝
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Can the atom-pair approximation work?

The method of Clementi

1) Approximation: cut all terms with powers 1/R7 and higher. This will lower the number of parameters

2) Compute potential energy for a two-molecule system in QM calculations.

A B
A= amino acids and some other systems. 25 in total

B= water molecule

஺஻
interaction energy as a function of mutual distance 
and orientations. 10,000 different values

The interaction potential

Results:

1) Way too many parameters to perform a fit for all atoms. Introduce atom types. Typical types:

sp3, sp3 hybridized carbon, carbon in aromatic residues etc. ~30 different classes

2) Electrostatic contribution can be well approximated by charges:

water 
molecule
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3) Keeping the 1/R4 term doesn’t improve the quality of the fit

4) Certain rules for cross terms seem to work well. For instance:

5) Coefficients               are too small and can’t be determined reliably. This is the consequence 
of the dispersion interactions not being well described by the QM approximation.

௔௕
(଺)

Conclusions

The following model of potential energy will work well for proteins:

௜ ௝

௜௝
௜௝
(ଵଶ)

௜௝
ଵଶ

௜௝
(଺)

௜௝
଺

 

௜,௝
ଵ ே partial charges

௜௝
(ଵଶ)

௜௝
(଺)

Adjustable parameters
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Examples of when this approximation will fail

polarization term.

Actual energy

ସ

ସ

(for instance 
metal ion)

charge is zero 
at each 
nucleus 
because a) the 
molecule is 
neutral b) 
charges are 
equivalent

Atom-pair model

଺

଺

dispersion term.

benzene

oxygen, nitrogen …

Molecules that 
have zero 
charge, zero 
dipole moment 
but non-zero 
quadrupole 
moment

Actual energy

ହ

ହ

Atom-pair model

଺

଺

dispersion term.
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QM calculations predict certain geometry for the studied molecule. Distortions from that geometry are described by 
a number of potential energy terms that collectively are known as “bonded energy”

Bonded energy

Bond-stretching potential

Morse potential (some basis in QM calculations)

Three parameters. 
Not convenient

Reference 
bond length. 
Source: 
crystal 
structures, 
QM 
calculations

Harmonic approximation (typically used)

Force constant. 
Source: normal 
mode analysis of 
QM, vibrational 
spectra

଴
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Angle bending potential

Reference bond angle. 
Source: crystal 
structures, QM 
calculations

Harmonic approximation

Force constant. 
Source: normal 
mode analysis of 
QM, vibrational 
spectra

Higher-order approximations approximation:
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Dihedral angle potential

Multiplicity. Determines how 
many minima the potential 
has. Depends on the 
chemistry of the central two 
atoms. For sp3 atoms, n=3, 
giving 3 minima. For sp2 
atoms, n=2, leading to 2 
minima.

Several functional forms are in use

Barrier height. 
Provides an 
idea on 
qualitative 
level about the 
barrier to 
rotation around 
particular 
bond.

The phase factor, 
Determines where 
the potential 
passes through a 
minimum.
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Improper dihedrals

Chemical compounds in which four non-
consecutive atoms have to lie in-plane. 
This can’t be achieved with the help bond, 
angle and dihedral energy alone.

Cyclobutanone

Conformation 
favored by bond-
angle terms

Experimentally observed 
conformation. Four  atoms 
(1)(2)(3)(4) lie in the same 
plane.

(1)

(2)

(3)

(4)

Improper dihedral energy:

Bonded cross-terms

Typically used in highly 
specialized force-fields 
such as MM2/MM3

Baumketner, BioSim, Lviv 2019

Apply in Class II force-
fields as opposed to 
Class I force-fields 
relying on fixed-charge 
model



Partial charges

1) First principle approaches:

Baumketner, BioSim, Lviv 2019

Parametrization

a) Partial charge is not an experimentally observable quantity. Can’t be determined directly

a) In QM calculations partial charges can’t be determined unambiguously. Many schemes exist. Mulliken
charges are meant for intra-molecular interactions. They depend on the molecule chemistry, number of nuclei 
etc. Can’t be used to describe interactions between molecules.

2) Fitting :

a) Partial charges are fitted to reproduce certain thermodynamic properties of the studied system. 
See for instance OPLS/AA.

b) Partial charges are adjusted to reproduce electrostatic potential created around the molecule of 
interest. The latter are obtained in QM calculations. See AMBER and CHARMM. 

reference QM potential

partial charge potential
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In principle there is no guarantee that such fit should be successful. Much depends on how fitting is 
performed. In all cases errors will be present.

True potential measured for certain 
orientation of molecules A and B

Potential fitted to reproduce 
the long-range region. The fit 
will reproduce the dipole 
moment and will do a bad job 
for the intermediate distances 
because the partial-charge 
model and actual potential 
have different functional 
forms. 

Potential fitted to reproduce 
the entire curve. The long-
range potential is not right but 
at a better agreement is seen 
at intermediate distances. The 
dipole moment produced by 
such fit will be larger than the 
anticipated. This is equivalent 
to the effect of polarization on 
the molecule. So the fit 
includes, in a way, the effect 
of polarization. Although not in 
a controlled manner.

ଶ

ଷ
dipole-dipole interactions

A low-energy configuration of two 
dipoles in a medium

Electric field created 
by this dipole

will tend to 
increase the 
dipole moment 
of this dipole
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c) Charges that are buried are statistically underdetermined. 
Difficult to obtain meaningful values.

Such fits lead to poor 
performance of the charges when 
they are placed in a different 
environment.

The problem can be addressed by introducing weight factors for the charges. Example 
RESP charges of AMBER

d) The same set of charges cannot describe the potential equally well for different configurations of the target 
molecules.

Some force-fields consider multiple configurations so that the fitted charge produces 
the best agreement for the entire ensemble of structures. See AMBER.

e) The best performing fixed-charge model produce 5-15% relative error in electrostatic potential with 
respect to QM results. For comparison, polarizable force-fields can achieve less than 1% accuracy.
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Van der Waals parameters

General scheme

In almost all force-fields the vdW parameters to reproduce
a) Constants in molecular crystals
b) Heat of vaporization
c) Liquid densities

Bonded potentials

Bond-stretching, angle bending – normal modes, vibrational spectra. Most transferable part of force-field

Torsion potential.

QM calculations of potential energy as a function of the particular dihedral angle. 

Typically, parametrization of a force-field proceeds in three steps:

1) Bond-stretching and angle-bending parameters are set. Perhaps by borrowing values from AMBER.

2) Charges are fitted

3) Vdw parameters are fitted. The rule for 1-4 interactions is set.

4) Torsion potentials are fitted on QM simulations of dipeptides.

These are coupled. Don’t 
use torsion potentials 
obtained in one force-field 
in a different force-field!

Combination rules

𝜎௜௝ = 𝜎௜𝜎௝
 

𝜖௜௝ = 𝜖௜𝜖௝
 

𝜎௜௝ =
1

2
(𝜎௜ + 𝜎௝)

Lorentz rule 
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Force-fields in general use

AMBER
CHARMM
OPLS
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AMBER

Charges
Fritted to reproduce electrostatic potential of 
model peptides, ESP and then RESP charges. 

vdW parameters

Torsions

History

ff84

ff94, ff96,ff99

ff02

united atom

all-atom

polarizable

1-4 interactions

Scaling factor of 0.5 in ff84 and 0.83 in all-atom force fields

𝜖௜௝ = 𝜖௜𝜖௝
 

𝜎௜௝ =
1

2
(𝜎௜ + 𝜎௝)

geometric mean

arithmetic mean

Bonded

QM data and vibrational spectra

QM on GLY and ALA dipeptides as a function of 
rotation angles

QM HF-6-31G* set. Multiple conformations. 

The side-chain is varied. 
QM-optimized structures 
for GLY and ALA

RESP with the neutrality 
of AA enforced.

Density and enthalpy of vaporization of CH4,C2H6,C3H8 and 
C4H10 liquids -> sp3 carbon and aliphatic hydrogen. sp2 carbon 
and aromatic H from liquid benzene. All others borrowed from 
OPLS/UA

Combination rules:

Energy function

Rc=9Å, no 
switching

Alanyl and 
glycyl dipeptide

In ff99 refitted using higher-order QM energies



Baumketner, BioSim, Lviv 2019

CHARMM

vdW parameters combination rules

𝜖௜௝ = 𝜖௜𝜖௝
 

𝜎௜௝ =
1

2
(𝜎௜ + 𝜎௝)

geometric mean

arithmetic mean

1-4 interactions

No scaling. Scaling factor of 1.0

History

charmm19

charmm22, charmm27 

charmm36

united atom

all-atom

polarizable

Charges

Torsions
Bonded

QM data and vibrational spectra

QM on dipeptides. Matching of energy of different 
minima, C7, aR etc.

Supramolecular approach. QM energies are computed for AA-Water 
complexes. For neutral systems the energy is divided by 1.16. 
Charges are fitted to reproduce AA-Water interactions. TIP3P with 
non-zero vdW on H is used for water.

NMA water complexes

Backbone: QM yields geometry + 
force constants for bonds, 
angles. Water is important for 
geometry.
Charges + vdW parameters

H2O

H2O

Alanyl dipeptide with water

+ simulations of proteins in 
gas and crystal phases

𝜙,𝜓

Density and heat of vaporization. switching
7.5-8.5A W-W

8.5-9.5A S-W
Rc=



Baumketner, BioSim, Lviv 2019

OPLS

vdW parameters

𝜖௜௝ = 𝜖௜𝜖௝
 

geometric mean

History

opls-UA

opls-AA

united atom

all-atom

Charges

Fitted to reproduce interaction energy of model compounds with water estimated in QM 
simulations. Dipole moments are set about 15% larger than in gas phase to take 
polarization into account. TIP4P water is used in MM part, but TIP3P and SPC are also 
suitable. Concept of neutral groups is introduced, which reduces the number of 
requisite charges,.

1-4 interactions
Scaling factor of 0.83 in OPLS-UA and 0.5 in 
OPLS-AA

𝜎௜௝ = 𝜎௜𝜎௝
 

Bonded

Borrowed from AMBER94 force-field

Torsions

Adopted from AMBER94 in OPLS-UA.
Fitted to QM energy functions computed for AA 
dipeptides for OPLS-AA/L

Experimental density and enthalpy of vaporization in liquid state are 
reproduced in MC simulations of model compounds that correspond 
to the peptide bond and side chains .

NMA is used as the 
model of peptide 
bond. Geometry 
from crystal 
structure. Charges 
from solute-water 
interactions.

depending on 
the substance

10-12ÅRc=

Parameters of CH3(C-O) are taken from 
hydrocarbons. After charges are fitted, 
the number of unknown parameters is 
equal the number of experimental 
measurements

neutral block
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Convergence of force-fields

United-atom force-fields show large variation in charges:

B
a

ck
bo

n
e

All-atom force-fields appear to converge
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Problems, ways to improve

Intrinsic deficiencies 

The ansatz of partial charges placed at positions of 
nuclei not always is appropriate. It may not yield 
proper permanent dipoles. This can be fixed by adding 
more charges. Also atom-based multipole moments.

Example: nitrogen molecule

Has no dipole 
moment but has 
quadrupole 
moment.

𝑞 = 0

𝑞 = 0

Potential energy

ହ

଺

quadrupole-
quadrupole 
interaction

the fixed-charge model has no moments 
so the first term is dispersion energy

One additional 
charge=good

Two additional 
charges=better

QM potential 
energy map
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Problems, ways to improve

Polarization

Molecules in condensed-phase environment acquire additional moments. This is a very strong effect that is seen 
even in molecular geometry, Polarization causes N-C distance in peptide bond to shorten while that of C-O bond to 
lengthen.

Polarization is taken into account implicitly by:
1) Errors in QM theory
2) Adding water molecules to the model compounds in QM calculations
3) Taking molecular geometry from crystal structures
4) Increasing the dipole moment of studied compounds by about 15%
5) Optimizing dihedral angles against NMR data in liquid state or proteins in solution

Still fixed-charge force-fields are only about 5-15% accurate. The chemical accuracy of 1kCal/mol is out of reach.
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Polarization in local environment

Better parametrization is unlikely to improve fixed-charge models by much. The fundamental 
problem is that they include polarization in an average sense.

Molecule in gas. Small 
dipole

Same molecule in polar medium, perhaps its own liquid. Increased 
dipole.

What happens during protein folding

The environment of target molecule changes. Could be transferred from polar 
medium where it’s polarized to non-polar medium where it’s dipole moment is 
small.

Polarization has to be included explicitly in order to make progress
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Polarizable force-fields

Three basic methods:

1) Fluctuating charge model
2) Drude oscillator
3) Induced dipole models

Polarization seems to get the ordering 
of different structures right



Two different types of physical processes, deterministic and stochastic

Deterministic behavior:

The outcome of an experiment can be 
predicted exactly. Applies to many 
laws of physics: Newton’s laws, 
Maxwell equations etc.

Stochastic behavior:

The outcome of an experiment cannot be predicted 
exactly. This could be an intrinsic property of the 
physical object – quantum mechanics. Or, the lack 
of knowledge about the object= statistical 
mechanics. Fundamentally, all processes in nature 
are stochastic. 

For quantitative description of stochastic processes one needs the concept of distribution.

Example: Dice
1) The outcome of rolling dice “experiment” consists 
of 6 different realizations. It can be fully described by a 
discrete variable 𝑔 that takes on 6 values:

𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6

2) Although the laws of solid body mechanics are 
known, there is no way of predicting exactly the 
outcome of any experiment. Too many unknowns are 
involved: asymmetry in the mass distribution in the 
dice, temperature/pressure fluctuations, convection 
etc
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Distributions:

possible realizations 
of  quantity g

Important properties:

has to be normalized, the 
sum is finite

Averages:Are easiest to introduce for discrete variables. 

By definition:

For any function of 𝑔
and normalized dist.: 

k= sum over different 
experiments

i= sum over different realizations 
of variable g

For continuous  variables sum are replaced with integrals: 

is the probability of seeing x in the interval

=probability distribution function

Normalization condition: Averages:

Most generally: For any distr. funct.:
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Some basic definitions for distributions

mean value

standard 
deviation

n-order moment 
(may or may not 
exist)

Geometrical interpretation

can be estimated from sampling

Say we have a sequence of measurements:

Average over the sample will approximate the mean value

Square deviation from the average will approximate the standard deviation:

(n-1 comes from Bessel 
correction for finite n)
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Error estimate

SE

SD

sample error

standard error

Accuracy of  SE

It’s safe to use SE to estimate the 
error in the measurement for n>10

Independent measurements

Correlated measurements

SE

correlation coefficient

for independent events

Examples:
normal 
distribution

Relative error:

declines as inverse square root of the number of 
measurements. n must be large to achieve good 
accuracy

Wide distributions require larger 
number of steps to converge
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Transforming distribution functions

is a stochastic variable characterized by 

Q: what is distribution

From the definition of the 
probability distribution:

This can be written in a more convenient form :

(probability density 
transformation theorem)

𝑦′ = 𝑓 𝑥 , 𝑑𝑥 =
𝑑𝑦′

𝑑𝑓
𝑑𝑥

(𝑥(𝑦′))න𝛿 𝑔 𝑥 𝑓 𝑔 𝑥 |𝑔′(𝑥)| 𝑑𝑥 =

න𝛿 𝑢 𝑓 𝑢 𝑑𝑢

change of variables rule for delta function
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Q: what is the distribution of the linear transformation of variable x?

The shape of the distribution 
doesn’t change. But now it is 
characterized by new mean 
and variance

Normal distribution with 
zero mean and unit  
standard deviation can 
be used to generate 
Gaussians with arbitrary 
mean and variance 
through linear 
transformation of the 
variable!

Examples of probability transformations

1) Normal 
distribution with 
zero mean and s=1
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2) Uniform distribution:

otherwise

since

3) Exponential distribution:
arbitrary constant

Set

4) Gaussian:

to get

will generate normally distributed positive numbers. 

For negative numbers, 
use the property:

Two random 
numbers 𝑥 ∈ [0,1]

inversion of the error function can be costly numerically
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Multiple events can be observed simultaneously. For two variables x and y one introduces:

Multivariate distributions

to denote a joint event 

Joint distribution function is introduced so that

is the probability of seeing and

Distributions for individual variables: Normalization condition:

5) For distributions of arbitrary shapes: cumulative distribution transformation theorem

target distribution. Define: cumulative dist.

what’s dist. for this variable 

uniform [0,1]

indeed, the desired 
distribution
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Conditional probabilities

Assume 2-D for simplicity

Event

Event

total events

of both occurring at the same time

Define conditional probability:

prob. of once occurred

joint probability

Bayes’ theorem
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Concept of independent events

Assume that event A is not conditioned upon event B. The conditional probability then is equal 
to the simple probability of event A:

The joint probability then becomes:

If this condition is met the events are known as independent. The distribution can be used to 
judge the degree of independence or correlation.

Quantitatively this can be measured by 
correlation coefficient:

where x and y are two 
stochastic variables and

Case 1: x and y are independent:
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Case 2: x and y are fully correlated x=ay, a>0

Case 3: x and y are fully anti-correlated x=-ay, a>0

What multivariate distributions can be used for

Generation of normal distributions. Let x and y be random variables uniformly distributed between 0 
and 1. Introduce new variables:
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Transformation of the joint distribution function:

Jacobian of the transformation

two uniformly 
distributed numbers 
x and y

two normally 
distributed 
numbers x’ and y’
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Statistical mechanics = theory to extract macroscopic properties 
from microscopic variables

Microscopic description: 2N-D phase space:

Coordinates + momenta  fully define the state of a 
system with N degrees of freedom

Measuring property A(G) always yields time average (take pressure in tires for example):

real or virtual experiment

observation time

Observation time 𝑡𝑜𝑏𝑠 is always finite. Furthermore, in practice it is always discretized so that the 
integral can be carrier out.:

of steps/events in the 
observation ሼ

must be large 
enough to eliminate 
dependence on the 
initial conditions

Baumketner, BioSim, Lviv 2019



The expression for the observable now reads:

t is now just a blind index 
that enumerates all 
measurements

Recall how we computed averages for random variables:

it’s the same formula

On one hand we have time evolution but on the other – different realizations of some random 
variables that can be described by certain distribution. Both descriptions lead to the same average. The 
one based on distributions is the subject of statistical mechanics.

The concept of ensembles

Time evolution of one system

The same state point G can be 
visited multiple times

Multiple copies of the system at time t=0Ensemble =

Points in the 
phase space are 
distributed 
according to 
certain function
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At first glance the connection between time average and ensemble average appears to be 
straightforward. But there are important subtleties.

Let us consider N members of the ensemble, each corresponding to a gamma point Gi. Consider that in 
general the distribution function may have explicit dependence on time. See what happens in a certain 
volume dG when the time changes from t to t+dt. 

1) Some points will enter the volume
2) Some will leave it

3) Some will remain 
within the volume4) None will be created or destroyed

𝑁𝑝𝑜𝑖𝑛𝑡𝑠 = 𝑁𝑃𝑒𝑛𝑠 Γ, 𝑡 𝛿Γ

The balance equation for the number of points:

𝑁𝛿Γ
𝜕

𝜕𝑡
𝑃𝑒𝑛𝑠 Γ, 𝑡

change in the 
number of points

= 𝑁 𝑒𝑛𝑡𝑒𝑟 − 𝑁(𝑙𝑒𝑎𝑣𝑒) + 𝐹(Γ, 𝑡)

difference between 
leaving/entering per 
unit time

sink/source term

=0, not present
can be computed as 
surface integral of 
the flux
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𝑣𝑠

Let’s forget about momenta in G for the moment and focus on Cartesian coordinates only

# of points entering 
through surface 
element 𝑑𝑆 𝑛

component of the 
velocity along 𝑛

𝜌 = 𝑁𝑃𝑒𝑛𝑠
density of points

𝑁 𝑒𝑛𝑡𝑒𝑟 =
𝜌 𝑑𝑆 𝑑𝑙

𝑑𝑡
=

𝜌 𝑑𝑆 𝑣𝑠 𝑑𝑡

𝑑𝑡
= Ԧ𝐽 𝑛 𝑑𝑆

all those contained in 
this parallelepiped

Ԧ𝐽 = 𝜌 Ԧ𝑣 flux = the number 
of points passing 
through the 
boundary per unit 
surface area per 
unit time

inward 
normal 
vector

Leaving pointsEntering 
points

𝑁 𝑙𝑒𝑎𝑣𝑒 = Ԧ𝐽 𝑛′ 𝑑𝑆

𝑁 𝑒𝑛𝑡𝑒𝑟 − 𝑁 𝑙𝑒𝑎𝑣𝑒 = −ර Ԧ𝐽 𝑑𝑆

surface 
integral of 
flux

= −න 𝛻Ԧ𝐽 𝑑𝑉 ≈ −𝑁(𝑣𝛻𝑃𝑒𝑛𝑠)𝛿Γ

- Ԧ𝐽 𝑛′ 𝑑𝑆 outward looking normal vector

divergence 
theorem

outward 
looking 
normal vector
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Putting the estimate into the balance equation:

𝑁𝛿Γ
𝜕

𝜕𝑡
𝑃𝑒𝑛𝑠 Γ, 𝑡 = −𝑁( Ԧ𝑣𝛻𝑃𝑒𝑛𝑠)𝛿Γ

𝜕

𝜕𝑡
𝑃𝑒𝑛𝑠 Γ, 𝑡 + ( Ԧ𝑣𝛻𝑃𝑒𝑛𝑠)=0

𝜕

𝜕𝑡
𝑃𝑒𝑛𝑠 Γ, 𝑡 + ሶԦ𝑟

𝜕

𝜕 Ԧ𝑟
𝑃𝑒𝑛𝑠=0

If we add momenta back to the equation we will get (by analogy):

𝜕

𝜕𝑡
𝑃𝑒𝑛𝑠 Γ, 𝑡 + ሶԦ𝑟

𝜕

𝜕 Ԧ𝑟
𝑃𝑒𝑛𝑠 +

ሶԦ𝑝
𝜕

𝜕 Ԧ𝑝
𝑃𝑒𝑛𝑠=0

𝜕

𝜕𝑡
+ ሶԦ𝑟

𝜕

𝜕 Ԧ𝑟
+ ሶԦ𝑝

𝜕

𝜕 Ԧ𝑝
𝑃𝑒𝑛𝑠 Γ, 𝑡 = 0

𝑑𝑃𝑒𝑛𝑠(Γ, 𝑡)

𝑑𝑡
= 0

Liouville equation

The probability 
distribution is constant 
along any trajectory

𝑑𝜌𝑒𝑛𝑠(Γ, 𝑡)

𝑑𝑡
= 0.
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In equilibrium the probability distribution can not depend on time. Because otherwise the averages 
would depend on time as well. That contradicts the definition of “equilibrium”. Therefore:

𝑃𝑒𝑛𝑠 Γ, 𝑡 = 𝑃𝑒𝑛𝑠(Γ)
𝜕

𝜕𝑡
𝑃𝑒𝑛𝑠 Γ, 𝑡 = 0

𝑁 𝑒𝑛𝑡𝑒𝑟 − 𝑁 𝑙𝑒𝑎𝑣𝑒 = 0
for any point in the phase 
space. The number of 
points occupying it is 
conserved.

The system is evolving in is such a way that 

𝑃𝑒𝑛𝑠 Γ = 𝑐𝑜𝑛𝑠𝑡 at each point

As one point exits certain cell in the phase space, another 
point immediately enters it. As a result, all points are 
moving in concert in what resembles a Conga line.

The line snakes around the phase space as time passes 
by. How this happens has important consequences.

Option 1. The snakes passes through all points 
available in the phase space. The entire phase 
space is accessible. Ergodic behavior.

Option 2. There are regions in the phase space 
from which the snake cannot break out. It 
moves in a circular manner. Non-ergodic
behavior.
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In ergodic systems, all phase points are visited multiple times during a simulation. Only in this case is 
the time average equal to ensemble average (with particular distribution function)

1) Determining whether or not a system is ergodic is not a trivial task. Rigorous proof 
exists only for a few model systems, such as coupled harmonic oscillators.

2) There are different reasons for non-ergodicity
a) Frustration – multiplicity of potential energy minima of the same depth 
prevents their thorough exploration
b) Low temperature. Creates very high barriers in the free energy 
landscape that can be overcome. The system becomes locked up in 
certain parts of the phase space. Glass transition is one example. 

3) Certain models are known to be non-ergodic. For instance, certain lattice models 
of proteins

4) It’s easy to design a non-ergodic system. All it takes is to arrange a circular 
movement  in the phase space. Can be achieved through specific Monte Carlo 
moves.
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Stat mech.  .vs.  thermodynamics

Normalization constant of the probability distribution is not needed to compute averages. Consider

and another distribution proportional to it𝜌𝑒𝑛𝑠(Γ) 𝜌′
𝑒𝑛𝑠

Γ = 𝛼𝜌𝑒𝑛𝑠 Γ

According to the definition:

< A > ′ =෍

Γ

𝐴 Γ 𝜌′𝑒𝑛𝑠(Γ)/෍

Γ

𝜌′
𝑒𝑛𝑠

Γ =෍

Γ

𝐴 Γ 𝛼𝜌𝑒𝑛𝑠(Γ)/෍

Γ

𝛼𝜌𝑒𝑛𝑠 Γ =

=෍

Γ

𝐴 Γ 𝜌𝑒𝑛𝑠(Γ)/෍

Γ

𝜌𝑒𝑛𝑠 Γ =< 𝐴 >

But this quantity is central to establishing link between microscopic description in terms of 
coordinates/momenta and  macroscopic description in terms of thermodynamic functions

𝑄𝑒𝑛𝑠 =෍

Γ

𝜌𝑒𝑛𝑠(Γ)
partition function=

< A >ens=෍

Γ

𝐴 Γ 𝜌𝑒𝑛𝑠(Γ)/𝑄𝑒𝑛𝑠

the sum of 𝜌𝑒𝑛𝑠 Γ
over all possible states

Ψ𝑒𝑛𝑠 = −log(𝑄𝑒𝑛𝑠)

Thermodynamic potential of the 
given ensemble

The function that reaches 
minimum in equilibrium.
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Microcanonical ensemble (NVE)

Physical equivalent= an 

isolated system

NVE

Hamiltonian:

volume of the hypersurface 

that corresponds to energy E

𝐸 = 𝐻(Γ)

takes care of the distinguishability of the particles

the integral counts 
these contributions 

twice

Partition function:

Thermodynamic potential:

Distribution function:

all configurations 
with energy E are 

equiprobable

entropy

Ψ𝑁𝑉𝐸 = −𝑘log 𝑄𝑁𝑉𝐸 = −𝑆(𝑁, 𝑉, 𝐸)

Boltzmann’s constant

proportionality constant first introduced on the grounds of 
dimensionalities. Then recognized as the Plank constant when 

QM came about

Common ensembles
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Canonical ensemble (NVT) Physical equivalent= system 
exchanging heat with the 

environment

external parameter that is associated with temperature

multiple hypersurfaces 
are populated with the 

probability ~𝑛 𝐸 𝑒−𝛽𝐸

Partition function:

Distribution function:

𝜌𝑁𝑉𝑇 Γ ~𝑒−𝛽𝐻(Γ), 𝛽 =
1

𝑘𝑇

QNVT =෍

Γ

𝑒−𝛽𝐻(Γ) =෍

E

𝑛 𝐸 𝑒−𝛽𝐸

density of 

states

Thermodynamic potential:

Ψ𝑁𝑉𝑇 = 𝐹 𝑁, 𝑉, 𝑇 = −𝑘𝑇log 𝑄𝑁𝑉𝑇 = 𝐹𝑖𝑑(𝑁, 𝑉, 𝑇) + 𝐹𝑒𝑥(𝑁, 𝑉, 𝑇)

Helmholtz free energy ideal gas part excess part (due to interactions)

𝑄𝑁𝑉𝑇 =
1

ℎ3𝑁𝑁!
න𝑑 Ԧ𝑝𝑑 Ԧ𝑞𝑒−𝛽𝐻(Γ) =

1

ℎ3𝑁𝑁!
න𝑑 Ԧ𝑝𝑒−𝛽𝐸𝐾 න𝑑 Ԧ𝑞𝑒−𝛽𝑈(𝑞) =

𝑄𝑁𝑉𝑇
𝑖𝑑 x 𝑄𝑁𝑉𝑇

𝑒𝑥 𝑄𝑁𝑉𝑇
𝑖𝑑 =

𝑉𝑁

𝑁! 𝜆3𝑁
, 𝜆 = ℎ2/2𝜋𝑚𝑘𝑇 𝑄𝑁𝑉𝑇

𝑒𝑥 =
𝑍𝑁𝑉𝑇
𝑉𝑁

, 𝑍𝑁𝑉𝑇 = න𝑑 Ԧ𝑞𝑒−𝛽𝑈(𝑞)

configuration 

integral
kinetic part

separation of the partition function
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Isothermal-isobaric ensemble (NPT)
Physical equivalent= system 

under a piston

external parameter 

associated with pressure

𝐸 = 𝐻(Γ, 𝑉)

Partition function:

Distribution function:

𝜌𝑁𝑃𝑇 Γ ~𝑒−𝛽(𝐻 Γ,V +𝑃𝑉)

QN𝑃T =෍

𝑉

෍

Γ

𝑒−𝛽(𝐻 Γ,𝑉 +𝑃𝑉) =෍

V

𝑄𝑁𝑉𝑇𝑒
−𝛽𝑃𝑉

Thermodynamic potential:

Ψ𝑁𝑃𝑇 = 𝐺 𝑁, 𝑃, 𝑇 = −𝑘𝑇log 𝑄𝑁𝑃𝑇 = 𝐺𝑖𝑑(𝑁, 𝑃, 𝑇) + 𝐺𝑒𝑥(𝑁, 𝑃, 𝑇)

Gibbs free energy

ideal gas part excess part (due to interactions)

𝑄𝑁𝑃𝑇 =
1

ℎ3𝑁𝑁!𝑉0
𝑑𝑉׬ 𝑑׬ Ԧ𝑝𝑑 Ԧ𝑞𝑒−𝛽(𝐻 Γ,𝑉 +𝑃𝑉) =

1

ℎ3𝑁𝑁!𝑉0
𝑑׬ Ԧ𝑝𝑒−𝛽𝐸𝐾 X

both energy and 
volume are allowed to 

changeseparation of the partition function

X ׬𝑑𝑉𝑒−𝛽𝑃𝑉 𝑑׬ Ԧ𝑞𝑒−𝛽𝑈 𝑞 =
1

𝑁!𝜆3𝑁𝑉0
𝑍 𝑁, 𝑃, 𝑇

𝑍 𝑁, 𝑃, 𝑇 = න𝑑𝑉𝑒−𝛽𝑃𝑉 𝑍𝑁𝑉𝑇
configuration integral

(both contain contributions from configuration integral)
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Grand canonical ensemble (𝜇VT) Physical equivalent= 
system exchanging heat 
and particles with the 

environment

external parameter 
associated with chemical 

potentialPartition function:

Distribution function:

𝜌𝜇𝑉𝑇 Γ ~𝑒−𝛽(𝐻 Γ,V −𝜇𝑁)

Q𝜇𝑉𝑇 =෍

𝑁

෍

Γ

𝑒−𝛽(𝐻 Γ,𝑉 −𝜇𝑁) =෍

𝑁

𝑄𝑁𝑉𝑇𝑒
𝛽𝜇𝑁

Thermodynamic potential:

Ψ𝜇𝑉𝑇 = Φ𝐺 𝜇, 𝑉, 𝑇 = −𝑘𝑇log 𝑄𝜇𝑉𝑇 = 𝐹 − 𝜇𝑁 = −𝑃𝑉

grand canonical 

potential

no separation but the kinetic part can be integrated 

explicitly

Q𝜇𝑉𝑇 =෍

𝑁

𝑒𝛽𝜇𝑁𝑄𝑁𝑉𝑇
𝑖𝑑 𝑄𝑁𝑉𝑇

𝑒𝑥 =෍

𝑁

𝑒𝛽𝜇𝑁
1

𝑁! 𝜆3𝑁
𝑍(𝑁, 𝑉, 𝑇)

key property to be evaluated

energy and number of 
particles are allowed to 

change
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Summary on ensembles/thermodynamic functions

Microcanonical (primary)

𝐹(𝑁𝑇𝑉) = −𝑘𝑇log 𝑄 𝑁𝑇𝑉 = 𝐸 − 𝑇𝑆
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𝑆 𝑁,𝑉,𝐸

𝑘
=log 𝑄𝑁𝑉𝐸

Canonical

Isobaric-isothermic

entropy

Helmholz free energy

𝐺(𝑁𝑃𝑇) = −𝑘𝑇log 𝑄 𝑁𝑃𝑇 = 𝐹 + 𝑃𝑉 Gibbs free energy

Grand canonical

Φ 𝜇𝑇𝑉 = −𝑘𝑇log 𝑄 𝜇𝑇𝑉 = 𝐹 − 𝜇𝑁 = −𝑃𝑉

𝜇𝑇𝑃
is not an ensemble. it 
contains only intensive 
variables some of which 

are related

Grand canonical or Hill free 

energy

Link to thermodynamics

Fundamental law:

𝑇𝑑𝑆 = 𝑑𝑈 + 𝑝𝑑𝑉 − 𝜇𝑑𝑁

𝑑𝐹 = −𝑝𝑑𝑉 − 𝑠𝑑𝑇 + 𝜇𝑑𝑁

𝑑𝐺 = 𝑉𝑑𝑝 − 𝑠𝑑𝑇 + 𝜇𝑑𝑁

Gibbs free energy ~N because it’s an extensive variable

𝐺(𝑁𝑃𝑇) = 𝑁𝑓(𝑃𝑇) 𝑓 𝑃𝑇 =
𝜕𝐺

𝜕𝑁
ቚ
𝑇𝑃

= 𝜇

𝜕𝐺

𝜕𝑁
ቚ
𝑇𝑃

= 𝜇

𝜕𝐹

𝜕𝑁
ቚ
𝑇𝑉

= 𝜇
𝐺 𝑁𝑃𝑇 = 𝑁𝜇

Φ = 𝐹 − 𝜇𝑁 = 𝐺 − 𝑃𝑉 − 𝜇𝑁 = −𝑃𝑉



Monte Carlo – a class of algorithms that rely on random sampling to obtain numerical results

a) Developed by Ulam, von Nuemann and Metropolis in the 40's to model diffusion 
of neutrons in fissile material. 

b) The term is the codename coined after Monte Carlo casino where Ulam's uncle used 
to borrow money to gamble.

The main idea: use stochastic methods (random sampling)
to solve deterministic equations.

Example: Buffon’s needle experiment

A needle of length l is thrown onto a striped field. What is 
the probability that the needle
will cross the middle line?

Two outcomes of the experiment:
a) Needle crosses the middle line
b) Needle doesn’t cross the line

𝑙

𝑙

𝑡

Monte Carlo method

e) Under the name of Markov Chain Monte Carlo (MCMC), used  widely in physics, 
chemistry, biology, finance, quantitative linguistics etc

c) Many flavors exist designed to address specific problems

d) Use in math: applied statistics – the inference problem,  integration, optimization, 
inverse problems etc. 

How is that possible? Why is that needed?
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The state of the needle is defined by two variables:

a) x – the center of the needle

a)j– the angle it makes with the vertical axis

x and j are random variables, independently distributed.

are all uniform distributions – no preferential x or j.
2D configuration space

The needle crosses the line when x coordinate of points 1 and 2 
satisfies the following conditions:

and

𝑥 = 𝑡 −
𝑙

2
sin(𝜑)

0 𝑡 2𝑡
0

𝜋

𝜋

2

𝑥 = 𝑡 +
𝑙

2
sin(𝜑)

0 𝑡 2𝑡
0

𝜋

𝜋

2

0 𝑡 2𝑡
0

𝜋

𝜋

2

Ω

P1/2 =ඵ𝑑𝑥𝑑𝜑𝑃 𝑥, 𝜑 =
1

𝜋2𝑡
𝑆𝑐 Ω =

=
1

𝜋2𝑡
2
𝑙

2
න

0

𝜋

sin(𝑥)𝑑𝑥 =
2𝑙

𝜋2𝑡
=

𝑙

𝜋𝑡

surface 
area
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Full probability:

Pcrossing = 2P1/2 =
2𝑙

𝜋𝑡 +

𝜋 =
2𝑙

𝑡𝑃𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔
follows from  a stochastic process

deterministic result=exact number

Lazzarini's experiment:3408 trials

𝜋 =
355

113
= 3.1415929 10−7 accuracy

Example: hit and miss integration

Throw particles(generate pairs of random numbers) on this square and 
count how many fall within the circle r =1. The goal is to compute 𝜋.

If particles are distributed uniformly then:

𝑃𝐴 - probability to hit circle

𝑃𝐵 - probability to square

𝑃𝐴
𝑃𝐵

=
SA
𝑆𝐵

=
𝜋

4

𝑆𝐴

𝑆𝐵
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𝜋 =
4𝑛𝐴
𝑛𝐵

If the number of particles hitting the circle is 𝑛𝐴 and those hitting the square is 𝑛𝐵: 

Accuracy estimates:

Hit & miss: 3.141 7 3 after 107 shots

10−4 accuracy

Convergence tests

Needles:  3.14 0 472 after 107 shots

10−3 accuracy

Conclusion: Lazzarini was able to compute p with 10-7

accuracy after ~104 shots so he:

a) cheated
b) had a VERY lucky afternoon with numbers!

𝑡ℎ𝑟𝑜𝑤𝑖𝑛𝑔 𝑛𝑒𝑒𝑑𝑙𝑒𝑠

ℎ𝑖𝑡 & 𝑚𝑖𝑠𝑠

𝑒𝑟𝑟𝑜𝑟 ~1/ 𝑛𝐵
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Hit & miss experiment is an example of the “sample mean” integration method. 

If 𝑁𝜏 trials are performed to sample random variable 𝜉 , distributed according to 𝜌(𝜉), then

the average is 
taken over different 
trials

𝐹 =<
𝑓 𝜉

𝜌(𝜉)
>𝑡𝑟𝑖𝑎𝑙𝑠=

1

𝑁
෍

𝑖

𝑁
𝑓 𝜉𝑖
𝜌(𝜉𝑖)

𝐹 =
𝑥2 − 𝑥1

𝑁
෍

𝑖

𝑁

𝑓(𝜉𝑖)

Example: 

Sample mean integration

Baumketner, BioSim, Lviv 2019



Compute 𝜋 number by the sample mean method: 

same accuracy as the hit and miss method

Simpson’s integration rule:

10−6 accuracy

10−4 accuracy

The stochastic method is not competitive!

The cost of Simpson’s rule (or similar quadrature method based on interpolation) is 
prohibitive for multi-dimensional integrals!

𝑆 =
1

4
𝜋12

න𝑓 Ԧ𝑥 𝑑𝑥1…𝑑𝑥𝑛𝐷 = 𝑛 𝑛𝑠 − number of sample points per 
dimension

𝑛𝑠
𝑛 − number of function 

evaluations

𝑛 = 300

𝑛𝑠 = 10

for an ensemble of 100 
particles

10300
function evaluations. That’s an 
astronomical number that no computer 
can handle!
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For integrals of high dimensionality stochastic methods remain the only viable option 

Two steps involved in the integration using uniform 𝜌:

𝑍 𝑁, 𝑉, 𝑇 = න𝑒−𝛽𝑈(𝑟1…𝑟𝑁)𝑑𝑟1 …𝑑𝑟𝑁

Cartesian coordinates

Focus on the configuration integral of the 
canonical ensemble.

1) Pick a point in the configuration space 𝑟1 …𝑟𝑁
by generating 3N random numbers uniformly

2) Compute the potential energy 𝑈 𝑟1…𝑟𝑁 and the 

integrand for select 𝛽

Repeat these steps  𝑁𝑠 times and compute the 
configuration integral as:

𝑍 𝑁, 𝑉, 𝑇 =
1

𝑁𝑠
෍

𝑖=1

𝑁𝑠

𝑒−𝛽𝑈(𝑟1(𝑖)…𝑟𝑁(𝑖))

the integral has to converge with 𝑁𝑠

for many evaluation points 𝑒−𝛽𝑈~0

Problems with the uniform 𝜌 ∶

1) 𝑁𝑠 has to be VERY large. For most systems of practical 
interest in physics convergence is not attainable. 

2) Ensemble averages < 𝐴 > =
σ𝐴𝑖𝑒

−𝛽𝑈𝑖

σ𝑒−𝛽𝑈𝑖
are even less accurate and in most cases 
meaningless

a number with large uncertainty in the denominator

Γ

(in math this method is known as random Monte 
Carlo integration)

Baumketner, BioSim, Lviv 2019



To reduce the number of zeroes choose a distribution function 𝜌 Γ that has a strong overlap 
with the integrand. 

For the canonical ensemble:

< 𝐴 >𝑁𝑉𝑇=
׬ 𝐴 Γ 𝜌𝑁𝑉𝑇 Γ 𝑑Γ

𝜌𝑁𝑉𝑇׬ Γ 𝑑Γ
=

<𝐴 𝜌𝑁𝑉𝑇/𝜌>𝑡𝑟𝑖𝑎𝑙𝑠

<𝜌𝑁𝑉𝑇/𝜌>𝑡𝑟𝑖𝑎𝑙𝑠

𝜌 −sampling distribution

𝜌𝑁𝑉𝑇(Γ)
𝜌(Γ)

𝜌(Γ)

𝜌𝑁𝑉𝑇(Γ)

bad choice 
of 𝜌(Γ)

better 
choice

Specific choice 𝜌 Γ = 𝜌𝑁𝑉𝑇 Γ is known as importance sampling:

< 𝐴 >𝑁𝑉𝑇=< 𝐴 >𝑡𝑟𝑖𝑎𝑙𝑠

How does one generate a sequence of configurations Γ1…Γ𝑁 that satisfy the given 
distribution  𝜌(Γ) ?

Answer: design a Markov chain of states whose limiting distribution is 𝜌 Γ !

<
𝜌𝑁𝑉𝑇
𝜌

>𝑡𝑟𝑖𝑎𝑙𝑠=< 1 >𝑡𝑟𝑖𝑎𝑙𝑠= 1

Importance sampling

(the corresponding method is known as Markov Chain Monte Carlo (MCMC) )

Baumketner, BioSim, Lviv 2019



What does it mean “Markov chain”? Stochastic 
process in which:

a) there is a finite (countable) set of 
configurations in the phase space { Γ1…Γ𝑁}.

b) transition from state 𝑖 to state  𝑗 does not depend 

on the history prior to state 𝑖. There is no memory. 
Correlation only between neighboring sites.  

Transition probabilities among states make a matrix ො𝜋:

𝜋𝑚𝑛 probability of making a transition from state 𝑚 to state 𝑛.

𝜋𝑚𝑚 probability of remaining in state 𝑚.

෍

𝑛≠𝑚

𝜋𝑚𝑛 probability of transitioning to any state

෍

𝑛

𝜋𝑚𝑛 = 1 consequence of the phase space finiteness

path i:

path j:

𝜋34(𝑖)

𝜋34(𝑗)

𝜋34 𝑖 = 𝜋34 𝑗 = 𝜋34

Markov chains
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Example: prediction of computer’s up time

How are 𝜋𝑚𝑛and 𝜌 Γ related? 

60% chance of being up today if it was up the 
day before 

Computer can be either up or down. So the phase space 
consists of two states | ↑> and | ↓>

Computer has: 

70% chance of being down today if it was 
down the day before 

Day 1: computer is up, 𝜌 ↑ = 1, 𝜌 ↓ = 0

Day 2: 𝜌 ↑ = 0.6, 𝜌 ↓ = 0.4

Day 3: 𝜌 ↑ = 0.6 ∗ 0.6 + 0.4 ∗ 0.3 = 0.48

ො𝜋 =
𝜋(↑↑) 𝜋(↑↓)

𝜋(↓↑) 𝜋(↓↓)
=

0.6 0.4
0.3 0.7

ො𝜌(2) = 𝜌 ↑ 𝜌(↓) = 0.6 0.4 = (1 0)
0.6 0.4
0.3 0.7

𝜌 ↓ = 0.4 ∗ 0.7 + 0.6 ∗ 0.4 = 0.52
0.48 0.52 = 0.6 0.4

0.6 0.4
0.3 0.7

= 1 0
0.6 0.4
0.3 0.7

2

ො𝜋x

ො𝜌 3 = ො𝜌 2 ∙ ො𝜋 = ො𝜌 1 ∙ ො𝜋 ∙ ො𝜋 = ො𝜌 1 ∙ ො𝜋2

Day N: 
ො𝜌 𝑁 = ො𝜌 1 ∙ ො𝜋𝑁−1

probability on day N depends on probability on day 1

row vector
ො𝜌 (1)

Transition matrix 
from day 1 to day 2

Baumketner, BioSim, Lviv 2019



Is there a limiting probability for large 𝑁 in which the dependence on the initial state disappears?

lim
𝑁→∞

ො𝜌 𝑁 = ҧ𝜌 does this limit exist?

If it does, then the probability becomes independent of time so it is equal for day N+1 and day N:

ො𝜌 𝑁 + 1 = ො𝜌 𝑁 = ҧ𝜌
However, 

ො𝜌 𝑁 + 1 = ො𝜌 𝑁 ∙ ො𝜋 ҧ𝜌 = ҧ𝜌 ∙ ො𝜋 an equation for the limiting 
distribution

𝜌𝑛 =෍

𝑚

𝜌𝑚𝜋𝑚𝑛

ҧ𝜌 = ҧ𝜌 ∙ ො𝜋
limiting distribution ഥ𝜌 is the left 
eigenvector of the transition 
matrix ෝ𝜋 that corresponds to the 
eigenvalue 1

ො𝜋 is a stochastic matrix – its rows sum up to 1. We will also assume that it is an irreducible 
matrix which means that all states are accessible leading to ergodic behavior. 

Eigenvector 
eigenvalue 
problem

Perron-Frobenius theorem for stochastic irreducible matrices: The maximum eigenvalue is 
𝜆(1) =1. It’s simple (non-degenerate). Its eigenvector is real. No other real eigenvector exists. 

Consequences: limiting distribution ҧ𝜌 existsa)

eigenvalues 𝜆 𝑛 , 𝑛 > 1 control the convergence rate to ҧ𝜌b)
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Application to the canonical configuration integral

The transition matrix  ො𝜋 is unknown. But we know the limiting distribution 𝜌𝑚 = 𝜌𝑁𝑉𝑇(Γ𝑚)

Some rules for constructing ො𝜋

a) avoid the need to compute 𝑄𝑁𝑉𝑇 = σ𝑚 𝜌𝑚
not needed for averages

may be impossible to compute if the 
size of the phase space is large

b) Detailed balance : 𝜌𝑛𝜋𝑛𝑚 = 𝜌𝑚𝜋𝑚𝑛

# transitioning from 𝑛 to 𝑚

# transitioning from 𝑚 to 𝑛

෍

𝑚

𝜌𝑛𝜋𝑛𝑚 = 𝜌𝑛෍

𝑚

𝜋𝑛𝑚 = 𝜌𝑛 =෍

𝑚

𝜌𝑚𝜋𝑚𝑛

eigenvector condition

𝜌𝑛 is the desired eigenvector

Take the sum over 𝑚:

A number of methods are available to build ො𝜋 that satisfies detailed balance

Metropolis-Hastings Wood/Glauber/Barker Kawasaki
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𝜌𝑛 ≤ 𝜌𝑚: 𝜌𝑛𝜋𝑛𝑚 = 𝜌𝑛𝛼𝑛𝑚 = 𝜌𝑚𝛼𝑛𝑚
𝜌𝑛
𝜌𝑚

= 𝜌𝑚𝛼𝑚𝑛

𝜌𝑛
𝜌𝑚

= 𝜌𝑚𝜋𝑚𝑛

Metropolis-Hastings method: asymmetrical solution 

𝛼𝑚𝑛 = 𝛼𝑛𝑚 a symmetric stochastic matrix underlying Markov chain

Proof that the solution satisfies the detailed balance:

𝜌𝑛 > 𝜌𝑚: 𝜌𝑛𝜋𝑛𝑚 = 𝜌𝑛𝛼𝑛𝑚
𝜌𝑚
𝜌𝑛

= 𝛼𝑛𝑚𝜌𝑚 = 𝛼𝑚𝑛𝜌𝑚 = 𝜌𝑚𝜋𝑚𝑛

Important point: 𝜋𝑛𝑚 depends on the ratio 𝜌𝑛/𝜌𝑚 but not on these quantities individually

One needs to know 𝜌𝑛up to a multiplicative constant to arrange a Markov chain. The normalizing 

factor 𝑄𝑁𝑉𝑇 = σ𝑛 𝜌𝑛 is not required. 

(𝑛 → 𝑚 for higher final 𝜌)
(𝑚 → 𝑛 for lower  final 𝜌)

(𝑛 → 𝑚 for lower final 𝜌) (𝑚 → 𝑛 for higher  final 𝜌)

 =
n

mn 1p

Baumketner, BioSim, Lviv 2019



Symmetric solution 

a symmetrical 
stochastic matrix

𝜋𝑚𝑛 = 𝛼𝑚𝑛

𝜌𝑛
𝜌𝑛 + 𝜌𝑚

𝜋𝑚𝑚 = 1 − ෍

𝑛≠𝑚

𝜋𝑚𝑛

𝑚 ≠ 𝑛

𝛼𝑚𝑛 = 𝛼𝑛𝑚

𝜌𝑛𝜋𝑛𝑚 = 𝜌𝑛𝛼𝑛𝑚
𝜌𝑚

𝜌𝑛 + 𝜌𝑚
= 𝜌𝑚𝛼𝑚𝑛

𝜌𝑛
𝜌𝑛 + 𝜌𝑚

= 𝜌𝑚𝜋𝑚𝑛

Proof that the solution satisfies the detailed balance:

Which solution is better? 

Statistical inefficiency to measure the rate of convergence to the 
limiting distribution: low inefficiency=fast convergence

𝑠 =
𝜏𝑟𝑢𝑛𝜎

2(< 𝐴 >𝑟𝑢𝑛)

𝜎2(𝐴)

𝑠 𝑖s anti-correlated with the off-diagonal entries in ො𝜋 matrix ො𝜋1 𝑛𝑚 > ො𝜋2 𝑛𝑚
𝑚 ≠ 𝑛

𝑠 𝜋1 < 𝑠(𝜋2)

𝜌𝑛 ≥ 𝜌𝑚

𝜌𝑛 < 𝜌𝑚

𝛼𝑚𝑛

𝛼𝑚𝑛

𝜌𝑛
𝜌𝑚

𝛼𝑚𝑛

𝜌𝑛
𝜌𝑛 + 𝜌𝑚

𝛼𝑚𝑛

𝜌𝑛
𝜌𝑛 + 𝜌𝑚

>

>
Metropolis algorithm has 
faster convergence rate

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 S𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙
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Let’s see how Monte Carlo can be applied to simulate liquids, in particular Lennard-Jones 
liquid.

Periodic boundary conditions (PBC) are applied 
to remove the surface artifacts

PBC𝐿

𝑈 Γ =
1

2
෍

𝑖≠𝑗

𝑁

𝑈𝐿𝐽(𝑟𝑖𝑗)

𝑟𝑖𝑗

Γ = (𝑟1 , … , 𝑟𝑁)

𝜎21/6

−𝜖

one cell
infinite lattice

if  (x(i).ge. box) x(i)=x(i)-box
if  (x(i).lt.   0.0)  x(i)=x(i)+box

MC in canonical ensemble

Configuration space:

𝜌𝑁𝑉𝑇 Γ ~𝑒−𝛽𝐻(Γ), 𝛽 =
1

𝑘𝑇

Probability distribution:

𝑈𝐿𝐽 𝑟 = 4𝜖(
𝜎

𝑟

12

−
𝜎

𝑟

6

)
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In order to run MC one needs to select the symmetric matrix ො𝛼.

How to design MC moves

For simplicity the matrix 𝛼𝑛𝑚 = 𝛼𝑚𝑛 = 𝛼 is assumed to be a constant

One possible choice for this constant is related to how new configurational 
states 𝑟𝑛 are generated.

Assume new trial states are generated by random displacement of atom 𝑖 by vector: 𝛿 Ԧ𝑟 =
(𝜉1𝛿𝑥, 𝜉2𝛿𝑥, 𝜉3𝛿𝑥) where 𝛿𝑥 is the maximum allowed displacement and 𝜉𝑖 ∈ [0,1] are random numbers

If the initial state is 𝑛, then the final states 𝑚 will make a cube with side 𝛿𝑥. This cube will contain a 

large but finite (on computers) number of points 𝑁𝑘 .

Any one of these points will have an 
1

𝑁𝑘
probability of being occupied upon transition.

Therefore random displacements occur with transition probability 
1

𝑁𝑘
= 𝜋𝑛𝑚 = 𝛼𝑛𝑚

𝛼 =
1

𝑁𝑘
A natural choice:

𝑁𝑘~𝛿𝑥
3 so 𝛼will be set by the 

magnitude of 𝛿𝑥
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The system is in an initial state 𝑛. Potential energy is available.

Simulation scheme

Step 1: pick a random displacement vector. This will happen with probability 𝛼.

Step 2: If the resulting 𝜌𝑚 > 𝜌𝑛, accept the move as this means 𝜋𝑛𝑚 = 𝛼 transition probability.

Step 3: If the resulting 𝜌𝑚 < 𝜌𝑛, accept the move with  
𝜌𝑚

𝜌𝑛
probability. This means

𝜋𝑛𝑚 = 𝛼
𝜌𝑚
𝜌𝑛

transition probability

For 𝜌𝑛~𝑒
−𝛽𝐸𝑛 and  Δ𝐸 = 𝐸𝑚 − 𝐸𝑛, the algorithm can be written as follows:

How to decide whether a given move should be accepted or rejected based on its desired 
probability 𝑃?

The outcome is stochastic so it has to rely on a stochastic/random process. The simplest 
method is to flip a coin or roll a dice.
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Coin example:

If we don’t want/are unable to make a decision we leave it to chance.

If we flip a coin, the positive outcome of the 
decision will have ½ probability

If we roll a dice, the positive outcome of the decision may have probability 1/6 or a number of other 
values

Decision is 

made with 𝑃 =
1

2

Positive 
outcome(s)

𝑃 =
1

6
𝑃 =

2

6
=
1

3𝑜𝑟
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Generalization to continuous 𝑃:

𝑃1(𝜉) uniform distribution

𝜉 ∈ [0,1] a random number

𝜉

anywhere 
here

anywhere 
there

The event that 𝜉 is below 𝑃 will occur with 𝑃 probability

𝑃 1-𝑃

In general, a dice with 𝑁 sides may encode 𝑁 − 1 distinct probabilities:

𝑃 =
1

𝑁 𝑃 =
𝑁 − 1

𝑁
𝑜𝑟

Generate a random number 𝜉 . If it is below 𝑃 - accept 
the move, otherwise – reject it. 
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Complete algorithm

Step 1: Generate new positions for particle 𝑘:

random number from 0 to 1

Step 2: Compute the resulting change in potential energy

Step 3: If ΔE < 0, accept the move. Otherwise, generate 𝜉 ∈ [0,1]

If 𝜉 ≤ 𝑤 = 𝑒−𝛽Δ𝐸

If 𝜉 > 𝑤

accept the move 

reject the move 

small 𝛿𝑥

large acceptance 
probability  𝑃𝑎𝑐𝑐

slow movement in 
the phase space

large 𝛿𝑥

small acceptance 
probability  𝑃𝑎𝑐𝑐

waste of computer 
time

30% < 𝑃𝑎𝑐𝑐 < 50%

2𝐸 =෍

𝑖≠𝑗

𝑈𝐿𝐽 𝑟𝑖𝑗 = ෍

𝑗≠𝑘

𝑈𝐿𝐽 𝑟𝑗𝑘 +෍

𝑘≠𝑗

𝑈𝐿𝐽 𝑟𝑘𝑗 + ෍

𝑖≠𝑗,𝑖≠𝑘,𝑗≠𝑘

𝑈𝐿𝐽 𝑟𝑖𝑗

2 Δ𝐸 = ෍

𝑗≠𝑘

𝑈𝐿𝐽 𝑟𝑗𝑘
𝑚 +෍

𝑘≠𝑗

𝑈𝐿𝐽 𝑟𝑘𝑗
𝑚 −෍

𝑗≠𝑘

𝑈𝐿𝐽 𝑟𝑗𝑘
𝑛 −෍

𝑘≠𝑗

𝑈𝐿𝐽 𝑟𝑘𝑗
𝑛

evaluation involves 
only a sum of 

𝑂(𝑁) not 𝑂(𝑁2)

Δ𝐸 = 𝐸𝑚 − 𝐸𝑛
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Implementation example in Fortran. One particle moves at a time

guard against overflow

don’t generate the random number if 
Δ𝐸 < 0. Saves time

generate the random number

reassign coordinates

update the counter of accepted moves

update the counter of total trials. 

Extensions:

a) multiple-particle 
moves

b) all-particle moves
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The goal is to reproduce the NTP ensemble. Volume now has to be treated as a dynamical 
variable.

PBC will return the 
particles to the main 
simulation box but there 
will be many steric clashes

Phase space:

After relaxation, particles 
will fill up the box 

Alternative approach: introduce scaled coordinates

new variables:

The box will experience uniform 
expansion or contraction

old variables:

Isothermal-isobaric simulations
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How to compute NPT averages?

Simulation is conducted as in NVT ensemble except that now we have two types of moves.

NVT average

Algorithm:

1) Coordinate moves:

2) Volume changes:

Moves accepted 
with the probability:

these are expensive so should 
be attempted rarely

𝑃 = min 1, 𝑒−𝛽∆𝐸 , ∆𝐸 = 𝐸𝑚 − 𝐸𝑛 + 𝑃 𝑉𝑚 − 𝑉𝑛 − 𝑘𝑇𝑙𝑜𝑔(
𝑉𝑚
𝑉𝑛
)

ξ ∈ [0,1]
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Both coordinates and the number of particles are allowed to change

Ensemble averages:

Limiting distribution in MC chain:

There are a number of implementations of GCMC that differ in how particles are added to/removed from 
the system

de Broglie length

Adsorption onto a porous surface

Very large system required Focus on the surface

Grand canonical ensemble
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1) Coordinate moves:

Three types of moves:

2) Particle creation:
insertion at a random 
positon. Difficult in dense 
fluids because of steric 
clashes

activity

3) Particle destruction:
deletion of a random 
particle. Difficult in dense 
fluids because the particle 
may experience strong 
attraction in the media

for fastest convergence choose

Direct computation of free 
energy in GCMC:

averages obtained from 
simulation
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This method is designed to simulate phase equilibria.

GasLiquid

Such ensemble does not 
exist!

Exchange of particles and 
volume is allowed. This 
enables coexistence 
between two phases. The 
advantage is that there is 
no interface. Molecules in 
system 1 and 2 do not 
interact with one another.

Gibbs-ensemble simulations
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Variables:

The partition function:

Distribution function:

scaled coordinates of system 1

scaled coordinates of system 2

MC process that samples from that distribution:

1) Coordinate moves 
applied in both systems 
independently:

𝜌 𝑛1, 𝑉1, 𝑠1, 𝑠2 =
𝑉1
𝑛1(𝑉 − 𝑉1)

𝑁−𝑛1

𝑛1! 𝑁 − 𝑛1 !
𝑒−𝛽(𝑈 𝑠1 +𝑈(𝑠2))

ξ ∈ [0,1] 𝑃 = min{1, 𝑒−𝛽∆𝑈}
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2) Volume change:

𝑉2
𝑚 = 𝑉2

𝑛 − 𝛿𝑉

𝑃 = min{1,
𝑉1
𝑚 𝑛1 𝑉 − 𝑉1

𝑚 𝑁−𝑛1

𝑉1
𝑛 𝑛1 𝑉 − 𝑉1

𝑛 𝑁−𝑛1
𝑒−𝛽(Δ𝑈 𝑠1 +ΔU 𝑠2 ) }

Probability of 𝑛 to 𝑚 transition :

𝑉1
𝑚 = 𝑉1

𝑛 + 𝛿𝑉

3) Particle exchange:

𝑁2
𝑚 = 𝑁2

𝑛 + 1

𝑃 = min{1,
𝑛1(𝑉 − 𝑉1)

𝑁 − 𝑛1 + 1 𝑉1
𝑒−𝛽(Δ𝑈 𝑠1 +ΔU 𝑠2 ) }Probability of 𝑛 to 𝑚 transition :

𝑁1
𝑚 = 𝑁1

𝑛 − 1

𝑃 < 10%

𝑃 < 10%
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Typical results:

MC cycles

After initial relaxation, densities in the two boxes will settle down to their equilibrium values 
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ρ𝑐

ρ𝑙

ρ𝑔

𝑇𝑐

𝑇

Large finite size effect for gas-lattice models. Minimal effects for continuous models. Systems 
with <100 particles are OK for LJ model in both 2D and 3D.
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Electrostatics in biomolecular systems
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In canonical ensemble:

Poisson-Boltzmann (PB) model

Ideal part
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𝜌𝑁𝑉𝑇 Γ ~𝑒−𝛽𝐻(Γ), 𝛽 =
1

𝑘𝑇 𝑄𝑁𝑉𝑇 =
1

ℎ3𝑁𝑁!
න𝑑 Ԧ𝑝𝑑 Ԧ𝑞𝑒−𝛽𝐻(Γ) = 𝑄𝑁𝑉𝑇

𝑖𝑑 x 𝑄𝑁𝑉𝑇
𝑒𝑥

Partition function:

𝑄𝑁𝑉𝑇
𝑖𝑑 =

𝑉𝑁

𝑁! 𝜆3𝑁
, 𝜆 = ℎ2/2𝜋𝑚𝑘𝑇

excess part

𝐹 = −𝑘𝑇𝑙𝑜𝑔𝑄𝑁𝑉𝑇 = 𝐹𝑖𝑑 + 𝐹𝑒𝑥
Free energy splits into two parts as well:

Gibbs free energy: 𝐺 = 𝐹 + 𝑃𝑉 = 𝐹𝑖𝑑 + 𝐹𝑒𝑥 + 𝑃𝑖𝑑 + 𝑃𝑒𝑥 𝑉 = 𝐺𝑖𝑑 + 𝐺𝑒𝑥

Chemical potential: 𝜇 =
𝐺

𝑁
= 𝜇𝑖𝑑 + 𝜇𝑒𝑥 where

𝜇𝑖𝑑 = 𝑘𝑇𝑙𝑜𝑔 𝜆3 + 𝑘𝑇𝑙𝑜𝑔 𝜌 = 𝑘𝑇𝑙𝑜𝑔(
𝜌

𝑛𝑄
)

𝜇𝑒𝑥 = 𝑈𝑒𝑥 − 𝑇𝑆𝑒𝑥 + 𝑃𝑒𝑥𝑉

𝑄𝑁𝑉𝑇
𝑒𝑥 =

𝑍𝑁𝑉𝑇
𝑉𝑁

, 𝑍𝑁𝑉𝑇 = න𝑑 Ԧ𝑞𝑒−𝛽𝑈(𝑞)

excess part due to interactions 
among particles

particle density

𝑛𝑄 = 𝜆−3



Assume the following approximation for the ions 
solvated near a charged wall:
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Consider system of ions confined between two surfaces. All 
properties depend on coordinate x. 

𝜇 = 𝑈𝑒𝑥 + 𝜇𝑖𝑑 = 𝑞𝜑 + 𝑘𝑇𝑙𝑜𝑔(
𝜌

𝑛𝑄
)

Coordinate x

total interaction energy is 
approximated by the 
electrostatic potential. The 
potential needs calibration.

excess parts of entropy and 
pressure are neglected (not too 
bad)

𝜇(𝑥) = 𝑐𝑜𝑛𝑠𝑡

𝑞𝜑 𝑥 + 𝑘𝑇𝑙𝑜𝑔
𝜌 𝑥

𝑛𝑄
= 𝑐𝑜𝑛𝑠𝑡

𝜌(𝑥) = 𝜌0𝑒−𝛽𝑞𝜑(𝑥)
𝜑 𝑥 = 0 = 0

𝜌 𝑥 = 0 = 𝜌0
Boltzmann distribution prescribing how 
density of ions will change depending on the 
potential

calibration conditions

number density of ions

In the state of equilibrium, or more generally stationary state, 
the chemical potential should not depend on x to avoid 
exchange of particles between different parts of the system.

𝜎𝑠

surface charge



Density and the potential are connected by laws of electrostatics:
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PB gives ion density, potential and electric field at any point within 
the system

𝛻𝐷 𝑥 = 4𝜋𝜌𝑐 𝑥
displacement created by 
charge distribution charge distribution

In polarizable media: 𝐷 𝑥 = 𝜖 𝑥 𝐸 𝑥 = −𝜖 𝑥 𝛻𝜑(𝑥)

−𝛻𝐸 𝑥 = ∆𝜑 = −4𝜋𝑞𝜌(𝑥)For vacuum:
Poisson equation for computing potential 
created by charge density

𝑑2∆𝜑

𝑑𝑥2
= −4𝜋𝑞𝜌0𝑒−𝛽𝑞𝜑(𝑥)

Poisson-Boltzmann (PB) equation

𝜓 = 0

𝜑 𝑥 = 0 = 0 𝜎𝑠 = 𝑐𝑜𝑛𝑠𝑡

𝜎𝑠 = 𝑓(𝜑)

constant charge 
boundary 
condition

constant ”potential” 
boundary condition



How well does the PB model work?
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𝜌 𝑥 = 𝜌0𝑒
−𝑞𝛽𝜑(𝑥) = 𝜌0/ cos

2(𝐾𝑥)

Analytical solution:

−
2𝐾

𝛽𝑞
tan

𝐾𝐷

2
= 𝜎𝑠 equation for K

Broken line=PB

PB  underestimates the density at the surface

Solid line = MC

The agreement is remarkably good for 
concentrations in the range up to 16M!

Extension to mixtures

Assume that we have a mixture of ions with varying valency. The condition on the constancy of the chemical 
potential has to be satisfied for each component.

𝜇𝑖 = 𝑞𝑖𝜑 + 𝑘𝑇𝑙𝑜𝑔(
𝜌𝑖
𝑛𝑄
) 𝜌𝑖(𝑥) = 𝜌𝑖

0𝑒−𝛽𝑞𝑖𝜑(𝑥)
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∆𝜑 = −4𝜋෍

𝑖

𝑞𝑖𝜌𝑖(𝑥)

Poisson equation

∆𝜑 = −4𝜋෍

𝑖

𝑞𝑖𝜌𝑖
0𝑒−𝛽𝑞𝑖𝜑(𝑥) PB equation

Linearize the RHS

𝑒−𝛽𝑞𝑖𝜑(𝑥) = 1 − 𝛽𝑞𝑖𝜑 𝑥 +⋯

4𝜋෍

𝑖

𝑞𝑖𝜌𝑖
0𝑒−𝛽𝑞𝑖𝜑(𝑥) = 4𝜋෍

𝑖

𝑞𝑖𝜌𝑖
0 1 − 𝛽𝑞𝑖𝜑 𝑥 +⋯ = 4𝜋෍

𝑖

𝑞𝑖𝜌𝑖
0 − 4𝜋෍

𝑖

𝑞𝑖
2𝜌𝑖

0 𝛽𝜑 𝑥 +⋯

≈ −𝜅2𝜑

Zero for electrically neutral systems

𝜅 = 4𝜋𝛽෍

𝑖

𝑞𝑖
2𝜌𝑖

0
inverse screening length

After putting  everything together:

∆𝜑 − 𝜅2𝜑 = 0 linear PB (LPB) for multicomponent 
systems
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The key approximation:

Limitations of the PB model

𝜇 = 𝑈𝑒𝑥 + 𝜇𝑖𝑑 = 𝑞𝜑 + 𝑘𝑇𝑙𝑜𝑔(
𝜌

𝑛𝑄
)

1) The total energy is approximated by the electrostatic component only. What’s neglected: 
a) other energy contributions, excluded volume, vdW etc. The size of the ions is missing
b) the electrostatic energy is included at the mean-field level. Approximated by the average value. 
Ion-ion correlations are missing

2) Full entropy is approximated by its ideal part. Effect of particle-particle interactions on the excess entropy is 
neglected. In particular: 

a) steric effects are missing

3) Discreetness of surface charge. May contribute additional attraction when discrete surface charges are 
mobile.



How can PB model be used for biomolecules?

Extension of the Poisson equation to multiple 
media with fixed and mobile charges:
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𝛻𝐷 = 4𝜋(𝜌𝑓 + 𝜌𝑚)

mobile ions 
charge density

fixed charges

𝐷 റ𝑟 = 𝜖 റ𝑟 𝐸(റ𝑟)

Electric field in the continuum approximation:

𝛻(𝜖 റ𝑟 𝐸 റ𝑟 ) = −4𝜋(𝜌𝑓 റ𝑟 + 𝜌𝑚 റ𝑟 )

𝛻(𝜖 റ𝑟 𝛻𝜑 റ𝑟 ) = −4𝜋(𝜌𝑓 റ𝑟 + σ𝑖 𝑞𝑖𝜌𝑖
0𝑒−𝛽𝑞𝑖𝜑( റ𝑟) )

𝛻 𝜖 റ𝑟 𝛻𝜑 റ𝑟 − 𝜅2(റ𝑟)𝜑 റ𝑟 = −4𝜋𝜌𝑓 റ𝑟

𝜌𝑓 റ𝑟 =෍

𝑖

𝑧𝑖𝛿(റ𝑟 − റ𝑟𝑖)

sum over fixed-charge points 
that make up the interior of the 
solute molecule

LPB equation



LPB can be solved numerically subject to specific boundary conditions (constant charge):
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Region I

Region II

𝜖𝐼Δ𝜑𝐼 റ𝑟 = −4𝜋𝜌𝑓 റ𝑟

𝜖𝐼𝐼Δ𝜑𝐼𝐼 റ𝑟 − 𝜅2𝜑𝐼𝐼 റ𝑟 = 0

𝜑𝐼 ቚ
Ω
= 𝜑𝐼𝐼 ቚ

Ω

ΩBoundary between two media:

𝜖𝐼
𝜕𝜑𝐼

𝜕𝑛
ቚ
Ω
= 𝜖𝐼𝐼

𝜕𝜑𝐼𝐼

𝜕𝑛
ቚ
Ω

Continuity of

potential

displacement

Computation of the charging free energy

Recall that the potential in solvent (continuum approximation) is :

𝑈𝑀 Γ = 𝑈𝑉 Γ + Δ𝐺 Γ where
Δ𝐺 Γ is the free energy associated with turning the solvent “on”.

Also recall that Δ𝐺 Γ = Δ𝐺𝑐ℎ Γ − 𝑈𝑉(Γ)

Δ𝐺𝑐ℎ Γ = න𝑑𝑞 𝜑 charging free energy. Work needed to create charge in a 
medium

𝑈𝑉 Γ electrostatic energy in vacuum
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Δ𝐺𝑐ℎ Γ =
1

2
෍

𝑖

𝑞𝑖𝜑𝑠𝑜𝑙(𝑖)Since the PBL equation is linear:

potential acting on charge qi obtained 
for particular solute in solvent with 𝜖 = 80

Potential energy in vacuum:

𝑈𝑉 =
1

2
෍

𝑖

𝑞𝑖𝜑𝑣𝑎𝑐(𝑖)

potential acting on charge qi in vacuum 
or solvent with 

𝜖 = 1

Combining the formulas:

Δ𝐺 Γ =
1

2
෍

𝑖

𝑞𝑖(𝜑𝑠𝑜𝑙 𝑖 − 𝜑𝑣𝑎𝑐 𝑖 ) = Δ𝐺𝑃𝐵

this is the term that needs to be added to the 
potential energy in order to include the effect of 
the solvent.

The approach that combines certain force-field with PB equation for solvation energy is 
known as PB/MM model
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2) Error due to continuum approximation for water. Model breaks down on length scales comparable to the 
size of water molecule.

3) Missing non-polar solvation forces

Limitations of the PB/MM model

1) All that apply to PB equation.

Fine structure of the potential is due to 
the finite size of water molecules

All implicit solvent models are missing 
local minima, including GB which is 
parameterized against PB

4) High computational cost



Numerical solutions of PB for real molecular shapes are very costly. Much faster implicit solvation 
models are needed. 

Draw an analogy with the Born solvation energy:
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Generalized Born (GB) model

Δ𝐺𝐵𝑜𝑟𝑛 =
1

2
(
1

𝜖
− 1)

𝑞2

𝑎

Approximate solvation energy for a molecule: Δ𝐺𝐺𝐵 =
1

2
(
1

𝜖
− 1)෍

𝑖,𝑗

𝑞𝑖𝑞𝑗

𝑓𝑖𝑗
Generalized Born (GB) model

𝑓𝑖𝑗 = 𝑟𝑖𝑗
2 + 𝑅𝑖𝑅𝑗𝑒

−𝑟𝑖𝑗
2/4𝑅𝑖𝑅𝑗

Empirical function:
Still’s formula

𝑅𝑖
is the effective Born 
radius for atom i

If there’s only one atom in the system:

𝑓𝑖𝑗 = 𝑅𝑖, Δ𝐺𝐺𝐵 =
1

2

1

𝜖
− 1

𝑞𝑖
2

𝑅𝑖
= Δ𝐺𝐵𝑜𝑟𝑛

Born energy for particle 
with radius Ri

For two charges at a large separation: 𝑟12 ≥ 𝑅1, 𝑟12 ≥ 𝑅2, 𝑓𝑖𝑗 ≈ 𝑟𝑖𝑗

Δ𝐺𝐺𝐵 =
1

2

1

𝜖
− 1

𝑞1
2

𝑅1
+
1

2

1

𝜖
− 1

𝑞2
2

𝑅2
+

1

𝜖
− 1

𝑞1𝑞2
𝑟12
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Full electrostatic interaction then is:

𝑈𝑒𝑙𝑒 𝑟12 =
𝑞1𝑞2
𝑟12

+ Δ𝐺𝐺𝐵 =
1

2

1

𝜖
− 1

𝑞1
2

𝑅1
+
1

2

1

𝜖
− 1

𝑞2
2

𝑅2
+

𝑞1𝑞2
𝜖𝑟12

Self-energy of the two ions Coulomb interaction in  
a continuum

To retain their physical meaning, Born radii are introduced 
via charging free energy:

Δ𝐺𝑐ℎ

𝑅𝑖 =
2∆𝐺𝑐ℎ

𝑞𝑖
2

𝜖

1 − 𝜖

No atoms except number 
i have charge

𝑞𝑖 = 0

𝑞𝑖
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Another way to compute electrostatic work is via scalar product of the displacement 
vector with the vector of electric field:

To compute electrostatic solvation energy one needs to 
subtract the same quantity evaluated at

Coulomb field approximation for the Born radii

Assume that the displacement vector created by charge qi retains its Coulomb form 
even outside of the solute molecule:

Work needed to move charge qi from infinity to its proper location:

𝜀 = 1 Δ𝐺𝑐ℎ

One then arrives at the following formula:
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The Born radius in CF approximation can be evaluated exactly for the spherical 
geometry. The integral can be taken analytically to yield:

terms of orders 
higher than

𝜖 = 1

റ𝑟𝑠

റ𝑟
റ𝑟𝐾

𝑞
𝑞𝐾

charged line that extends 
to infinity

𝜖

The spherical geometry has an exact solution. In particular, the 
reaction field is a sum of the field created by Kelvin image and a 
charged ray:

𝜑𝑅𝐹 റ𝑟 = 𝜑𝐾 റ𝑟 + 𝜑𝑙𝑖𝑛𝑒 റ𝑟

𝑅𝐶𝐹 =
4𝜋

𝑜𝑢𝑡׬ 𝑟
−4𝑑𝑉

= 2𝑎
1

1 − 𝑝2
+

1

2𝑝
ln
1 + 𝑝

1 − 𝑝

−1

, 𝑝 =
𝑟𝑠
𝑎

1/𝜖

terms of order 1 
and 1/𝜖

Kelvin charge image: റ𝑟𝐾 =
𝑞2

𝑟𝑠
𝑞𝐾 = 𝛾

𝑎 𝑞

𝑟𝑠

Reaction filed at the location of the source charge: 𝜑𝑅𝐹 𝑟𝑠 =
𝑞𝐾

𝑟𝐾 − 𝑟𝑠
=
1 − 𝜖

1 + 𝜖

𝑎𝑞

𝑎2 − 𝑟𝑠
2

Charging free energy: ∆𝐺𝑐ℎ = න𝑑𝑞 𝜑𝑅𝐹 =
1

2

1 − 𝜖

1 + 𝜖

𝑎𝑞2

𝑎2 − 𝑟𝑠
2 =

1

2

1

𝜖
− 1

𝑞2

𝑅𝐾

𝛾 =
1 − 𝜖

1 + 𝜖
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GB radius in the Kelvin approximation then is:

𝑅𝐾 =
1 + 𝜖

𝜖
𝑎(1 − 𝑝2) ≈ 𝑎(1 − 𝑝2)

𝑔 𝑝 =
𝑅𝐾
𝑅𝐶𝐹

good 
approximation for 
water with 
eps=80

CF works well for 
atoms near the 
center of the 
sphere.

For atoms near the molecules boundary, the 
CF approximation overestimates the Born 
radius 2 times𝑓𝑖𝑗 = 𝑟𝑖𝑗

2 + 𝑅𝑖𝑅𝑗

Kelvin solution also leads to a better 
expression for the Born energy of multi-
particle systems:

𝑓𝑖𝑗 = 𝑟𝑖𝑗
2 + 𝑅𝑖𝑅𝑗𝑒

−𝑟𝑖𝑗
2/4𝑅𝑖𝑅𝑗

Grycuk’s formula

Still’s formula

Exact radius for arbitrary dielectric constant:
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To evaluate Born radius for non-spherical objects, an empirical formula is proposed:

this leads to 
1

𝑎(1 − 𝑝2)
for a spherical molecule

this is still an approximation. Works exactly 
only for a sphere in high-dielectric constant 
medium. Perform tests for everything else!

Uniformly good performance 
for any location of the source 
charge

Deterioration of quality for 
charges buried inside the 
molecule

Numerical PB

1/R6 GB
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Comparison for varying dielectric constant in the context of a protein

1) CFA is not accurate for any eps 2) R6 is accurate for interior dielectric of 1 
but much worse for dielectric=20

3) Small shift of inverse R can improve the 
agreement with PB a lot. Reason – unknown

1

𝑅𝑖
=

1

𝑅𝑖
+
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Non-polar solvation

Non-polar molecules tend to minimize exposure to solvent. As a result, 
configurations with minimal surface area are assumed. Solvation free 
energy is assumed to be proportional to the surface area exposed to 
solvent:

1) Parametrizations by many groups (Sitkoff, Sheraga etc.)

empirical parameter. May 
depend on the curvature of the 
solvent molecule. Typical value

solvation energy of the molecule 
with all non-polar groups hidden 
from water

2) Only part or the whole molecule can be treated as non-polar. Separate 
parameters can be introduced for polar and non-polar groups.

3) Several definitions of “accessible surface” are in use.

SASA constructed as the surface 
area of a figure swept by the center 
of a probe molecule rolled on the 
surface of the solute molecule

𝑅𝑝 = 1.4Å typically used for water

vdW surface = SASA 
with the probe radius set 
to zero Molecular surface is 

made by the points of 
closest approach of the 
probe to the solute

common models PB/SA or GB/SA∆𝐺 = ∆𝐺𝑃𝐵/𝐺𝐵 + 𝛾∆𝑆
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Weighted histogram analysis method (WHAM)

Energy binned into 
a histogram

Γ1 Γ𝑁

Conformation 1 Conformation N

Δ𝐸 𝐸

ℎ𝑘(𝐸)

Temperature

𝛽𝑘Assume that we have a number  K of different 
simulations, each performed at a separate 
temperature 𝛽𝑘 , 𝑘 = 1, 𝐾

The number of sampled conformations for each 
temperature is N

Each simulation produces an energy histogram

ℎ𝑘(𝐸)

where the bin size is ΔΕ

෍

𝐸

ℎ𝑘 𝐸 = 𝑁

The energy can be obtained at a discrete set of temperatures < 𝐸 >𝛽𝑘

𝛽1 𝛽𝐾

Q: How do we compute energy (and other functions) at 
intermediate temperatures? Is there new information hidden in 
these data?

< 𝐸 >𝛽𝑘
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Sampled histograms can be used to estimate density of states:

ℎ𝑘 𝐸 = 𝑁𝑛𝑘 𝐸 𝑒−𝛽𝑘(𝐸−𝑓𝑘)

𝑓𝑘 is the free energy 

at temperature  𝛽𝑘

density of states. 
Most accurate for 
energy levels close 
to < 𝐸 >𝛽𝑘

𝑛𝑘 𝐸 =
ℎ𝑘 𝐸

𝑁
𝑒𝛽𝑘(𝐸−𝑓𝑘)

Let us combine histograms at all temperatures in order to obtain a more 
accurate estimate of the density of states:

𝑛 𝐸 =෍

𝑖=1

𝐾

𝑤𝑖 𝑛𝑖 𝐸 ෍

𝑖=1

𝐾

𝑤𝑖 = 1

some weight 
coefficients for each 
temperature

normalization condition 
that the coefficients 
needs to satisfy

If the density of states is known, energy distribution at any temperature can 
be computed as follows

𝑃𝛽 𝐸 =
𝑛 𝐸 𝑒−𝛽𝐸

σ𝐸 𝑛 𝐸 𝑒−𝛽𝐸
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How to compute the weight coefficients?

𝛿𝑛𝑘 𝐸 =
𝛿ℎ𝑘 𝐸

𝑁
𝑒𝛽𝑘(𝐸−𝑓𝑘)

Let us estimate the error in the density of states and 
try to minimize it. This will produce an optimal set of 
weights.

If we perform multiple experiments = sets of measurements, 
the resulting energy histograms will fluctuate. This will lead 
to fluctuations in the estimate of the density of states.

Energy binned into 
a histogram

Γ1

Γ𝑁

Experiment
1

Experiment
2

Experiment
M

Δ𝐸 𝐸

ℎ𝑘(𝐸)

Temperature 𝛽𝑘 Fluctuations in 
histograms 
across different 
experiments

fluctuation in the 
density of states

𝑛𝑘 𝐸 =
ℎ𝑘 𝐸

𝑁
𝑒𝛽𝑘(𝐸−𝑓𝑘)

The average of fluctuations across many experiments is zero

< 𝛿𝑛𝑘 𝐸 >𝑒𝑥𝑝= 0

Fluctuation of the weighted density of states:

𝛿𝑛 𝐸 =෍

𝑖=1

𝐾

𝑤𝑖 𝛿𝑛𝑖 𝐸 < 𝛿𝑛 𝐸 >=෍

𝑖=1

𝐾

𝑤𝑖 <𝛿𝑛𝑖 𝐸 > = 0
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The error can be estimated from fluctuation squared:

𝛿𝑛 𝐸
2
= ෍

𝑖=1,𝑗=1

𝐾

𝑤𝑖𝑤𝑗 𝛿𝑛𝑖 𝐸 𝛿𝑛𝑗(𝐸) < 𝛿𝑛 𝐸
2
>= ෍

𝑖=1,𝑗=1

𝐾

𝑤𝑖𝑤𝑗 <𝛿𝑛𝑖 𝐸 𝛿𝑛𝑗 𝐸 > =

෍

𝑖=1

𝐾

𝑤𝑖
2 <(𝛿𝑛𝑖 𝐸 )2) >

since measurements at 
different temperatures are 
uncorrelated

< (𝛿𝑛𝑖 𝐸 )2) > 𝛿𝑖𝑗

(𝛿𝑛𝑘 𝐸 )2 =
(𝛿ℎ𝑘 𝐸 )2

𝑁2 𝑒2𝛽𝑘(𝐸−𝑓𝑘)

Average fluctuations in the density of states at fixed temperatures can be 
estimated as follows:

< (𝛿𝑛𝑘 𝐸 )2 >=
< (𝛿ℎ𝑘 𝐸 )2 >

𝑁2 𝑒2𝛽𝑘(𝐸−𝑓𝑘)

Let us rewrite the squared fluctuation of the histogram in explicit form:

< (𝛿ℎ𝑘 𝐸 )2 > = < ℎ𝑘
2 𝐸 >−< ℎ𝑘 𝐸 >2

By definition:

ℎ𝑘 𝐸 =෍

𝑖=1

𝑁

𝛿𝐸,𝐸𝑖 where

𝐸 ≤ 𝐸𝑖 ≤ 𝐸 + Δ𝐸1 if

0 otherwise

𝛿𝐸,𝐸𝑖 =
1

2
Θ 𝐸𝑖 − 𝐸 + Θ 𝐸 + Δ𝐸 − 𝐸𝑖 =
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< (ℎ𝑘 𝐸 )2 >=< ෍

𝑖=1,𝑗=1

𝑁

𝛿𝐸,𝐸𝑖𝛿𝐸,𝐸𝑗 >= < ෍

𝑖=1

𝑁

𝛿𝐸,𝐸𝑖
2 >+<෍

𝑖≠𝑗

𝑁

𝛿𝐸,𝐸𝑖𝛿𝐸,𝐸𝑗 >

The square then is

< ෍

𝑖=1

𝑁

𝛿𝐸,𝐸𝑖 >

< ℎ𝑘 𝐸 > = 𝑁𝑔

෍

𝑖≠𝑗

𝑁

< 𝛿𝐸,𝐸𝑖 >< 𝛿𝐸,𝐸𝑗 >

under the assumption 
that conformations i
and j are independent

𝑁 𝑁 − 1 𝑔2 𝑔 =< 𝛿𝐸,𝐸𝑖 >

For canonical distribution, quantity g can be evaluated directly:

𝑔 =
𝐸׬
𝐸+∆𝐸

𝛿𝐸,𝐸𝑖 𝑛(𝐸)𝑒
−𝛽𝐸𝑑𝐸

𝑛׬ 𝐸 𝑒−𝛽𝐸
≈ 𝑛 𝐸 𝑒−𝛽(𝐸−𝐹 𝛽 )∆𝐸 so lim

∆𝐸→0
𝑔 = 0

number that shows how likely a 
random conformation at temperature 𝛽
is to have energy ∈[𝐸 ∈ +Δ𝐸]

Average square:

< ℎ𝑘 𝐸 >2 = <෍

𝑖=1

𝑁

𝛿𝐸,𝐸𝑖 ><෍

𝑗=1

𝑁

𝛿𝐸,𝑗 >= 𝑁2𝑔2
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The difference then is

< (𝛿ℎ𝑘 𝐸 )2 >=< ℎ𝑘
2 𝐸 >−< ℎ𝑘 𝐸 >2= 𝑁𝑔 + 𝑁 𝑁 − 1 𝑔2 − 𝑁2𝑔2 = 𝑁𝑔 − 𝑁𝑔2

≈ 𝑁𝑔 =< ℎ𝑘(𝐸) >
𝑔2 ≪ 𝑔if which can always be achieved by making 

an appropriate choice for ∆𝐸

Going back to the estimate of error in the density of 
states:

< (𝛿𝑛𝑘 𝐸 )2 >=
< (𝛿ℎ𝑘 𝐸 )2 >

𝑁2 𝑒2𝛽𝑘(𝐸−𝑓𝑘) =
< ℎ𝑘(𝐸) >

𝑁2 𝑒2𝛽𝑘(𝐸−𝑓𝑘)

The best estimate of the average histogram can be 
obtained from the improved density of states:

<ℎ𝑘 𝐸 >= 𝑁𝑛 𝐸 𝑒−𝛽𝑘(𝐸−𝑓𝑘) = 𝑁𝑒−𝛽𝑘(𝐸−𝑓𝑘)σ𝑖
𝑁𝑤𝑖𝑛𝑖(𝐸)

< (𝛿𝑛𝑘 𝐸 )2 >=
𝑛(𝐸)

𝑁
𝑒𝛽𝑘(𝐸−𝑓𝑘)

< 𝛿𝑛 𝐸
2
>=෍

𝑖=1

𝐾

𝑤𝑖
2 <(𝛿𝑛𝑖 𝐸 )2) > = ෍

𝑖=1

𝐾

𝑤𝑖
2 𝑛 𝐸

𝑁
𝑒𝛽𝑖 𝐸−𝑓𝑖

The error in the improved density of states finally:

< (𝛿ℎ𝑘 𝐸 )2 >= 𝑔𝑘 < ℎ𝑘(𝐸) >

more general expression where the g 
factor may include the effect of energy-
energy correlations
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Let us consider the relative error in the density of states estimate:

𝐹 𝑤1, … , 𝑤𝐾 =
< (𝛿𝑛𝑘 𝐸 )2 >

𝑛(𝐸)
+ 𝜆෍

𝑖=1

𝐾

𝑤𝑖 =෍

𝑖=1

𝐾

𝑤𝑖
2 1

𝑁
𝑒𝛽𝑖 𝐸−𝑓𝑖 + 𝜆෍

𝑖=1

𝐾

𝑤𝑖

undefined coefficient 
designed to enforce the 
normalization constraint on 
weight factors

Minimize the cost function:

𝜕𝐹 𝑤1, … , 𝑤𝐾

𝜕𝑤𝑙
=
2𝑤𝑙

𝑁
𝑒𝛽𝑙 𝐸−𝑓𝑙 + 𝜆 = 0

𝑤𝑙 = −
𝜆𝑁

2
𝑒−𝛽𝑙 𝐸−𝑓𝑙

Use the constraint to determine 𝜆

෍

𝑙=1

𝐾

𝑤𝑙 = −
𝜆𝑁

2
෍

𝑙=1

𝐾

𝑒−𝛽𝑙 𝐸−𝑓𝑙 = 1 −
𝜆𝑁

2
=

1

σ𝑙=1
𝐾 𝑒−𝛽𝑙 𝐸−𝑓𝑙

𝑤𝑙 =
𝑒−𝛽𝑙 𝐸−𝑓𝑙

σ𝑙=1
𝐾 𝑒−𝛽𝑙 𝐸−𝑓𝑙

𝑙 = 1, 𝐾
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The best estimate of the density of states:

normalized 
energy 
histogram

𝑛 𝐸 =෍

𝑖=1

𝐾

𝑤𝑖 𝑛𝑖 𝐸 =
σ𝑖
𝐾 𝑛𝑖 𝐸 𝑒−𝛽𝑖 𝐸−𝑓𝑖

σ𝑖
𝐾 𝑒−𝛽𝑖 𝐸−𝑓𝑖

=
σ𝑖
𝐾 𝑛𝑖 𝐸 𝑒−𝛽𝑖 𝐸−𝑓𝑖

σ𝑖
𝐾 𝑒−𝛽𝑖 𝐸−𝑓𝑖

=
σ𝑖
𝐾 𝑝𝑖(𝐸)

σ𝑖
𝐾 𝑒−𝛽𝑖 𝐸−𝑓𝑖

𝑛𝑖 𝐸 =
ℎ𝑖 𝐸

𝑁
𝑒𝛽𝑖(𝐸−𝑓𝑖)

𝑝𝑖 𝐸 = ℎ𝑖(𝐸)/𝑁

Density of states can be evaluated from energy 
histograms at all temperatures and free energies.

By definition:

𝑒−𝛽𝑖𝑓𝑖 =෍

𝐸

𝑛 𝐸 𝑒−𝛽𝑖𝐸

Then one obtains a set of coupled equations:

𝑛 𝐸 =
σ𝑖
𝐾 𝑝𝑖(𝐸)

σ𝑖
𝐾 𝑒−𝛽𝑖 𝐸−𝑓𝑖

𝑒−𝛽𝑖𝑓𝑖 =෍

𝐸

𝑛 𝐸 𝑒−𝛽𝑖𝐸

WHAM equations can be solved by iterations:

Step 1: Adopt some values for the free energies f1 …fK

Step 2: Compute the density of states using eq. (1)

(1)

(2)

Step 3: Obtain more accurate free energy from eq. (2)

Step 4: Go back to step 1. Continue until convergence.

Outcome:

1) Relative free energy for a set of temperatures. f1 has to be fixed.

2) Density of states so energy dist. for any temperature

Pitfalls:

1) Temperatures have to be narrowly spaced for energy distributions 
to overlap

2) Energy distributions have to be converged. Problems at low 
temperature may arise in some systems

𝑃𝛽 𝐸 =
𝑛 𝐸 𝑒−𝛽𝐸

σ𝐸 𝑛 𝐸 𝑒−𝛽𝐸
Reweighting:

Non-iterative WHAM: JCP 135 (2011) 061103

WHAM with faster convergence: Mol Sim 42 (20016) 1079
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Two-dimensional WHAM

𝑃𝑖 𝐸, 𝑋 =
𝑛𝑖 𝐸, 𝑋 𝑒−𝛽𝑖𝐸

σ𝐸,𝑋 𝑛𝑖 𝐸, 𝑋 𝑒−𝛽𝑖𝐸
= 𝑛𝑖 𝐸, 𝑋 𝑒−𝛽𝑖(𝐸−𝑓𝑖)

Imagine that it’s some structural parameter X for which we seek temperature dependence.

To obtain reweighted function one needs to consider joint distribution of that parameter with E

histograms at certain 
temperature

2D density of states free energy

Following the WHAM procedure, build a 
better estimate of the density of states:

𝑛 𝐸, 𝑋 =෍

𝑖

𝑤𝑖𝑛𝑖(𝐸, 𝑋)

𝑛𝑖 𝐸, 𝑋 = 𝑃𝑖(𝐸, 𝑋)𝑒
𝛽𝑖(𝐸−𝑓𝑖)

෍

𝐸,𝑋

𝑃𝑖 𝐸, 𝑋 = 1

𝑤𝑙 =
𝑒−𝛽𝑙 𝐸−𝑓𝑙

σ𝑘=1
𝐾 𝑒−𝛽𝑘 𝐸−𝑓𝑘

𝑛 𝐸, 𝑋 =
σ𝑖
𝐾 𝑃𝑖(𝐸, 𝑋)

σ𝑖
𝐾 𝑒−𝛽𝑖 𝐸−𝑓𝑖

𝑒−𝛽𝑖𝑓𝑖 =෍

𝐸,𝑋

𝑛 𝐸, 𝑋 𝑒−𝛽𝑖𝐸

2D WHAM equations:
Distribution function at any temperature by reweighting:

𝑃𝑖 𝑋 =෍

𝐸

𝑃𝑖(𝐸, 𝑋)

𝑃𝛽 𝑋 =
σ𝐸 𝑛 𝐸, 𝑋 𝑒−𝛽𝐸

σ𝐸,𝑋 𝑛 𝐸, 𝑋 𝑒−𝛽𝐸

< 𝑋 >𝛽=෍

𝑋

𝑋𝑃𝛽 𝑋 , < 𝑋2 >𝛽=෍

𝑋

𝑋2𝑃𝛽 𝑋

transition point

< 𝑋2 >𝛽−< 𝑋 >𝛽
2

𝛽
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Umbrella sampling

The idea of combining multiple trajectories can be used to obtain distributions along selected degrees of 
freedom with the help of biased simulations.

Recall that for a degree of freedom X:

𝑃 𝑋 =෍

𝐸

𝑃(𝐸, 𝑋) =
σ𝐸 𝑛 𝐸, 𝑋 𝑒−𝛽𝐸

σ𝐸,𝑋 𝑛 𝐸, 𝑋 𝑒−𝛽𝐸
=

𝑃0(𝑋)

σ𝑋𝑃0(𝑋)
= 𝑃0 𝑋 𝑒𝛽𝐹(𝛽)

joint normalized 
distribution

2D density of 
states

෍

𝑋

𝑃0 𝑋 = 𝑒−𝛽𝐹
free energy at 
temperature 
1/beta

𝑃0 𝑋 =෍

𝐸

𝑛 𝐸, 𝑋 𝑒−𝛽𝐸

Not normalized distribution function

Imagine that we apply external potential to bias the value of coordinate X sampled in simulations

𝐸 → 𝐸 +
𝛼

2
𝑋 − 𝑋𝑖

2

biasing “umbrella” potential

Distribution in the umbrella simulation:

𝑃𝑖 𝑋 = ෍

𝐸

𝑛 𝐸, 𝑋 𝑒−𝛽𝐸𝑒−𝛽
𝛼
2 𝑋−𝑋𝑖

2

𝑒𝑓𝑖 = 𝑃0(𝑋)𝑒
−𝛽

𝛼
2 𝑋−𝑋𝑖

2

𝑒𝑓𝑖 ෍

𝑋

𝑃𝑖 𝑋 = 1

some normalization constant specific to Xi
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Unbiased distribution can be recovered as follows:

𝑃0
𝑖 𝑋 = 𝑃𝑖(𝑋)𝑒

𝛽
𝛼
2
𝑋−𝑋𝑖

2

𝑒−𝑓𝑖 ෍

𝑋

𝑃0
𝑖 𝑋 𝑒−𝛽

𝛼
2
𝑋−𝑋𝑖

2

= 𝑒−𝑓𝑖

this is normalized  histogram 
from biased simulation

Let us now conduct multiple biasing simulations to obtain improved distribution:

𝑃0 𝑋 =෍

𝑖

𝑤𝑖𝑃0
𝑖 (𝑋) ෍

𝑖

𝑤𝑖 = 1

Follow the WHAM procedure to estimate the error and then minimize it:

(𝛿𝑃0 𝑋 )2 =෍

𝑖

𝑤𝑖
2(𝛿𝑃0

𝑖 𝑋 )2 =෍

𝑖

𝑤𝑖
2𝑒𝛽

𝛼
2 𝑋−𝑋𝑖

2

𝑒−𝑓𝑖 𝑃0(𝑋)

(𝛿𝑃0
𝑖 𝑋 )2 = (𝛿𝑃𝑖 𝑋 )2𝑒2𝛽

𝛼
2 𝑋−𝑋𝑖

2

𝑒−2𝑓𝑖 = 𝑃0(𝑋)𝑒
𝛽
𝛼
2 𝑋−𝑋𝑖

2

𝑒−𝑓𝑖

The function to be minimalized:

𝐹 =෍

𝑖

𝑤𝑖
2𝑒𝛽

𝛼
2 𝑋−𝑋𝑖

2

𝑒−𝑓𝑖 + 𝜆 ෍

𝑖

𝑤𝑖
𝑤𝑙 =

𝑒−𝛽
𝛼
2 𝑋−𝑋𝑙

2+𝑓𝑙

σ𝑖 𝑒
−𝛽

𝛼
2 𝑋−𝑋𝑖

2+𝑓𝑖



Baumketner, BioSim, Lviv 2019

WHAM equations:

𝑃0 𝑋 =
σ𝑖 𝑃𝑖(𝑋)

σ𝑖 𝑒
−𝛽

𝛼
2
𝑋−𝑋𝑖

2+𝑓𝑖

Reweighting:

𝑒−𝑓𝑖 =෍

𝑋

𝑃0 𝑋 𝑒−𝛽
𝛼
2 𝑋−𝑋𝑖

2

𝑃 𝑋 =
𝑃0 𝑋

σ𝑋𝑃0(𝑋)

Potential of mean force (PMF):

𝐹 𝑋 = −𝑘𝑇 log(𝑃(𝑋))

Let X be some generalized coordinate. By definition:

𝑑Γ = 𝑑𝑋𝑑Γ𝑋

𝑑Γ𝑋
differential over variables 
other than X (orthogonal 
variables)

< 𝐹𝑋 >𝑋 =
׬−

𝜕𝑈
𝜕𝑋

𝑒−𝛽𝑈𝑑Γ𝑋

׬ 𝑒−𝛽𝑈𝑑Γ
𝑋

“force”

𝑃 𝑋 = න𝛿 𝑋 − 𝑋 Γ 𝑒−𝛽𝑈𝑑Γ 𝑍−1 =
׬ 𝑒−𝛽𝑈𝑑Γ𝑋

׬ 𝑒−𝛽𝑈𝑑Γ
=
𝑍(𝑋)

𝑍

The average force that corresponds to the coordinate:

conditional 
average. 
Coordinate X 
is fixed

𝑍 𝑋 = 𝑃 𝑋 𝑍

“potential” that generates it

function that can be used as 
generalized potential along 
degree of freedom X

free energy profile 
along one variable = −

𝜕

𝜕𝑋
𝐹(𝑋)

=
1

𝛽

1

׬ 𝑒−𝛽𝑈𝑑Γ𝑋

𝜕

𝜕𝑋
න 𝑒−𝛽𝑈𝑑Γ𝑋

=
1

𝛽

1

𝑍 𝑋

𝜕

𝜕𝑋
𝑍 𝑋 = −

𝜕

𝜕𝑋
− 𝑘𝑇log 𝑍 𝑋

= −
𝜕

𝜕𝑋
−𝑘𝑇log 𝑃 𝑋 − 𝑘𝑇log𝑍

𝑑Γ1…𝑑Γ𝑁 =

𝑑𝑋
𝜕 Γ1…Γ𝑁

𝜕 𝑋, 𝑥2…𝑥𝑁
𝑑𝑥2…𝑑𝑥𝑁

Jacobian often difficult 
to evaluate



Free energy estimation

By definition:
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Helmholtz free energy

𝐹(𝑁, 𝑉, 𝑇) = −𝑘𝑇log 𝑄𝑁𝑉𝑇 = 𝐹𝑖𝑑(𝑁, 𝑉, 𝑇) + 𝐹𝑒𝑥(𝑁, 𝑉, 𝑇)

𝑄𝑁𝑉𝑇 = 𝑄𝑁𝑉𝑇
𝑖𝑑 x 𝑄𝑁𝑉𝑇

𝑒𝑥 , 𝑄𝑁𝑉𝑇
𝑖𝑑 =

𝑉𝑁

𝑁! 𝜆3𝑁
, 𝜆 = ℎ2/2𝜋𝑚𝑘𝑇

𝑄𝑁𝑉𝑇
𝑒𝑥 =

𝑍𝑁𝑉𝑇
𝑉𝑁

, 𝑍𝑁𝑉𝑇= න𝑑Γ𝑒−𝛽𝑈(Γ)

Partition function

𝐹𝑒𝑥 𝑁, 𝑉, 𝑇 = −𝑘𝑇𝑙𝑜𝑔(𝑄𝑁𝑉𝑇
𝑒𝑥 )

Ideal part Excess part=due to interactions

Configuration integral

3-N dimensional space

Key thermodynamic function that helps to describe stability of condensed matter systems

1) Phase equilibria, transitions

2) Binding strength for macro complexes …

Not formulated as an average over ensemble so difficult to estimate in simulations

𝐹𝑖𝑑 𝑁, 𝑉, 𝑇 =
𝑁

𝛽
log 𝜌 +

𝑁

𝛽
log

1

𝜆3
−
𝑁

𝛽
, 𝜌 =

𝑁

𝑉
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1) Hit and miss method

is an integral in multidimensional space. The most efficient integration method is  sample mean.𝑍𝑁𝑉𝑇

𝑍𝑁𝑉𝑇 = න𝑒−𝛽𝑈(Γ)𝑑Γ =<
𝑒−𝛽𝑈(Γ)

𝜌(Γ)
>𝜌 න𝜌 Γ 𝑑Γ

sampling from the given distribution

The scheme can have multiple realizations:

1) Uniform distribution in the phase space 𝜌 =
1

𝑉𝑁
, න 𝑑Γ𝜌(Γ) = 1

𝑍𝑁𝑉𝑇 = 𝑉𝑁 < 𝑒−𝛽𝑈(Γ) >

Configurations are generated by randomly displacing 
particles anywhere in the available volume V

Due to overlaps between particles, very few 
entries in this sum will be non-zero. The sum will 
never converge
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2) Non-uniform distribution in the phase space

1 =
׬ 𝑒−𝛽𝑈 Γ 𝑒𝛽𝑈(Γ) 𝑑Γ

𝑉𝑁
=
𝑒−𝛽𝑈׬ Γ 𝑒𝛽𝑈(Γ) 𝑑Γ

𝑉𝑁
׬ 𝑒−𝛽𝑈(Γ)𝑑Γ

׬ 𝑒−𝛽𝑈(Γ)𝑑Γ
=
< 𝑒𝛽𝑈(Γ) >𝜌 𝑍𝑁𝑉𝑇

𝑉𝑁

𝜌 = 𝑒−𝛽𝑈(Γ)

𝑍𝑁𝑉𝑇 =
𝑉𝑁

< 𝑒𝛽𝑈(Γ) >

The weight function is non-zero where 
U(Γ) is large and negative. But exp(beta 

U(Γ)) is zero precisely at those points!
No overlap between the 
weight function and the 
integrand

The sum will never converge!
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2) Thermodynamic integration

1) Integration over density

𝑑𝐹 = −𝑃𝑑𝑉 − 𝑆𝑑𝑇 𝑃 = −
𝜕𝐹

𝜕𝑉
𝑇

𝐹 𝑉 − 𝐹 𝑉0 = − න

𝑉0

𝑉

𝑃 𝑉 𝑑𝑉 = 𝑁 න

𝜌0

𝜌

𝑑𝜌
𝑃(𝜌)

𝜌2 𝑑𝑉 = −
𝑁

𝜌2
𝑑𝜌

𝐹 𝜌 = 𝐹 𝜌0 + 𝑁 න

𝜌0

𝜌

𝑑𝜌
𝑃(𝜌)

𝜌2

Certain density for which free 
energy is supposed to be 
known

Free energy has to be known 
exactly for this density

Let’s pick density sufficiently low so that the system can be approximated by ideal gas

𝐹 𝜌0 = 𝐹𝑖𝑑 𝜌0 =
𝑁

𝛽
log 𝜌0 +

𝑁

𝛽
log

1

𝜆3
−
𝑁

𝛽



+ 𝑁 න

𝜌0

𝜌

𝑑𝜌
𝛽𝑃 − 𝜌

𝛽𝜌2
= 𝐹𝑖𝑑 𝜌 + 𝑁 න

𝜌0

𝜌

𝑑𝜌
𝑃𝑒𝑥(𝜌)

𝜌2
= 𝐹𝑖𝑑 𝜌 + 𝑁 න

0

𝜌

𝑑𝜌
𝑃𝑒𝑥(𝜌)

𝜌2
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Then the ideal part at low density can be written in terms of the ideal part at any density:

𝐹𝑖𝑑 𝜌0 =
𝑁

𝛽
log 𝜌 −

𝑁

𝛽
log 𝜌 +

𝑁

𝛽
log 𝜌0 +

𝑁

𝛽
log

1

𝜆3
−
𝑁

𝛽
= 𝐹𝑖𝑑 𝜌 +

𝑁

𝛽
log 𝜌0 −

𝑁

𝛽
log 𝜌

𝐹𝑖𝑑 𝜌0 = 𝐹𝑖𝑑 𝜌 −
𝑁

𝛽
න

𝜌0

𝜌

𝑑𝜌
1

𝜌

𝐹 𝜌 = 𝐹 𝜌0 + 𝑁 න

𝜌0

𝜌

𝑑𝜌
𝑃(𝜌)

𝜌2
= 𝐹𝑖𝑑 𝜌 −

𝑁

𝛽
න

𝜌0

𝜌

𝑑𝜌
1

𝜌
+𝑁 න

𝜌0

𝜌

𝑑𝜌
𝑃(𝜌)

𝜌2
= 𝐹𝑖𝑑 𝜌

the integral converges in the limit of low density
𝑃𝑒𝑥 = 𝑃 −

𝜌

𝛽

𝐹𝑒𝑥 𝜌 = 𝑁 න

0

𝜌

𝑑𝜌
𝑃𝑒𝑥(𝜌)

𝜌2
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2) Integration over temperature

𝑄𝑁𝑉𝑇
𝑒𝑥 =

1

𝑉𝑁
න𝑑Γ𝑒−𝛽𝑈(Γ)

𝜕𝑄𝑁𝑉𝑇
𝑒𝑥

𝜕𝛽
= −

1

𝑉𝑁
න𝑑Γ𝑈 Γ 𝑒−𝛽𝑈 Γ =−< 𝑈 > 𝑄𝑁𝑉𝑇

𝑒𝑥

𝜕log(𝑄𝑁𝑉𝑇
𝑒𝑥 )

𝜕𝛽
=−< 𝑈 > (𝛽) log 𝑄𝑁𝑉𝑇

𝑒𝑥 𝛽 = log 𝑄𝑁𝑉𝑇
𝑒𝑥 𝛽0 − න

𝛽0

𝛽

𝑑𝛽 < 𝑈 >

β𝐹 𝛽 = 𝛽0𝐹 𝛽0 + න

𝛽0

𝛽

𝑑𝛽 < 𝑈 > (𝛽)

−𝛽𝐹(𝛽)

a) Integration from high temperature

lim
𝛽0→0

𝛽0𝐹 𝛽0 = 0 𝐹 𝛽 =
1

𝛽
න

0

𝛽

𝑑𝛽 < 𝑈 > (𝛽)

< 𝑈 > (𝛽)

𝑈𝑖𝑗(r)

𝛽

𝑟For potentials that diverge at zero, the 
average energy will diverge at high 
temperature/low beta

For potentials bound at the origin 
the average energy will also be 
bound

free energy difference 
between two temperatures
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b) Integration from low temperature

β𝑚𝑎𝑥

< 𝑈 > (𝑇)

𝑇

Free energy in harmonic approximation. Involves Hessian 
matrix. Easy to compute for a single structure, for instance 
in crystals. For liquids, an ensemble of local minima has to 
be considered

𝐹 𝛽 =
𝛽𝑚𝑎𝑥

𝛽
𝐹0 𝛽𝑚𝑎𝑥 −

1

𝛽
න

𝛽

𝛽𝑚𝑎𝑥

𝑑𝛽 < 𝑈 > (𝛽)

temperature at which 
harmonic approximation 
becomes accurate

𝑈ℎ = 𝑈0 +
𝑁𝑓

2
𝑘𝑇

number of the 
degrees of 
freedom

𝑈0
ground state 
energy

Thermodynamic integration: integration paths should 
not cross phase boundaries!

Suggested paths to 
determine absolute 
free energy in liquid 
and solid states

𝜌

𝑇

Additional 
options for 
bound 
potentials

𝜌

𝑇
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3) Thermodynamic perturbation

Assume that we want to measure free energy difference between two different systems described 
by Hamiltonian A and B

𝑍 𝐵 = න𝑑Γ𝑒−𝛽𝑈𝐵(Γ) = න𝑑Γ𝑒−𝛽𝑈𝐴 Γ 𝑒−𝛽(𝑈𝐵 Γ −𝑈𝐴 Γ ) =< 𝑒−𝛽∆𝑈 >𝐴 𝑍(𝐴)

𝑈𝐴 𝑈𝐵 ∆𝑈 = 𝑈𝐵 − 𝑈𝐴

−𝛽𝐹 𝐵 = −𝛽𝐹 𝐴 + 𝑙𝑜𝑔 < 𝑒−𝛽∆𝑈 >𝐴

𝐹 𝐵 = 𝐹 𝐴 −
1

𝛽
𝑙𝑜𝑔 < 𝑒−𝛽∆𝑈 >𝐴

Free energy of system B is 
expressed in terms of free 
energy of system A and some 
average obtained in ensemble A

1) Only trajectory for one system A is 
required to compute free energy 
difference

2) Energy difference has to be small in 
order for the average to converge

3) A path between two states A and B 
can be constructed that contains 
intermediate states with mutual overlap
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4) “Artificial” thermodynamic integration

Let’s consider the same problem with two different systems A and B.

𝑍 𝜆 = න𝑑Γ𝑒−𝛽(𝑈𝐴+𝜆Δ𝑈)

𝑑log 𝑍 𝜆 = −𝛽 < ∆𝑈 >𝜆 𝑑𝜆

1) Integral has to be evaluated for a number of intermediate 
points. Each point has to be computed in a separate simulation

The most reliable and widely used method

Introduce a variable that transforms one system into another

𝑈𝐴 𝑈𝐵

𝑈 𝜆 = 𝑈𝐴 + 𝜆 𝑈𝐵 − 𝑈𝐴 = 𝑈𝐴 + 𝜆Δ𝑈

𝑈 𝜆 = 0 = 𝑈𝐴, 𝑈 𝜆 = 1 = 𝑈𝐵
Partition function that depends on 𝜆

𝜕𝑍 𝜆

𝜕𝜆
= න𝑑Γ −𝛽∆𝑈𝑒−𝛽(𝑈𝐴+𝜆Δ𝑈) = −𝛽 < ∆𝑈 >𝜆 𝑍(𝜆)

𝑙𝑜𝑔 𝑍 𝜆 = log(𝑍(0)) − 𝛽න

0

𝜆

< ∆𝑈 >𝜆 𝑑𝜆

𝐹 𝐵 = 𝐹 𝐴 +න

0

1

< ∆𝑈 >𝜆 𝑑𝜆

2) May have issues with integrand not being smooth enough

3) Applied to a large variety of tasks, for instance mutations
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Perturbation and artificial integration are equivalent when the difference between the systems is small.

Free energy for a small 𝜆∗

In perturbation theory:

𝐹 𝜆∗ = 𝐹 𝐴 +න

0

𝜆∗

< ∆𝑈 >𝜆 𝑑𝜆 = 𝐹 𝐴 +< ∆𝑈 >𝐴 𝜆
∗ if 𝜆∗~0

𝐹 𝐵′ = 𝐹 𝐴 −
1

𝛽
𝑙𝑜𝑔 < 𝑒−𝛽∆𝑈

′
>𝐴= 𝐹 𝐴 −

1

𝛽
𝑙𝑜𝑔 < 𝑒−𝛽𝜆

∗∆𝑈 >𝐴≈ 𝐹 𝐴 + 𝜆∗ < ∆𝑈 >𝐴

𝑈𝐵′ = 𝑈𝐴 + 𝜆∗(𝑈𝐵 − 𝑈𝐴) ∆𝑈′ = 𝑈𝐵′ − 𝑈𝐴 = 𝜆∗ 𝑈𝐵 − 𝑈𝐴 = 𝜆∗∆𝑈

log 1 − 𝛽𝜆∗ < ∆𝑈 >𝐴 +⋯ = 𝛽𝜆∗ < ∆𝑈 >𝐴



5) Method of Einstein crystal

Can be used to compute absolute free energy of crystals

The system is 
defined by a set of 
positions on a lattice

Introduce an artificial Hamiltonian that will drive the system 
into a state with known free energy

𝑈 𝜆 = 𝜆𝑈 + (1 − 𝜆)𝑈𝐻

𝑈 𝜆 = 0 = 𝑈𝐻

actual system𝑈 𝜆 = 1 = 𝑈

system where particles are 
held at their positions by 
harmonic potentials

𝑈𝐻 Γ =
1

2
𝛼 ෍

𝑖

𝑁

(𝑟𝑖 − 𝑟𝑖
0)

𝐹 𝜆 = 𝐹 0 + න

0

𝜆

< 𝑈 − 𝑈𝐻 >𝜆 𝑑𝜆

free energy of harmonic 
oscillator

the integrand is well behaved if 
particles occupy the same position at 
the start and the end of the integration 
(in both Hamiltonians)
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6) Widom’s particle insertion method

According to the definition:
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NTPNG =),( ),(),1( PTNGPTNG −+=

))(log(),( NPTQkTPTNG −= )
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log(

PTNQ

PTNQ
kT
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−=

Recall the definition of the partition function in NPT ensemble:

),,(
!

1
),(

0

3
PTNZ

VN
PTNQ

N
= 

−= )(),( NVTZdVePTNZ PV

canonical 
configuration 

integral

Volume distribution function:


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NVTZdVe

NVTZe
VP

PV

PV




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+
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PTNZ

VN
PTNQ 
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Evaluate the N+1 term first:

=
+

 
−

+

−−

+

)...(

121

0

)1(3

21 ...
)!1(

1
NqqU

N

UPV

N
edqdqedqdVe

VN





interaction of the first 
particle with the 

remaining N particles


− )...(

21

1... NqqU

N
edqdqdq



=
+

 
−−

+
)(

)!1(

1
1

1

0

)1(3
NVTZedqdVe

VN

UPV

N





average over 
configurations of N 
particles starting from 

2.

 
+

−−

+
)(

)!1(

1
1

0

)1(3
NVTZeVdVe

VN

UPV

N





this quantity is the same for 
all particles and independent 
of their position. So the 

integral over  dq1 brings V

)()1(
1

NUNUU −+=

Free energy can be computed from the chemical potential: PVNPVGNVTF −=−= )(

accessible in simulation through virial
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Similar expression for the N-particle term:

average over PT 
ensemble with N 

particles


−= )(

!

1
),(

0

3
NVTZdVe

VN
PTNQ PV

N





=
+

−=


+
−=

−

−

−−

+




)

)1(

1
log()

)(

)(

)!1(

!
log( 1

1

3)1(3

3

U

PV

UPV

N

N

Ve
N

kT
NVTZdVe

NVTZeVdVe

N

N
kT












Combining them one obtains:

1
U is evaluated by adding 

a particle to the 
system at random 

position

)log()
)1(

log(
1

3 V

Ve
kT

N

V
kT

U


−
+

−
−



)
1

log(
3

 kTid −=

)log(
1

V

Ve
kT

U

ex 
−=

−



Chemical potential can be evaluated from simulations in canonical ensemble:

VNPNPTVNFTVNFPTNGPTNG exexexexexexex ))()1((),(),1(),(),1( −++−+=−+=

pressure evaluated in 
the ensemble with N 

particles

))(log()( NVTQkTNVTF ex −= )
),(

),1(
log(),(),1(

VTNQ

VTNQ
kTVTNFVTNF exex +

−=−+

Configuration integral explicitly:

)()(
1

...
1

),1(
1

),1( 11121 )...(

12111
NVTQeNVTZe

V
edqdqedq

V
VTNZ

V
VTNQ

UU

N

qqU

N

U

NN

N ===+=+
−−−

+

−

++ 
+ 

)log( 1 −
− U

ekT


average in 
canonical 
ensemble 
with N 

particles
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V
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Pressure contribution:

...
)( 32 ++== 




 ba

d

dP
K

ex

exbulk modulus

V

1' =− 

from virial expansion

Two terms together:


 

ex

Uex K
ekT +−=

−
)log( 1

...2 ++  ba

this summand vanishes at low densities 
but  doesn’t disappear when N tends to 

infinityAt low densities:

ex

VT

exexex

exexUex

N

NVTF

NN

VTNFVTNF
VTNFVTNFekT  

=





−+

−+
=−+=−

−
|

)(

1

),(),1(
),(),1()log( 1

the original Widom’s formula. Due to large 
fluctuations it applies only at low densities. 
So it’s safe to use it there. At high 
densities, large variations in U1 resulting 

from particle overlaps hinder convergence. 



box 2
𝑉1, 𝑛1
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7) Chemical potential from the Gibbs ensemble simulations

Two boxes in GEMC simulations are maintained at constant temperature and pressure. The Widom
formula for the NPT ensemble can be used to estimate chemical potential during the transfer move.

box 1𝑉2, 𝑛2

The volume and the number of particles change so the average includes both of them:

when a particle is added to box1 a 
presumed change of the box’s energy 
is computed

𝜇 = −𝑘𝑇log(
1

𝑁 + 1 𝜆3
< 𝑉𝑒−𝛽𝑈1 >)

Gibbs ensemble

𝜇 = −𝑘𝑇log(
1

𝜆3
<
𝑉1𝑒

−𝛽𝑈1

𝑛1 + 1
>)

NPT

1) The identity of box 1 can’t change during chemical potential evaluation. If it’s vapor it has to remain vapor 
to the end of the simulation. Similarly for liquid. This is easy to achieve unless the system is near critical 
point.

2) If box 1 contains all particles of the system (the other box is empty) one should still attempt to add a 
particle to it to evaluate 𝑈1 . This step is not executed in normal GEMC.

𝑈1 = 𝑈 𝑛1 + 1 − 𝑈(𝑛1)
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Imagine that we have a number of trajectories simulated at a set of temperatures. WHAM can be used 
to combine the energy histograms and obtain a) density of states and b) relative free energies. The 
relevant equations are:

8) Multiple Bennett acceptance ratio (MBAR) method

𝑛 𝐸 =
σ𝑖
𝐾 𝑝𝑖(𝐸)

σ𝑖
𝐾 𝑒−𝛽𝑖 𝐸−𝑓𝑖

𝑒−𝛽𝑖𝑓𝑖 =෍

𝐸

𝑛 𝐸 𝑒−𝛽𝑖𝐸

energy histograms

Histograms are built assuming certain size of the bins ∆𝐸. The bin size has to be a) small so that the 

density of states is constant within [𝐸, 𝐸 + ∆𝐸] and b) large so that reasonable statistics of n(E) is 

obtained. The finite size of ∆𝐸 introduces errors. If only the free energies are of interest, the error can be 
minimized by taking the limit lim∆𝐸 → 0. The WHAM equations then can  be reduced to a simpler form.

Let us introduce an indicator function which is unity if energy of a given configuration k is within ∆𝐸 of E 
and zero otherwise:

𝐸 ≤ 𝐸𝑘 ≤ 𝐸 + Δ𝐸1 if

0 otherwise

𝛿𝐸,𝐸𝑘 =
1

2
Θ 𝐸𝑘 − 𝐸 + Θ 𝐸 + Δ𝐸 − 𝐸𝑘 =
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The energy histogram for temperature i is
𝑝𝑖 𝐸 =෍

𝑘

𝛿𝐸,𝐸𝑘

summation runs over all sampled conformations

The density of states then can be re-written:

𝑛 𝐸 =
σ𝑖
𝐾 𝑝𝑖(𝐸)

σ𝑙
𝐾 𝑒−𝛽𝑙 𝐸−𝑓𝑙

=
σ𝑖
𝐾σ𝑗 𝛿𝐸,𝐸𝑗

σ𝑙
𝐾 𝑒−𝛽𝑙 𝐸−𝑓𝑙

Let us substitute this expression into the second WHAM equation:

𝑒−𝛽𝑠𝑓𝑠 =෍

𝐸

σ𝑖
𝐾σ𝑗 𝛿𝐸,𝐸𝑗

σ𝑙
𝐾 𝑒−𝛽𝑙 𝐸−𝑓𝑙

𝑒−𝛽𝑠𝐸 = ෍

𝑖

෍

𝐸

σ𝑗 𝛿𝐸,𝐸𝑗 𝑒
−𝛽𝑠𝐸

σ𝑙
𝐾 𝑒−𝛽𝑙 𝐸−𝑓𝑙

=෍

𝑖

෍

𝑗

𝑒−𝛽𝑠𝐸𝑗

σ𝑙
𝐾 𝑒−𝛽𝑙 𝐸𝑗−𝑓𝑙

for sufficiently small ∆𝐸 the indicator 
function will kill the summation over E

summation over 
all trajectories

summation over all 
conformations in trajectory 
i.

𝛽𝑠𝑓𝑠 = −log{෍

𝑖

෍

𝑗

𝑒−𝛽𝑠𝐸𝑗

σ𝑙
𝐾 𝑒−𝛽𝑙 𝐸𝑗−𝑓𝑙

}

MBAR equations

1) Non-linear set of equations for 𝑓𝑖

2) Can be solved by iterations

3) No binning is required

4) Solution is not unique. Only relative free energies are obtained

𝛽𝑠𝑓𝑠 + 𝐴

General solution



9) Grand canonical ensemble (covered)
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Other methods:

10) Methods for approximate evaluation of the free 
energy: chemical Monte Carlo, lamba dynamics, 
linear response theory, …. 



MC simulations in generalized (non-
Boltzmann) ensembles
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Outline

⚫ Introduction

⚫Generalized ensembles:

-multicanonical ensemble

-Tsallis statistics 

-Wang-Landau method

-1/k ensemble

-J-walking algorithm

-expanded-ensemble method

⚫Replica-exchange (REX) approach

⚫Applications:

-replica-exchange simulations of peptide aggregation

-folding of a short b-peptide in explicit water

Baumketner, BioSim, Lviv 2019



Introduction

⚫Why do we need generalized ensembles ?

(I) accurate representation of the system and solvent

(II) adequate sampling of the conformational space

⚫Two ingredients of a successful simulation:

Simulation times must be at least 10 times longer than the

relevant relaxation time !
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Time scales
Side-chain rotations

Loop closure

Helix formation Folding of b--hairpins

Protein folding

Protein aggregation
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Brute force approach

Y. Duan & P. Kollman, Science 282,(1998),740, “Pathways to a protein

folding intermediate observed in a 1-microsecond simulation in

aqueous solution”

RMSD~10A RMSD~4A RMSD<1A

⚫ Villin headpiece subdomain,256 CPUs of Cray T3E.

U I N
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Rugged potential energy landscapes

⚫ Why are the relaxation times so long ?

-each minimum acts as a kinetic trap. The relaxation time is determined by

the escape time from the minima

-number of local potential energy minima grows exponentially with N

=exp(G/KbT)

G

~ 1ps

  kcal/mol:~1.2 ps
3  kcal/mol:~1.5 ns
10kcal/mol:~1 ms and longer
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Generalized ensembles

Canonical 

(Bolztmann) 

distribution is 

narrow!

Broad distributions 

facilitate escapes 

from minima !
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Multicanonical ensemble

⚫ sampling on a “deformed” potential energy surface           :

)(
)(~)(

EW
eEnEP *

b-
)1(

⚫ density of states is estimated from a simulation. It depends (as a functional) 

on Wm(E) and simulation parameters:                                 . Simplest solution 

to equation (2) is given by successive iterations:

];)[( paramWEn m

⚫ equation (1) can be rewritten as a non-linear equation in Wm(E) (valid up to 

a constant which drops during normalization):

)(ln
1

)](ln)([ln
1

)( EnEPEnEW
bb

mm =-= )2(

)(ln
1

)(
1

EnEW nn

b
m

=
+

)3(

⚫ flat energy distribution for multicanonical ensemble:

)(EW

=)(EP * ~)( constEPm

?)( =EWm
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Multicanonical ensemble

⚫ an example:                         ,    zero energy distribution                is 

canonical and equation (4) is the standard multicanonical recursion: 
EEW =)(

0

m

)5(

)(
0

EPm

)]()(ln[
1

)(
1

EPEPEEW
nn

mbm
b

+=
+

⚫ canonical distribution can be recovered from            through a reweighting 

procedure: 

)6(
)(

~)(
EW

eEP
m

b

b -

)(EPm

E( )

)(EPm

⚫ three steps of a multicanonical simulation:

(i) generating            in successive iterations

(ii) equilibrium sampling

(iii) recovering canonical expectations for various observables

)(EWm

⚫ final result: )]()(ln[
1

)()(
001

EPEPEWEW
nn

mmmm
b

+=
+

)4(
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Monte Carlo studies of spin glasses

⚫ B. A. Berg & T. Neuhaus, PRL 68,(1992),9, “Multicanonical

ensemble: A new approach to simulate first-order phase transitions”

⚫ B. A. Berg & T. Celik, PRL 69,(1992),2292, “New approach to spin-

glass simulations” - multicanonical recursions

⚫ 2D 10-state Potts model

⚫ No exponential increase

in the tunneling time

between two free energy

minima

⚫ Speedup up to 2 orders

of magnitude compared to

standard simulations
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Molecular dynamics simulations

iii

i

ii
i

pfp

m

p

dt

dq
q

m -=

==



 i

ii

i f
dE

EdW

q

E

dE

EdW

q

EW
f

)()()( mmmm -=



-=




-=


 

=
ii

ii

mp

qf

2/2 2

m



⚫ U. H. E. Hansmann, Y. Okamoto and F. Eisenmenger, Chem. Phys.

Lett 259,(1996),321, “Molecular dynamics, Langevin and hybrid Monte

Carlo simulations in a multicanonical ensemble”

⚫ N. Nakajima, H. Nakamura and A. Kidera, J. Phys. Chem. B 101,

(1997), 817, “Multicanonical ensemble generated by molecular

dynamics simulations for enhanced conformational sampling”

⚫ Equations of motion:

⚫ The only modification is in how forces are calculated !

“multicanonical”

force

factor to keep 

kinetic energy 

constant
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Simulations of met-enkephalin

⚫ The amino acid sequence of

metenkephalin is TYR-GLY-

GLY-PHE-MET. Enkephalins

belong to the family of

endorphins that are expressed in

reproductive organs. Their

precise function is not well

understood.
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⚫ Disadvantages:

(i) the energy transformation function

is non-analytical. Several

preliminary simulations are needed to

generate it

(ii) these simulations can not be run 

in parallel

(iii) convergence is sensitive to the 

details of numerical implementation. 

Can be quite poor if            is not 

accurately determined

Summary

⚫ Advantages:

(i) multicanonical simulations do not get trapped in local minima

(ii) various thermodynamic quantities are obtained as a function of

temperature from a single run. No need to run multiple simulations at different

temperatures

)(EWm

)(
0

EPm
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Tsallis energy transformation

⚫ U. H. E. Hansmann & Y. Okamoto, PRE 56, (1997), 2228,

“Generalized-ensemble Monte Carlo method for systems with rough

energy landscape ”

⚫ analytical form for the multicanonical weight factor. Non-exponential 

falloff at large E:

)(

0

1

0
0)](1[)(

EE

x
x

T eEExEw
--

→

-

⎯⎯ →⎯-+= bb

⚫ energy transformation: )](1ln[
1

)( 0EEx
x

EWT
-+= b

b

⚫ at low temperature the density of states can be calculated in harmonic 

approximation:

2
0
)(~)(

FN

EEEn -

Fc
Nxx /2=<

⚫ optimal value for x: 
c

xx 5.0
0

=

⚫ if low-energy states are to be populated:
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Applications

⚫ progressive broadening of the 

potential energy distribution of a met-

enkephalin model as x is reduced

⚫ same     does not work for all 

systems !

x
0

⚫ simulations of HT protein model   

[AB & Y. Hiwatari,JPSJ, 71, (2002), 

1001]. MMD iterations

Missing states !
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Wang-Landau method

⚫ F. Wang & D. P. Landau, PRL 86, (2001), 2050, “Efficient, multiple-

range random walk algorithm to calculate the density of states”

}1),(/)({min ji EnEn⚫ Acceptance probability of a Monte Carlo move :ji →

ii ff =+1

⚫ Detailed balance is satisfied at f=1

⚫ Algorithm:
0) n(E)=1 for all E, f~3

1) every time an energy level E is visited, n(E)=f n(E)

2) simulation is continued until energy histogram H(E)

is “flat”. H(E) for all E is not less than 80% of <H(E)>

3) change the factor

4) if set H(E)=0 and return to step 1)001.1(~1 ci ff +

⚫ Applicable to large systems. The

desired energy interval can be

broken into smaller pieces which

are simulated in parallel

⚫ Caveat: Make energy intervals large

enough to avoid trapping !

⚫ Application to proteins: [A. Cavalli et al.,Biophys J. 88, (2005),3158]

2D Ising

model
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1/k ensemble

⚫ B. Hesselbo & R. B. Stinchcombe, PRL 74, (1995), 2151, “Monte

Carlo simulation and global optimization without parameters”

}1,/{min ij ww⚫ Acceptance probability of a Monte Carlo move :ji →

Metropolis (canonical distribution) iE

i ew
b-

=

Multicanonical, Wang-Landau )(/1 , iiii Enkkw ==

1/k ensemble )(/1 , EndEkkw

iEE

iii 
<

==

⚫ Definitions of entropy:

))(log()( EnkES = ))(log()(* EnEdkES
EE

= 
<

are equivalent in the therm. limit:

→+= NNESES ),)(log()()(*

Differ for finite N. Energy distribution is

not flat.
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J-walking algorithm

⚫ D. D. Frantz, D. L. Freeman and J. D. Doll, JCP 93, (1990), 2769,

“Reducing quasi-ergodic behavior in Monte Carlo simulations by J-

walking: Applications to atomic clusters”

⚫ It’s easier to overcome potential

energy barriers at high T (low b)!

Local moves
get trapped!

F(x)

x

Double-well potential

high-b

low-b

x’=x+[-]


 


“Global” moves would
help. But how to pick
them?

Low-b distribution provides an “intrinsic”
size of a global move !




⚫ two types of Monte Carlo moves:

local to sample free energy minima

and global to transition among

minima

too high T = low acceptance rate

too low T = ergodicity problems

⚫ J-walks (global moves) are

generated at high T
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Expanded-ensemble concept

⚫ E. Marinari & G. Parisi, Eur. Phys. Lett. 19, (1992), 451, “Simulated

tempering: a new Monte Carlo scheme”

⚫ A. P. Lyubartsev et al., JCP 96, (1992), 1776, “New approach to Monte

Carlo calculation of the free energy: Method of expanded ensembles”

⚫ temperature b is treated as a dynamical variable. Canonical ensembles for

each b are treated as sub-ensembles of a larger, expanded ensemble.

Distribution function in this larger ensemble is defined through a supplementary

function a(b):

,
))()(exp(

),(
*

*

Z

H
P

-
=

bbba
b ,)())(exp(* bbba

b

ZZ = ))(exp(!/1)( -=  HdNZ bb

⚫ probability to occupy states with temperature b: ** /)())(exp()( ZZP bbbab =

⚫ free energy difference for two temperatures:

)}(/)({log)()()()( 2

*

1

*

22111122 bbbabbabbbbb PPFF --=-
main result

given by the model

available from simulations
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MC in expanded ensembles
⚫ MC algorithm:

(I) Standard Metropolis moves for fixed b

(II) Temperature swaps: with probability:

(III) Total time spent at each temperature is accumulated in histograms and

used for estimating

))(log(/1)()( bbbba ZF ==

}1),exp({min Ep -= b

21 bb →

}1),()()(exp({min 112221 babbabbb -+-= Ep

)(* bP

⚫ Random walk in temperature is

realized for:

⚫ a(b) are determined in successive

iterations

⚫ For each b canonical distributions

are recovered!

Random temperature walk!

⚫ The algorithm is also known as

simulated tempering
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Replica-exchange algorithm

⚫ R. H. Swendsen & J.-S. Wang, PRL 57, (1986), 2607, “Replica

Monte Carlo simulation of spin-glasses”

⚫ M. C. Tesi et al., J. Stat. Phys. 82, (1996), 155, “Monte Carlo study

of the interacting self-avoiding walk model in three dimensions”

⚫ K. Hukushima & K. Nemoto, JPSJ, 65, (1996), 1604, “Exchange

Monte Carlo method and application to spin glass simulations”

⚫ U. H. E. Hansmann, Chem. Phys. Lett., 281, (1997), 140, “Parallel

tempering algorithm for conformational studies of biological

molecules”

⚫ Y. Sugita & Y. Okamoto, Chem. Phys. Lett., 314, (1999), 141,

“Replica-exchange molecular dynamics method for protein folding”

Replica-exchange (REX) = parallel tempering = multiple Markov chain method
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Replica-exchange algorithm

⚫ the method is based on the expanded-ensemble idea

⚫ N independent replicas are considered

(parallel tempering)

x
i

x
j

b
n

b
m),(),( mjni 

))(( ijnm EE --= bb0, <e

0,1 <
{=p

⚫ double-jumps are attempted

⚫ uniform distribution

over sampled tempe-

ratures (one replica

per temperature con-

dition)

⚫ canonical distribu-

tion for each consi-

dered temperature b

T
min

T
max

Rep#1

Rep#N


0

Exchange attempted

Exchange succeeded

T
i

T
i+1

))()(exp(~),(* - HP bbbab

a(b) drop in double jumps
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Practical points

⚫ Four parameters need to be set: ,maxT ,minT ,N
0

maxT the higher the better(~500-700K). Typical relaxation time at this temperature

should be ~1-100ps

minT the temperature of your interest (300K?)

large enough to ensure 10-

50% acceptance probability

for swaps between replicas

N

⚫ What to look out for:

(i) replica-exchange acceptance ratio is more than 10%

(ii) each replica visits Tmin and Tmax at least several times

(iii) all relevant order parameters undergo sufficient relaxation

F

F

F

v

F N
N

N

C

N

E

E
N ~~~~





P(E)

P(E), T
min

P(E), T
max

E

E

E

0 the longer the better. Typically 100-1000

simulation time steps

𝑁 =1+0.594 𝐶 ln𝑇𝑚𝑎𝑥/𝑇𝑚𝑖𝑛

Nadler[PCL B 112 (2008) 

10386]
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⚫ There is no physical kinetics in the REX simulations. A number of 

approaches to extract kinetic information:

Kinetic data from REX simulations

Andrec [PNAS 102 (2005) 6801]

van der Spoel [PRL 96 (2006) 238102]

Yang[JMB 372 (2007) 756]

Buchete[JPC B 112 (2008) 6057 

Muff [JPC B 113 (2009) 3218]

Chodera[JCP 134 (2011) 244107]

⚫ Most approaches rely on the following ingredients: 

a) discretization of the available configuration space

b) obtaining rates of transition between the identified 

states
Most often in straight MD simulations. 

Not reliable

Very difficult to get a representative 

ensemble

c) solving master equation to generate reaction time
Relies on assumption on how 

transition rates depend on temperature

Example: ETNA of Muff and Caflisch

Folding time for a b-sheet peptide predicted for varying temperature over a range that spans an order of 

magnitude
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Replica-exchange flavors

⚫ REX coupled with Tsallis

energy deformation function:

Hansamann, Chem. Phys. Lett, 281(1997) 140

Jang et al., PRL, 91 (2003) 058305

⚫ Muticanonical REX and

REX multicanonical:
Sugita & Okamoto, Chem. Phys. Lett, 329

(2000) 261

⚫ REX in constant pressure

(CPT) ensemble:
Okabe et al. Chem. Phys. Lett, 335 (2001) 435

⚫ Mutidimensional REX: Sugita, Kitao & Okamoto, JCP, 114 (2000)

6042

⚫ Hamiltonian REX: Fukunishi, Watanabe & Takada, JCP, 116

(2002) 905

⚫ Ab initio Monte Carlo REX: Ishikawa et al.,Chem. Phys. Lett., 333

(2001) 199
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Replica-exchange flavors

1) Review paper by K. Tai, Biophys. Chem., 107 (2004) 213

2) Special issue of J. Mol. Graph. Mod., 22, (2004) 317

⚫ REX coupled with RISM: Mitsutake et al., J. Phys. Chem. B, 108

(2004) 19002

⚫ Local REX: Cheng et al., J. Phys. Chem. B, 109

(2005) 8220

⚫ Further reading:

⚫ Non-equilibrium switches 

REX:
Ballard and Jarzynski,PNAS, 106

(2009) 12224
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Multiple-histogram reweighting technique

⚫ A. M. Ferrenberg & R. H. Swendsen, PRL 63, (1989), 1195, “Optimized Monte Carlo data

analysis”

Cv
“guide to the eye”

T

T
f

P(E)

T
min

E

P(E)=H(E)/Nsam
T

max
⚫ i=1,m temperatures, Ni samples, Hi(E) energy histograms

))(exp()(/)()( iiiii fEEnNEHEP --== b

⚫ by definition, free energy:  -=-
kE

kikii EEnf )exp()())exp( bb

))(exp()()( iiii fEEPEn -= b

⚫ inaccurate estimate of the density of states from

simulation at temperature i:

⚫ improved density of states:



=

i

i

i

ii

g

Eng

En

)(

)(

)(/)( 2 EnEn⚫ is minimized with respect to weighting

coeff.

ig





--
=

i

ii

i

i

fE

EP

En
))(exp(

)(

)(
b

⚫ set of non-linear equations in :if

⚫ Chodera et al, JCTC 3, (2007), 26, “WHAM for REX simulations”
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⚫ Parallelism

⚫ No empirical parameters or fitting involved

⚫ Access to low free energy minima through accelerated relaxation

⚫ Availability of all thermodynamical properties as a function of

temperature through histogram reweighting techniques

⚫ Why is replica exchange the method of choice in biomolecular simulations?

Summary
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