Why biophysics and biochemistry

Systems under study

Principles models methods

Baumketner, BioSim, Lviv 2019

A bit of biology

Ознаки "життя":

отримання і перетворення енергії з середовища - метаболізм

самоорганізація через використання енергії - синтез, утворення макромолекулярних комплексів

здатність запам`ятовувати свою будову - генетичний код

здатність давати
потомство - розмноження

Baumketner, BioSim, Lviv 2019

Diversity of life forms

- Classification based on similarities and differences in ribosomal RNA seq.: Prokaryotes= unicellular organisms that lack a membranebound nucleus, mitochon dria, or any other Bacteria membranebound organelle

Eukaryotes= cells with a nucleus that stores genetic information. Eukarya - animals, plants, fungi (e.g., mushrooms, mold)

- $<3 \mu \mathrm{~m}$

- diverse habitats

Some aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes Atlantic ocean floor

Permafrost in Antarctica

- definition: a cell that contains its DNA genome within a membrane-bound nucleus

Baumketner, BioSim, Lviv 2019

Structural hierarchy in eukaryotes

Baumketner, BioSim, Lviv 2019

Great diversity of cells

shape

Baumketner, BioSim, Lviv 2019

Cell structure

Кишкова паличка
E. Coli (model prokaryotic cell)

Baumketner, BioSim, Lviv 2019

Cell structure

Фібропласт - клітина сполучної тканини (колаген для загоювання ран)

Fibroblast (model higher eukaryotic cell)

Baumketner, BioSim, Lviv 2019

Biological length scales

http://learn.genetics.utah.edu/content/begin/cells/scale/
Baumketner, BioSim, Lviv 2019

Hierarchical organization

Baumketner, BioSim, Lviv 2019

Cell atoms

atomic number

Organic Atoms (H, C, N, O) Ions ($\mathrm{Na}, \mathrm{K}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{P}, \mathrm{S}, \mathrm{Cl}$)

99\% of cells
0.9\%

Baumketner, BioSim, Lviv 2019

Chemical bonds in biology

Two atoms are close enough for their atomic orbitals to mix.
The electronegativity values for the two atoms are...

Baumketner, BioSim, Lviv 2019

Covalent bonds

each other in a 1:1 ratio to form sodium chloride

When sodium (Na) and chlorine (Cl) are combined, the sodium atoms each lose an electron, forming cations (Na^{+}), and the chlorine atoms each gain an electron to form anions $\left(\mathrm{Cl}^{-}\right)$. These ions are then attracted to (NaCl).

$$
\mathrm{Na}+\mathrm{Cl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{NaCl}
$$

Polar Bond

Creates permanent dipoles

Nonpolar Bond

oxygen

Noncovalent bonds

Hydrogen Bond

Electropositive hydrogen atom is shared by two electronegative atoms. Covalent bond is partially distorted. Interaction is weak, last a short period of time due to thermal motion.

Molecules that contain polar bonds and that can form H -bonds in water dissolve easily in water (hydrophilic). Nonpolar molecules do not dissolve in water (hydrophobic)

Van der Waals Interaction

The electron cloud of an atom fluctuates, producing a flickering dipole. Such dipoles induce oppositely flickering dipoles in a nearby atom, generating a weak interaction.

Hydrophobic interactions

Гідрофоб - речовина яка не змішується з водою, олії, нафта та інші вуглеводні

Гідрофобні частинки злипаються ефективне притягання

Baumketner, BioSim, Lviv 2019

Energy scale

- Molecules do not fall apart by thermal agitation.
- The energy of noncovalent interactions are in the range of thermal noise in the environment.
- ATP hydrolysis energy exceeds noncovalent interactions and thermal motions
- Covalent bond energy can be used to synthesize multiple ATPs

Specifics of biological systems

1) Processes are driven by free energy not internal energy

Protein folding
Formation of hydrogen molecule

Nucleic acids

(b)

A Faty Sogta (FA)
Lipids
B. glyomolpids (GL)
C. Syoro-
phoophelipits [GP]

D Sthol lipids (8t)
E. Sphing:pios (SP)
Sugars

dyecoldthyde	ribost	plumes	galuctute	fructox	8dohtptulost

Sugara can have any number of carbon atoms, tach with an oxygen atom boxded to it. One of the oxygen atons has a double bond.

Different
 monosaccharides

Sugars

Carbohydrates with hydroxyl groups

(1) Aldoses RNA

C-Ribose (Rib)
(2) Ketoses

Energy source and storage.
Cell wall (mechanical support)
Glycoproteins, glycolipids (surface adhesion, extracellular signaling,

(4) Acetylated amino sugars
$\begin{aligned} & \mathrm{N} \text {-Acetyl-D-glucos- } \\ & \text { amine (GlcNAc) }\end{aligned}$
n-Acetyl-D-galac-
tosamine (GalNAc) cell-cell interactions)

Sugars

B. Disaccharides

1. Maltose
α-D-Glucopyranosyl-
($1 \rightarrow 4$)-D-glucopyranose

2. Lactose
β-D-Galactopyranosyl($1 \rightarrow 4$)-D-glucopyranose

3. Sucrose α-D-Glucopyranosyl$(1 \longleftrightarrow 2)-\beta$-D-fructofuranoside

Sugars

Baumketner, BioSim, Lviv 2019

Sugars

B. Important polysaccharides

Poly- saccharide	Mono- saccharide 1	Mono- saccharide 2	Linkage	Branch- ing	Occurrence	Function
Bacteria						
Murein Dextran	D-GIcNAc D-Glc	D-MurNAc				

Baumketner, BioSim, Lviv 2019

Sugars

Sugars attached to proteins=glyco proteins

Sugars

Baumketner, BioSim, Lviv 2019

Lipids

Baumketner, BioSim, Lviv 2019

Lipids

Baumketner, BioSim, Lviv 2019

Lipids

Fatty acids

Baumketner, BioSim, Lviv 2019

Lipids

Baumketner, BioSim, Lviv 2019

Proteins

Amino acid

Baumketner, BioSim, Lviv 2019

Proteins

Baumketner, BioSim, Lviv 2019

Proteins

No rotation around double bonds!

Baumketner, BioSim, Lviv 2019

Proteins

Cost of rotation is $90 \mathrm{~kJ} / \mathrm{mol}$. Compare to $2.5 \mathrm{~kJ} / \mathrm{mol}$ of thermal energy at 300 K

No rotation around $\mathrm{C}-\mathrm{N}$ or $\mathrm{O}-\mathrm{C}$ bonds.
The peptide bond is planar and rigid!

Phi/Psi angles are the only real degrees of freedom of the protein backbone

Baumketner, BioSim, Lviv 2019

Ramachandran plot

- D. Conformation space of the peptide chain

Baumketner, BioSim, Lviv 2019

Primary structure

...-ASP-ALA-VAL-ILE-ASP-SER-GLU-PRO-THR-...
...DAVIDSEPT...

Baumketner, BioSim, Lviv 2019

Secondary structure

H - bonding between $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ groups without involving side chains.

Alpha Helix

$\mathrm{C}=\mathrm{O}$ of one residue bond to $\mathrm{N}-\mathrm{H}$ of the fourth residue
3.6 amino acid residues per turn.

Helical pitch is 0.54 nm .

Beta Sheet

$\mathrm{C}=\mathrm{O}$ of one residue bond to $\mathrm{N}-\mathrm{H}$ of a residue on another strand
0.48 nm between strands
0.35 nm per residue

Baumketner, BioSim, Lviv 2019

Tertiary structure

- Helices and sheets often combine in various ways.
- Certain combinations of α and β repeat over and over, called MOTIFS

Four Helix Bundle

Beta Barrel

Coiled Coil

Baumketner, BioSim, Lviv 2019

Protein folding

3D shape of a protein is determined by its amino acid sequence.
Baumketner, BioSim, Lviv 2019
Driven by noncovalent bond formation and hydrophobic effect

Folded state is the energetically stable state, spontaneously occurring in water.

Interactions between proteins

actin molecule

Baumketner, BioSim, Lviv 2019

Function of proteins

- Enzymes are a type of protein that acts as a catalyst to speed up chemical reactions
- Enzymes can perform their functions repeatedly, functioning as workhorses that carry out the processes of life
- http://www.biotopics.co.uk/other/morinf.html

Baumketner, BioSim, Lviv 2019

Function of proteins

Storage proteins

Function: Storage of amino acids
Examples: Casein, the protein of milk, is the major source of amino acids for baby mammals. Plants have storage proteins in their seeds. Ovalbumin is the protein of egg white, used as an amino acid source for the developing embryo.

© 2011 Pearson Education, Inc.

Baumketner, BioSim, Lviv 2019

Function of proteins

Hormonal proteins

Function: Coordination of an organism's activities
Example: Insulin, a hormone secreted by the pancreas, causes other tissues to take up glucose, thus regulating blood sugar concentration

© 2011 Pearson Education, Inc.

Insulin protein entry:
https://www.ncbi.nlm.nih.gov/protein/AAA59172.1

Baumketner, BioSim, Lviv 2019

Function of proteins

Contractile and motor proteins

Function: Movement
Examples: Motor proteins are responsible for the undulations of cilia and flagella. Actin and myosin proteins are responsible for the contraction of muscles.

Function of proteins

Defensive proteins

Function: Protection against disease
Example: Antibodies inactivate and help destroy viruses and bacteria.

> Antibodies

Bacterium
Recognizes pathogen (antigen) via fragment antigen binding motif

Q2011 Peerson Education, inc

Transport proteins

Function: Transport of substances
Examples: Hemoglobin, the iron-containing protein of vertebrate blood, transports oxygen from the lungs to other parts of the body. Other proteins transport molecules across cell membranes.

© 2011 Pearson Education. Inc.
Baumketner, BioSim, Lviv 2019

Nucleotides

Phosphate

Baumketner, BioSim, Lviv 2019

Nucleic acids=poly-nucleaotides

triphosphate ribose adenine,
Uracil

ACTGU - primary bases

Oligonucleotides (DNA, RNA) Cellular energy (ATP)

Baumketner, BioSim, Lviv 2019

ATP as energy source

Baumketner, BioSim, Lviv 2019

DNA structure

AT and GC pairings are possible due to HB geometry

- Forms a double helix.
- Each turn is made of 10 nucleotide pairs.
- 3.4 nm between adjacent nucleotide

Play DNA packaging movie!
http://www.youtube.com/watch?v=gbSIBhFwQ4s

Baumketner, BioSim, Lviv 2019

Genetic code

Multiple codons for the same AA

Some codons are silent, or are they?

Figure 1.4 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Baumketner, BioSim, Lviv 2019

How is genetic information stored?

Ген - код для одного або декількох білків.

46 total chromosomes in each normal cell, grouped into 23 pairs, referred to by number Corresponding sets of maternal and paternal genes in each pair of chromosomes
A specialized pair of chromosomes that determines a person's sex: females have two X chromosomes and males have one X and one Y .

Transcription + translation

Baumketner, BioSim, Lviv 2019

DNA replication

Baumketner, BioSim, Lviv 2019

DNA replication

Show DNA polymerase advanced
http://www.youtube.com/watch?v=I9ArIJWYZHI\&feature=related

Baumketner, BioSim, Lviv 2019

Transcription

RNA polymerase
Transcription factors

1.RNA polymerase, together with one or more general transcription factors, binds to promoter DNA.
2.RNA polymerase creates a transcription bubble, which separates the two strands of the DNA helix. This is done by breaking the hydrogen bonds between complementary DNA nucleotides.
3.RNA polymerase adds RNA nucleotides (which are complementary to the nucleotides of one DNA strand).
4.RNA sugar-phosphate backbone forms with assistance from RNA polymerase to form an RNA strand.
5. Hydrogen bonds of the RNA-DNA helix break, freeing the newly synthesized RNA strand.

Baumketner, BioSim, Lviv 2019

Protein synthesis=translation

NET RESULT: AMINO ACID IS SELECTED BY ITS CODON

Transfer RNA (abbreviated tRNA) is an adaptor molecule composed of RNA, typically 73 to 94 nucleotides in length, that serves as the physical link between the nucleotide sequence of nucleic acids (DNA and RNA) and the amino acid sequence of proteins.

STEP 3

STEP 4

Proteins modifications

Modification
Phosphorylation
Acetylation
N-linked glycosylation
Amidation
Hydroxylation
Methylation
O-linked glycosylation
Ubiquitylation
Pyrrolidone carboxylic
acid
Sulfation

Baumketner, BioSim, Lviv 2019

Абетки життя

Figure 1.2 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Baumketner, BioSim, Lviv 2019

Metabolism

Процес перетворення енергії в клітинах

Baumketner, BioSim, Lviv 2019

Приклад катаболізму: Гліколіз

Процес перетравлювання цукру (глюкози) досить складний. В результаті утворються молекули ATP та піруват. Споживається кисень для реакції оксидації та виділяється дво-окис вуглецю.

CO2

Baumketner, BioSim, Lviv 2019

How to model biological molecules

MACRO

Baumketner, BioSim, Lviv 2019

Finite-element calculations
Continuum hydrodynamics Dissipative particle dynamics MD-MC-Latice Boltzmann

MESO

MC staticsidynamics
MD, NEMD

MICRO

Classical force tield MD, MC
Embedded atomistic-quantum methods
Car-Parrinello MD
Quantum MC
Quantum chemical methods

Very little chemistry happens during the majority of all biological processes so the appropriate level of description is classical. This entails:

1) Adiabatic approximation. Nuclei are moving in the field created by the electrons.
2) Relaxation processes taking place on picosecond timescale and slower.

When are QM effects important?

Separation into bonded and non-bonded energy terms

This part of the curve needs to be handled differently from this part!
Baumketner, BioSim, Lviv 2019

Non-bonded energy

Multipole expansion for point charges
Potential energy of the set of charges qi interacting with charge q at the origin

$$
U=\sum_{i}^{N} \frac{q q_{i}}{\left|\vec{R}+\overrightarrow{r_{i}}\right|}=q \sum_{i}^{N} q_{i} e^{\overrightarrow{r_{i}} \vec{\nabla}} \frac{1}{R}
$$

where $e^{\overrightarrow{r_{i}} \vec{\nabla}} \frac{1}{R}=\frac{1}{\left|\vec{R}+\overrightarrow{r_{i}}\right|}, e^{\overrightarrow{r_{i}} \vec{\nabla}}=1+\overrightarrow{r_{i}} \vec{\nabla}+\frac{1}{2}\left(\overrightarrow{r_{i}} \vec{\nabla}\right)\left(\overrightarrow{r_{i}} \vec{\nabla}\right)+\ldots \quad$ - the translation operator
In a more compact form
$U=q \Phi(\mathrm{R})=\mathrm{q} \hat{Q} \frac{1}{R}, \quad \Phi(\mathrm{R}) \quad \begin{aligned} & \text { is the potential created by the charges at } \\ & \text { the origin }\end{aligned}$
where
$\widehat{Q}=\sum_{i} q_{i} e^{\overrightarrow{r_{i}} \vec{\nabla}}=\sum_{i} q_{i}\left(1+\overrightarrow{r_{i}} \vec{\nabla}+\frac{1}{2}\left(\stackrel{\rightharpoonup}{r_{i}} \vec{\nabla}\right)\left(\overrightarrow{r_{i}} \vec{\nabla}\right)+\ldots\right)=Q+\vec{d} \vec{\nabla}+\frac{1}{2} \sum_{\alpha \beta} Q_{\alpha \beta} \frac{\partial}{\partial X_{\alpha}} \frac{\partial}{\partial X_{\beta}}+\ldots$
$Q=\sum_{i}^{N} q_{i}$ total charge $\quad \vec{d}=\sum_{i}^{N} q_{i} \vec{r}_{i}$ dipole moment $\quad Q_{\alpha \beta}=\sum_{i}^{N} q_{i} x_{\alpha}^{i} x_{\beta}^{i} \quad \begin{aligned} & \text { quadrupole } \\ & \text { moment }\end{aligned}$

Potential energy then can be written as series:

$$
\begin{aligned}
& U=q \Phi(R)=q \varphi_{m}(R)+q \varphi_{d}(R)+q \varphi_{Q}(R)+\ldots \\
& \varphi_{m}=\frac{Q}{R} \quad \text { potential created by the monopole=total charge } \sim \frac{1}{R} \\
& \left.\varphi_{d}=-\frac{\vec{d} \stackrel{\rightharpoonup}{R}}{R^{3}} \quad \text { potential created by point dipole (at vector }-\vec{R}\right) \sim \frac{1}{R^{2}} \\
& \varphi_{Q}=\frac{1}{2} \sum_{\alpha \beta} Q_{\alpha \beta}\left(\frac{3 X_{\alpha} X_{\beta}}{R^{2}}-\delta_{\alpha \beta}\right) \frac{1}{R^{3}} \quad \text { potential created by point quadrupole } \sim \frac{1}{R^{3}}
\end{aligned}
$$

Another way to look the interaction energy is to compute interaction of point multipoles with the field created by the charge at the origin

$$
U=Q \frac{q}{R}
$$

potential created at the location of the charge distribution by point charge at the origin

Monopole "interacts" with the potential
$\vec{E}=-q \vec{\nabla} \frac{1}{R}=\frac{q \vec{R}}{R^{3}}$
field created by the point charge at the location of the dipole

Dipole "interacts" with the field
derivatives of the electric field created by the point charge

Quadrupole
"interacts" with the field derivative

Baumketner, BioSim, Lviv 2019

Apply these formulas to two distributions of charges

Baumketner, BioSim, Lviv 2019

A table of the order of different interactions

	\bullet	\uparrow		8
\sim	$\sim \frac{1}{R}$	$\sim \frac{1}{R^{2}}$	$\sim \frac{1}{R^{3}}$	$\sim \frac{1}{R^{4}}$
\uparrow		$\sim \frac{1}{R^{3}}$	$\sim \frac{1}{R^{4}}$	$\sim \frac{1}{R^{5}}$
			$\sim \frac{1}{R^{5}}$	$\sim \frac{1}{R^{6}}$
8				$\sim \frac{1}{R^{7}}$

Baumketner, BioSim, Lviv 2019

Interaction energy between two atoms
Full Hamiltonian:

$$
\widehat{H}=\widehat{H}_{A}+\widehat{H}_{B}+\widehat{U}
$$

$$
\hat{U}=\frac{Z_{A} Z_{B}}{\left|\mathbf{R}_{A}-\mathbf{R}_{B}\right|}+\sum_{i=1}^{Z_{A}} \sum_{j=1}^{Z_{B}} \frac{1}{\left|\mathbf{R}_{A}+\mathbf{r}_{A i}-\mathbf{R}_{B}-\mathbf{r}_{B j}\right|}
$$

$$
-\sum_{i=1}^{Z_{A}} \frac{Z_{B}}{\left|\mathbf{R}_{A}+\mathbf{r}_{A i}-\mathbf{R}_{B}\right|}-\sum_{j=1}^{Z_{B}} \frac{Z_{A}}{\left|\mathbf{R}_{A}-\mathbf{R}_{B}-\mathbf{r}_{B j}\right|} . \quad \begin{array}{ll}
Z_{A} Z_{B} \# \text { of valence electrons and nuclei's chal } \\
\left|n_{A}>\quad\right| n_{B}> & \text { eigenfunctions }
\end{array}
$$

Compute the total energy by the perturbation theory:

$$
\widehat{H_{0}}=\widehat{H_{A}}+\widehat{H_{B}} \quad \begin{aligned}
& \text { zero-order } \\
& \text { Hamiltonian }
\end{aligned}
$$

$$
\begin{aligned}
& E=E^{(0)}+E^{(1)}+E^{(2)}+\cdots . \\
& E^{(0)}=E_{0}^{A}+E_{0}^{B} . \\
& \text { ground state of } \\
& \text { first-order term } \\
& \text { second-orderterm } \\
& E^{(0)}=<0_{A} 0_{B}\left|\widehat{H_{0}}\right| 0_{A} 0_{B}>
\end{aligned}
$$ individual atoms

Baumketner, BioSim, Lviv 2019

$$
\begin{aligned}
& \text { Each atom is } \\
& E_{n}^{A} E_{n}^{B} \quad \text { eigenvalues of energy operators }
\end{aligned}
$$

Using the translation vector formula:
$e^{\mathbf{r}_{A i} \boldsymbol{\nabla}} e^{-\mathbf{r}_{B j} \nabla} \frac{1}{R}=\frac{1}{\left|\mathbf{R}+\mathbf{r}_{A i}-\mathbf{r}_{B j}\right|}, \quad \longrightarrow \hat{U}=\sum_{i=1}^{Z_{A}} \sum_{j=1}^{Z_{B}}\left(e^{\mathbf{r}_{A i} \boldsymbol{\nabla}}-1\right)\left(e^{-\mathbf{r}_{B j} \boldsymbol{\nabla}}-1\right) \frac{1}{R}$
Upon introducing charge operators: $\quad \hat{Q}_{A}=\sum_{i=1}^{Z_{A}}\left(e^{r_{A i} \nabla}-1\right)$
Perturbation term can be written as: $\quad \hat{U}=\hat{Q}_{A} \hat{Q}_{B}^{+} \frac{1}{R}$

Multipole moments of atoms A and B

First-order term:
$E^{(1)}=<0|\widehat{U}| 0>=<0_{A} 0_{B}\left|\widehat{Q}_{A} \hat{Q}^{+}{ }_{B} \frac{1}{R}\right| 0_{A} 0_{B}>=<0_{A}\left|\hat{Q}_{A}\right| 0_{A}><0_{B}\left|\widehat{Q_{B}^{+}}\right| 0_{B}>\frac{1}{R}$
Let see the first few terns explicitly:
$\hat{Q}_{A}=\sum_{i}\left(1+\left(\overrightarrow{r_{i}{ }^{A}} \vec{\nabla}\right)+\frac{1}{2}\left(\overrightarrow{r_{i}{ }^{A}} \vec{\nabla}\right)\left(\overrightarrow{r_{i}{ }^{A} \vec{\nabla}}\right)+\cdots-1\right)=\overrightarrow{d^{A}} \vec{\nabla}+\frac{1}{2} \sum_{\alpha \beta} Q_{\alpha \beta}^{A} \frac{\partial}{\partial x_{\alpha}} \frac{\partial}{\partial X_{\beta}}+\ldots$
$\widehat{Q_{B}^{+}}=\sum_{i}\left(1-\left(\overrightarrow{r_{i}{ }^{B}} \vec{\nabla}\right)+\frac{1}{2}\left(\overrightarrow{r_{i}{ }^{B}} \vec{\nabla}\right)\left(\overrightarrow{r_{i}{ }^{B}} \vec{\nabla}\right)+\cdots-1\right)=\overline{-d^{B}} \vec{\nabla}+\frac{1}{2} \sum_{\alpha \beta} Q_{\alpha \beta}^{B} \frac{\partial}{\partial x_{\alpha}} \frac{\partial}{\partial x_{\beta}}+\ldots$
If atoms have non-zero charge: $\quad \hat{Q}_{A}=Q_{A}+\left(\vec{d}^{A} \vec{\nabla}\right)+\frac{1}{2} \sum_{\alpha \beta} Q_{\alpha \beta}^{A} \frac{\partial}{\partial X_{\alpha}} \frac{\partial}{\partial X_{\beta}}+\ldots$
Baumketner, BioSim, Lviv 2019

Taking the expectation value:

$$
\begin{aligned}
& <0_{A}\left|\hat{Q}_{A}\right| 0_{A}>=<\overrightarrow{d^{A}}>\vec{\nabla}+\frac{1}{2} \sum_{\alpha \beta}<Q_{\alpha \beta}^{A}>\frac{\partial}{\partial X_{\alpha}} \frac{\partial}{\partial X_{\beta}}+\ldots \\
& <0_{B}\left|\hat{Q}^{+}{ }_{B}\right| 0_{B}>=-<\overrightarrow{d^{B}}>\vec{\nabla}+\frac{1}{2} \sum_{\gamma \delta}<Q_{\gamma \delta}^{B}>\frac{\partial}{\partial X_{\gamma}} \frac{\partial}{\partial X_{\delta}}+\ldots \\
& E^{(1)}=-\left(<\overrightarrow{d_{A}}>\vec{\nabla}\right)\left(<\overrightarrow{d_{B}}>\vec{\nabla}\right) \frac{1}{R}+\quad \sum_{\alpha \beta}<d_{\alpha}^{A}><d_{\alpha}^{B}>\left(\frac{3 X_{\alpha} X_{\beta}}{R^{5}}-\frac{\delta_{\alpha \beta}}{R^{3}}\right) \sim \frac{1}{R^{3}} \\
& +\frac{1}{2} \sum_{\gamma \delta}\left\{\left(<\overrightarrow{d_{A}}>\vec{\nabla}\right)<Q_{\gamma \delta}^{B}>-\left(<\overrightarrow{d_{B}}>\vec{\nabla}\right)<Q_{\gamma \delta}^{A}>\right\} \frac{\partial}{\partial X_{\gamma}} \frac{\partial}{\partial X_{\delta}} \frac{1}{R} \sim \frac{1}{R^{4}} \\
& +\frac{1}{4} \sum_{\alpha \beta \gamma \delta}<Q_{\alpha \beta}^{A}><Q_{\gamma \delta}^{B}>\frac{\partial}{\partial X_{\alpha}} \frac{\partial}{\partial X_{\beta}} \frac{\partial}{\partial X_{\gamma}} \frac{\partial}{\partial X_{\delta}} \frac{1}{R}+\cdots \quad \sim \frac{1}{R^{5}} \\
& =\frac{C^{(3)}}{R^{3}}+\frac{C^{(4)}}{R^{4}}+\frac{C^{(5)}}{R^{5}}+\ldots=\frac{Q_{A} Q_{B}}{R}+\frac{C^{(2)}}{R^{2}}+\frac{C^{(3)}}{R^{3}}+\frac{C^{(4)}}{R^{4}}+\frac{C^{(5)}}{R^{5}}+\ldots \\
& \text { "electronic } \\
& \text { interaction } \\
& \text { energy" due to } \\
& \text { permanent } \\
& \text { multipole } \\
& \text { moments }
\end{aligned}
$$

$$
E_{n}^{(2)}=\sum_{m(n \neq m)} \frac{\left|U_{m n}\right|^{2}}{E_{n}^{(0)}-E_{m}^{(0)}} \quad \begin{aligned}
& \text { matrix element is over double indices }
\end{aligned}
$$

Correction to the ground-state energy relies on the matrix entry:

$$
U_{m 0}=\langle m| \hat{U}|0\rangle=\left\langle m_{A}\right| \hat{Q}_{A}\left|0_{A}\right\rangle\left\langle m_{B}\right| \hat{Q}_{B}^{+}\left|0_{B}\right\rangle \frac{1}{R},
$$

which has to be substituted into the energy formula:
$E_{0}^{(2)}=\sum_{m_{A}, m_{B}} \frac{\left.\left|\left\langle m_{A}\right| \hat{Q}_{A}\right| 0_{A}\right\rangle\left.\left\langle m_{B}\right| \hat{Q}_{B}^{+}\left|0_{B}\right\rangle \frac{1}{R}\right|^{2}}{E_{0}^{A}-E_{m_{A}}^{A}+E_{0}^{B}-E_{m_{B}}^{B}}=E_{0, \text { ind }}^{(2)}+E_{0, \text { disp }}^{(2)}$
note that since the denominator is always negative and nominator - positive the correction is negative and corresponds to attraction

Induction energy
Summation is performed while keeping one of the atoms in the ground state

non-zero starting from non-zero multipole.
Baumketner, BioSim, Lviv 2019

The induction energy is non-zero starting from non-zero multipole terms.
Examples:

1) Atoms have non-zero dipole in the ground state $E_{\text {ind }}(A) \sim\left|<\overrightarrow{d^{A}}>\vec{\nabla}<m_{B}\right| \hat{Q}^{+}{ }_{B}\left|0_{B}>\frac{1}{R}\right|^{2}=\frac{\mathrm{I}^{(6)}}{R^{6}}+\cdots$
is the lowest term in expansion
which has to squared
2) Atoms have non-zero charge and may or may not have dipole moment

$$
\begin{gathered}
Q_{A}+<\overrightarrow{d^{A}}>\vec{\nabla}+\ldots \\
E_{\text {ind }}(A) \sim\left|<0_{A}\right| \hat{Q}_{A}\left|0_{A}><m_{B}\right| \hat{Q}_{B}^{+}\left|0_{B}>\frac{1}{R}\right|^{2}=\left|Q_{A}<m_{B}\right| \hat{Q}_{B}^{+}\left|0_{B}>\frac{1}{R}\right|^{2}=\frac{\mathrm{I}^{(4)}}{R^{4}}+\cdots
\end{gathered}
$$

A convenient way to view induction energy is by introducing the concept of polarization.
Assume that the dipole moment induced by external field can be written as:
$\vec{\mu}=\alpha \vec{E} \quad$ where α is the polarizability constant (tensor in general)
The interaction energy of that moment with the field then is: $\quad E_{\text {ind }}=-\vec{\mu} \vec{E}=-\alpha E^{2}$
If polarization is caused by point charge, $E \sim \frac{1}{R^{2}}$ and so $\quad E_{\text {ind }} \sim \frac{1}{R^{4}} \quad \begin{aligned} & \text { interaction of charge } \\ & \text { with induced dipole }\end{aligned}$
If polarization is caused by a point dipole $\quad E \sim \frac{1}{R^{3}}$ and so $\quad E_{\text {ind }} \sim \frac{1}{R^{6}}$
Baumketner, BioSim, Lviv 2019

A formal expression for the induction energy:

$$
\begin{aligned}
E_{\text {ind }}(A)= & -\frac{1}{2} \alpha_{\alpha \beta}(A) E_{\alpha}(A) E_{\beta}(A)-\frac{1}{3} A_{\alpha, \beta \gamma}(A) E_{\alpha}(A) E_{\beta \gamma}(A)- \\
& -\frac{1}{6} C_{\alpha \beta, \gamma \delta}(A) E_{\alpha \beta}(A) E_{\gamma \delta}(A)+\ldots
\end{aligned}
$$

molecular polarizabilities

$\alpha, \mathbf{A}, \mathbf{C}$

specific for the molecule

$$
E_{\alpha}(A)=-\frac{X_{\alpha}}{R^{3}} Q_{B}+\sum_{\beta}\left(\frac{3 X_{\alpha} X_{\beta}}{R^{5}}-\frac{\delta_{\alpha \beta}}{R^{3}}\right) d_{\alpha}(B)+\cdots \quad \text { electric field due to atom } B
$$

$$
E_{\alpha \beta}(A)=-\left(\frac{3 X_{\alpha} X_{\beta}}{R^{5}}-\frac{\delta_{\alpha \beta}}{R^{3}}\right) Q_{B}+\cdots \quad \begin{aligned}
& \text { derivative of the electric field due } \\
& \text { to atom } B
\end{aligned}
$$

Dispersion energy

Second-order correction when the summation is performed over excited states of both atoms:

$$
E_{0, d i s p}^{(2)}=\sum_{m_{A}, m_{B} \neq 0} \frac{\left|<m_{A}\right| \hat{Q}_{A}\left|0_{A}><m_{B}\right| \hat{Q}_{B}^{+}\left|0_{B}>\frac{1}{R}\right|^{2}}{E_{0}^{A}-E_{m_{A}}^{A}+E_{0}^{B}-E_{m_{B}}^{B}}
$$

Keeping only the lowest-order dipolar term: $\quad \hat{Q}_{A}=\overrightarrow{d^{A}} \vec{\nabla} \quad \hat{Q}^{+}{ }_{B}=\overrightarrow{-d^{B}} \vec{\nabla}$

$$
E_{0, d i s p}^{(2)}=\sum_{m_{A}, m_{B} \neq 0} \frac{\left|\left(<m_{A}\left|\vec{d}^{A}\right| 0_{A}>\vec{\nabla}\right)\left(<m_{B}\left|\overrightarrow{d^{B}}\right| 0_{B}>\vec{\nabla}\right) \frac{1}{R}\right|^{2}}{E_{0}^{A}-E_{m_{A}}^{A}+E_{0}^{B}-E_{m_{B}}^{B}}=\frac{D^{(6)}}{R^{6}}
$$

For charged systems

$$
\begin{aligned}
& \hat{Q}_{A}=Q_{A}+\overrightarrow{d^{A}} \vec{\nabla} \quad \text { o because of orthogonality condition } \\
& <m_{A}\left|\hat{Q}_{A}\right| 0_{A}>=Q_{A}<m_{A}\left|0_{A}>+<m_{A}\right| \overrightarrow{d^{A}} \vec{\nabla}\left|0_{A}>=<m_{A}\right| \overrightarrow{d^{A}} \vec{\nabla} \mid 0_{A}>
\end{aligned}
$$

so $\quad \sim \frac{1}{R^{6}} \quad$ is genuinely the lowest order term in the dispersion interaction
Some general properties of dispersion interactions
attractive regardless of molecule orientation
weaker than normal covalent and ionic bonds
strength is proportional to the polarizability of the atom
additive and cannot be saturated
short-range forces and hence only interactions between the nearest particles need to be considered

Extension to molecules

Nuclear interaction

$$
+\frac{Z_{2}^{A} Z_{2}^{B}}{\left|\vec{R}-\overrightarrow{R_{2}^{B}}+\stackrel{\rightharpoonup}{R_{2}^{A}}\right|}=\left(\widehat{Q_{A}}+Z_{A}\right)\left(\widehat{Q_{B}^{+}}+Z_{B}\right) \frac{1}{R}
$$

$Z_{A}=Z_{1}^{A}+Z_{2}^{A} \quad$ valence of molecule A $Z_{B}=Z_{1}^{B}+Z_{2}^{B} \quad$ valence of molecule B

Electrons with nuclei

$$
\widehat{Q_{A}}=Z_{1}^{A} e^{\overrightarrow{R_{1}^{A}} \vec{\nabla}}+Z_{2}^{A} e^{\overrightarrow{R_{2}^{A}} \vec{\nabla}}-Z_{A} \quad \begin{gathered}
\text { "charge" }
\end{gathered}
$$

$$
-1 \sum_{i=1, Z_{A}}\left\{\frac{Z_{1}^{B}}{\left|\stackrel{\rightharpoonup}{R}-\stackrel{\rightharpoonup}{R_{1}^{B}}+\stackrel{\rightharpoonup}{r_{i}^{A}}\right|}+\frac{Z_{2}^{B}}{\left|\stackrel{\rightharpoonup}{R}-\stackrel{\rightharpoonup}{R_{2}^{B}}+\stackrel{\rightharpoonup}{r_{i}^{A}}\right|}\right\}+
$$

$$
\widehat{q_{A}}=\sum_{i=1, Z_{A}}\left(e^{\overrightarrow{r_{i}^{A}} \stackrel{\rightharpoonup}{\nabla}}-1\right) \quad \text { electronic "charge" }
$$

$$
-1 \sum_{j=1, Z_{B}}\left\{\frac{Z_{1}^{A}}{\left|\stackrel{\rightharpoonup}{R}+\stackrel{\rightharpoonup}{R_{1}^{A}}-\overrightarrow{r_{j}^{B}}\right|}+\frac{Z_{2}^{A}}{\left|\stackrel{\rightharpoonup}{R}+\stackrel{\rightharpoonup}{R_{2}^{A}}-\stackrel{\rightharpoonup}{r_{j}^{B}}\right|}\right\}=-\left\{\left(\widehat{Q_{A}}+Z_{A}\right)\left(\widehat{q_{B}^{+}}+Z_{B}\right)+\left(\widehat{Q_{B}^{+}}+Z_{B}\right)\left(\widehat{q_{A}}+Z_{A}\right)\right\} \frac{1}{R}
$$

Electrons with electrons

$$
\sum_{i=1, Z_{A}} \sum_{j=1, Z_{B}} \frac{1}{\left|\vec{R}-\overrightarrow{r_{j}^{B}}+\overrightarrow{r_{i}^{A}}\right|}=\left(\widehat{q_{A}} \widehat{q_{B}^{+}}+Z_{A} \widehat{q_{B}^{+}}+Z_{B} \widehat{q_{A}}+Z_{A} Z_{B}\right) \frac{1}{R}
$$

Full perturbation potential
$E_{0, n}^{(1)} \neq 0, E_{0, n}^{(2)}=0$
$\left.\widehat{U}=\widehat{Q_{A}} \widehat{Q_{B}^{+}}+\widehat{q_{A}} \widehat{q_{B}^{+}}-\widehat{Q_{A}} \widehat{q_{B}^{+}}-\widehat{q_{A}} \widehat{Q_{B}^{+}}\right\} \frac{1}{R}$
Additional terms:
$E_{0, n}^{(1)}=<0\left|\widehat{Q_{A}} \widehat{Q_{B}^{+}}\right| 0>\frac{1}{R}=\widehat{Q_{A}} \widehat{Q_{B}^{+}} \frac{1}{R}=\frac{N^{(3)}}{R^{3}}+\cdots \quad \begin{aligned} & \text { multipole expansion for the nuclear subsystem. } \\ & \begin{array}{l}\text { Starts with dipole-dipole interactions for neutral } \\ \text { molecules }\end{array}\end{aligned}$
$E_{0, n}^{(2)} \sim<m_{A}\left|\widehat{Q_{A}} \widehat{Q_{B}^{+}}\right| 0_{A}>=\widehat{Q_{A}} \widehat{Q_{B}^{+}}<m_{A} \left\lvert\, 0_{A}>=0 \quad \begin{aligned} & \text { because of the orthogonality of the excited states to } \\ & \text { the ground-state wave function }\end{aligned}\right.$
$E_{0, c}^{(1)}=<0\left|\widehat{Q_{A}} \widehat{q_{B}^{+}}\right| 0>\frac{1}{R}=\widehat{Q_{A}}<0\left|\widehat{q_{B}^{+}}\right| 0>\frac{1}{R}=\frac{C N^{(3)}}{R^{3}}+\cdots$
$E_{0, c}^{(2)} \sim \sum_{m \neq 0}|<0| \widehat{Q_{A}} \widehat{q_{B}^{+}}\left|m>\frac{1}{R}\right|^{2}=\sum_{m \neq 0}\left|\widehat{Q_{A}}<0\right| \widehat{q_{B}^{+}}\left|m>\frac{1}{R}\right|^{2}=\frac{C N^{(6)}}{R^{6}}+\cdots$

Nuclear degrees of freedom contribute additional terms to the multipole expansion corresponding to the permanent moments

Putting all summands together one arrives at the most general representation of the interaction energy between two molecules:

Baumketner, BioSim, Lviv 2019

Atom-pair potential approximation

Proteins are modeled at the classical level. 1) Not much chemistry happens but 2) QM calculations are way too expensive

Interaction energy $\quad U(R) \quad$| can be used to model the dynamics of the nuclei in the Born-Oppenheimer |
| :--- |
| approximation. Adiabatic approximation. |

Two options of how to proceed:

Option \#1:

Assign proper (valence) charges to each nucleus and a certain number of permanent moments. These can be taken from QM calculations or some other source (from experiment in case of dipole moment for instance). The moments have to be attached to the local geometry of the molecules. As the local reference frame moves (rotates) the moments have to be recomputed.

Drawbacks:

1) Algorithms are not always straightforward to implement. It may be difficult to compute forces acting on each nucleus, especially for higher moments. See Stockmayer fluid for example. Torques are not always computed in a pairwise summation (i acting on j is not the opposite of j acting on i).
2) The procedure is tedious and expensive. Each molecule has to have its moments recomputed at each step as it rotates in the course of the simulation.
3) A large amount of data needs to be stored.
4) A large number of parameters - dipole, quadrupole and higher moments, makes parametrization very challenging.

Baumketner, BioSim, Lviv 2019

Option \#2:

1) Assign partial charges to each nucleus. These will generate multipole series of permanent dipoles.

Important: the series will contain all powers of $1 / R$, not just ones specific for a particular dipole.
2) Add polarization and dispersion interactions to each nucleus.

3) Add repulsion at short distances to prevent nuclei overlapping

Baumketner, BioSim, Lviv 2019

The field created by two charges is different from the field of a point dipole!

$$
\sum_{i, j}\left(\frac{D_{i j}^{(4)}}{r_{i j}^{4}}+\frac{D_{i j}^{(6)}}{r_{i j}^{6}}+\frac{D_{i j}^{(7)}}{r_{i j}^{7}}+\frac{D_{i j}^{(8)}}{r_{i j}^{8}} \ldots+\frac{D_{i j}^{(12)}}{r_{i j}^{12}}\right)
$$

$$
\begin{aligned}
& \text { Parameters: } \quad q_{1} \ldots q_{N} \\
& D_{i j}^{(n)}, n=4,6,7,8 \ldots 12 \text { for each pair } q_{i}, q_{j}
\end{aligned}
$$

Can the atom-pair approximation work?
The method of Clementi

1) Approximation: cut all terms with powers $1 / R^{7}$ and higher. This will lower the number of parameters
2) Compute potential energy for a two-molecule system in QM calculations.

A= amino acids and some other systems. 25 in total
B= water molecule
$\Delta E_{A B}(R, \theta, \varphi)$ interaction energy as a function of mutual distance and orientations. 10,000 different values

The interaction potential

B

water molecule

$$
\Delta E=\sum_{a(X)} \sum_{b(W)}\left\{c_{a b}^{(1)} / R_{a b}+c_{a b}^{(4)} / R_{a b}^{4}+c_{a b}^{(6)} / R_{a b}^{6}+c_{a b}^{(12)} / R_{a b}^{12}\right\}
$$

Results:

1) Way too many parameters to perform a fit for all atoms. Introduce atom types. Typical types:
sp3, sp3 hybridized carbon, carbon in aromatic residues etc. ~ 30 different classes
2) Electrostatic contribution can be well approximated by charges:

$$
c_{a b}^{(1)}=q_{a} q_{b}
$$

3) Keeping the $1 / R^{4}$ term doesn't improve the quality of the fit
4) Certain rules for cross terms seem to work well. For instance.

$$
\begin{aligned}
& c_{a(X)}^{(12)} \mathrm{H}(\mathrm{~W})=c_{a}^{(12)} c_{\mathrm{X}}^{(12)} \\
& c_{a(\mathrm{X})}^{(12)} \mathrm{O}(\mathrm{~W})=c_{a(\mathrm{X})}^{(12)} c_{\mathrm{O}(\mathrm{~W})}^{(12)}
\end{aligned}
$$

5) Coefficients $C_{a b}^{C}$ are too small and can't be determined reliably. This is the consequence of the dispersion interactions not being well described by the QM approximation.

Conclusions

The following model of potential energy will work well for proteins:

$$
U=\sum_{i, j}\left\{\frac{q_{i} q_{j}}{r_{i j}}+c_{i j}^{(12)} / r_{i j}^{12}-c_{i j}^{(6)} / r_{i j}^{6}\right\}
$$

$$
\begin{aligned}
& \text { Adjustable parameters } \\
& q_{1} \ldots q_{N} \text { partial charges } \\
& c_{i j}^{(12)}, c_{i j}^{(6)}>0
\end{aligned}
$$

Examples of when this approximation will fail
oxygen, nitrogen ...
charge is zero at each nucleus because a) the molecule is neutral b) charges are equivalent

benzene
Molecules that have zero charge, zero dipole moment but non-zero quadrupole moment

Atom-pair model

dispersion term.

Bonded energy

QM calculations predict certain geometry for the studied molecule. Distortions from that geometry are described by a number of potential energy terms that collectively are known as "bonded energy"

Bond-stretching potential

Morse potential (some basis in QM calculations)

bond

Harmonic approximation (typically used)

$$
v(l)=\frac{k}{2}\left(l-l_{0}\right)^{2}
$$

Force constant. Source: normal mode analysis of QM, vibrational spectra

Reference bond length. Source: crystal structures, QM calculations

Baumketner, BioSim, Lviv 2019

Angle bending potential

Harmonic approximation

Force constant. Source: normal mode analysis of QM, vibrational spectra

Reference bond angle.
Source: crystal structures, QM calculations

θ

Angle	θ_{0}	$k\left(\mathrm{kcal} \mathrm{mol}^{1} \mathrm{deg}^{-1}\right)$
$\mathrm{Csp}^{3}-\mathrm{Csp}^{3}-\mathrm{Csp}^{3}$	109.47	0.0099
$\mathrm{Csp}^{3}-\mathrm{Csp}^{3}-\mathrm{H}$	109.47	0.0079
$\mathrm{H}-\mathrm{Csp}^{3}-\mathrm{H}$	109.47	0.0070
$\mathrm{Csp}^{3}-\mathrm{Csp}^{2}-\mathrm{Csp}^{3}$	117.2	0.0099
$\mathrm{Csp}^{3}-\mathrm{Csp}^{2}=\mathrm{Csp}^{2}$	121.4	0.0121
$\mathrm{Csp}^{3}-\mathrm{Csp}^{2}=\mathrm{O}$	122.5	0.0101

Table 4.2 Force constants and reference angles for selected angles [Allinger 1977].

Higher-order approximations approximation:
$v(\theta)=\frac{k}{2}\left(\theta-\theta_{0}\right)^{2}\left[1-k^{\prime}\left(\theta-\theta_{0}\right)-k^{\prime \prime}\left(\theta-\theta_{0}\right)^{2}-k^{\prime \prime \prime}\left(\theta-\theta_{0}\right)^{3} \ldots\right]$

Dihedral angle potential

Several functional forms are in use

$$
v(\phi)=\sum_{n=0}^{N} \frac{V_{n}}{2}[1+\cos (n \phi-\gamma)]
$$

Butane

The phase factor,
Multiplicity. Determines how many minima the potential chemistry of the central two atoms. For sp3 atoms, $n=3$, giving 3 minima. For sp2 atoms, $n=2$, leading to 2

Determines where the potential passes through a minimum.

has. Depends on the minima.
Provides an idea on qualitative level about the barrier to rotation around particular bond.

AMBER force field with $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angle
Baumketner, BioSim, Lviv 2019

cis-2-butene

trans-2-butene

Improper dihedrals

Chemical compounds in which four nonconsecutive atoms have to lie in-plane. This can't be achieved with the help bond, angle and dihedral energy alone.

Improper dihedral energy:

$$
v(\theta)=\frac{k}{2} \theta^{2}
$$

Cyclobutanone

Conformation favored by bondangle terms

Experimentally observed conformation. Four atoms (1)(2)(3)(4) lie in the same plane.

Bonded cross-terms

Apply in Class II forcefields as opposed to Class I force-fields relying on fixed-charge model

Typically used in highly specialized force-fields such as MM2/MM3

Baumketner, BioSim, Lviv 2019

Parametrization

Partial charges

1) First principle approaches:
a) Partial charge is not an experimentally observable quantity. Can't be determined directly
a) In QM calculations partial charges can't be determined unambiguously. Many schemes exist. Mulliken charges are meant for intra-molecular interactions. They depend on the molecule chemistry, number of nuclei etc. Can't be used to describe interactions between molecules.
2) Fitting :
a) Partial charges are fitted to reproduce certain thermodynamic properties of the studied system. See for instance OPLS/AA.
b) Partial charges are adjusted to reproduce electrostatic potential created around the molecule of interest. The latter are obtained in QM calculations. See AMBER and CHARMM.

$$
R=\sum_{i=1}^{N_{\text {points }}} w_{i}\left(\phi_{i}^{0}-\phi_{i}^{\text {calc }}\right)^{2} \quad \overbrace{\text { partial charge potential }}^{\phi_{i}^{\text {calc }}}=\sum_{j=1}^{N-1} \frac{q_{j}}{4 \pi \varepsilon_{0} r_{i j}}+\frac{\mathrm{Z}-\sum_{j=1}^{N-1} q_{j}}{4 \pi \varepsilon_{0} r_{i N}}
$$

In principle there is no guarantee that such fit should be successful. Much depends on how fitting is performed. In all cases errors will be present.

A low-energy configuration of two dipoles in a medium
c) Charges that are buried are statistically underdetermined.

Difficult to obtain meaningful values.

Such fits lead to poor performance of the charges when they are placed in a different environment.

The problem can be addressed by introducing weight factors for the charges. Example RESP charges of AMBER
d) The same set of charges cannot describe the potential equally well for different configurations of the target molecules.

Some force-fields consider multiple configurations so that the fitted charge produces the best agreement for the entire ensemble of structures. See AMBER.
e) The best performing fixed-charge model produce 5 -15\% relative error in electrostatic potential with respect to QM results. For comparison, polarizable force-fields can achieve less than 1\% accuracy.

Van der Waals parameters

$$
V_{L J}\left(r_{i j}\right)=4 \epsilon_{i j}\left(\left(\frac{\sigma_{i j}}{r_{i j}}\right)^{12}-\left(\frac{\sigma_{i j}}{r_{i j}}\right)^{6}\right)
$$

In almost all force-fields the vdW parameters to reproduce
a) Constants in molecular crystals

Combination rules
b) Heat of vaporization
c) Liquid densities

Bonded potentials

$$
\begin{array}{cc}
\sigma_{i j}=\sqrt{\sigma_{i} \sigma_{j}} & \sigma_{i j}=\frac{1}{2}\left(\sigma_{i}+\sigma_{j}\right) \\
\epsilon_{i j}=\sqrt{\epsilon_{i} \epsilon_{j}} & \text { Lorentz rule }
\end{array}
$$

Bond-stretching, angle bending - normal modes, vibrational spectra. Most transferable part of force-field Torsion potential.

QM calculations of potential energy as a function of the particular dihedral angle.

General scheme

Typically, parametrization of a force-field proceeds in three steps:

1) Bond-stretching and angle-bending parameters are set. Perhaps by borrowing values from AMBER.
2) Charges are fitted
3) Vdw parameters are fitted. The rule for 1-4 interactions is set.

These are coupled. Don't use torsion potentials obtained in one force-field in a different force-field!

Table I
Other Force Fields for Peptide and Protein Modeling

Force field	Potential type	Key references
BUFF	All Atom	Carlson, 2000
CEDAR	All Atom	Hermans et al., 1984; Hu et al., 2003
CVFF	All Atom	Kitson and Hagler, 1988
DISCOVER	All Atom	Maple et al., 1998
ECEPP/3	All Atom, Torsional	Némethy et al., 1993
ENCAD	All Atom	Daggett and Levitt, 1993; Levitt et al., 1995
GROMOS87	United Atom	van Gunsteren and Berendsen, 1987
GROMOS96	United Atom	Scott et al., 1999
MM2	All Atom	Lii et al., 1989
MM3	All Atom	Lii et al., 1991
MM4	All Atom	Langley and Allinger, 2002
MMFF	All Atom	Halgren, 1996a,b,c,d
NEMO	Polarizable	Hermida-Ramón et al, 2003
SCHRODINGER	Polarizable	Stern et al, 1999 Kaminski et al, 2002
SDFF	Polarizable	Palmo et al., 2003
SIBFA	Polarizable	Gresh, 1997; Guo et al., 2000
SPASIBA	All Atom	Derreumaux and Vergoten, 1995
TRIPOS	All Atom	Clark et al., 1989
UCSD-WILSON	All Atom	Mackay et al., 1984
UFF	All Atom	Rappé et al., 1992
UPJOHN	All Atom	Oie et al., 1981
YETI	United, Torsional	Vedani, 1988

AMBER

History

Energy function

ff84 united atom
ff94, ff96,ff99
all-atom

$$
E_{\text {total }}=\sum_{\text {bonds }} K_{r}\left(r-r_{\text {eq }}\right)^{2}+\sum_{\text {angles }} K_{\theta}\left(\theta-\theta_{\text {eq }}\right)^{2}+\sum_{\text {dihedrals }} \frac{V_{n}}{2}[1+\cos (n \phi-\gamma)]+\sum_{i<j}\left[\frac{A_{i j}}{R_{i j}^{12}}-\frac{B_{i j}}{R_{i j}{ }^{6}}+\frac{q_{i} q_{j}}{\epsilon R_{i j}}\right]
$$

ff02 polarizable

QM HF-6-31G* set. Multiple conformations.

Charges

Fritted to reproduce electrostatic potential of model peptides, ESP and then RESP charges.

In ff99 refitted using higher-order QM energies

vdW parameters

Combination rules: $\quad \epsilon_{i j}=\sqrt{\epsilon_{i} \epsilon_{j}}$ geometric mean

$$
\sigma_{i j}=\frac{1}{2}\left(\sigma_{i}+\sigma_{j}\right)^{\text {arithmetic mean }}
$$

Density and enthalpy of vaporization of $\mathrm{CH} 4, \mathrm{C} 2 \mathrm{H} 6, \mathrm{C} 3 \mathrm{H} 8$ and C4H10 liquids -> sp3 carbon and aliphatic hydrogen. sp2 carbon and aromatic H from liquid benzene. All others borrowed from OPLS/UA

1-4 interactions

Scaling factor of 0.5 in ff84 and 0.83 in all-atom force fields

Bonded

QM data and vibrational spectra

RESP with the neutrality of $A A$ enforced.

Rc=9A, no switching

HCE
ค月
NME

Alanyl and glycyl dipeptide

The side-chain is varied. QM-optimized structures for GLY and ALA

QM on GLY and ALA dipeptides as a function of rotation angles

CHARMM

History

charmm19
charmm22, charmm27
charmm36
united atom
all-atom
polarizable

Charges

Supramolecular approach. QM energies are computed for AA-Water complexes. For neutral systems the energy is divided by 1.16.
Charges are fitted to reproduce AA-Water interactions. TIP3P with non-zero vdW on H is used for water.
vdW parameters combination rules
Density and heat of vaporization.

$$
R c=\left\{\begin{array}{l}
7.5-8.5 A ~ W-W \\
8.5-9.5 A ~ S-W
\end{array} \quad\right. \text { switching }
$$

$$
\begin{aligned}
\epsilon_{i j} & =\sqrt{\epsilon_{i} \epsilon_{j}} \quad \text { geometric mean } \\
\sigma_{i j} & =\frac{1}{2}\left(\sigma_{i}+\sigma_{j}\right) \quad \text { arithmetic mean }
\end{aligned}
$$

Bonded

QM data and vibrational spectra

1-4 interactions

No scaling. Scaling factor of 1.0

NMA water complexes

Backbone: QM yields geometry + force constants for bonds, angles. Water is important for geometry.
Charges + vdW parameters

Alanyl dipeptide with water

+ simulations of proteins in gas and crystal phases

$$
\begin{array}{cc}
& \phi, \psi \\
\text { Torsions } & \downarrow
\end{array}
$$

QM on dipeptides. Matching of energy of different minima, $C 7, a R$ etc.

History

opls-UA	united atom
opls-AA	all-atom

Charges

Fitted to reproduce interaction energy of model compounds with water estimated in QM simulations. Dipole moments are set about 15\% larger than in gas phase to take polarization into account. TIP4P water is used in MM part, but TIP3P and SPC are also suitable. Concept of neutral groups is introduced, which reduces the number of requisite charges,.

1-4 interactions

Scaling factor of 0.83 in OPLS-UA and 0.5 in $\quad R c=10-12 \AA \begin{aligned} & \text { depending on } \\ & \text { the substance }\end{aligned}$
OPLS-AA

NMA is used as the model of peptide bond. Geometry from crystal structure. Charges from solute-water interactions.
neutral block

Parameters of $\mathrm{CH} 3(\mathrm{C}-\mathrm{O})$ are taken from hydrocarbons. After charges are fitted, the number of unknown parameters is equal the number of experimental measurements

vdW parameters

Experimental density and enthalpy of vaporization in liquid state are reproduced in MC simulations of model compounds that correspond to the peptide bond and side chains .
$\epsilon_{i j}=\sqrt{\epsilon_{i} \epsilon_{j}} \quad \sigma_{i j}=\sqrt{\sigma_{i} \sigma_{j}} \quad$ geometric mean

Torsions

Adopted from AMBER94 in OPLS-UA.
Fitted to QM energy functions computed for $A A$ dipeptides for OPLS-AA/L

Bonded
Borrowed from AMBER94 force-field

Convergence of force-fields

United-atom force-fields show large variation in charges:

Table II
Comparison of Fixed Partial Charge Models for Serine Taken from Current and Previous Generation Protein Force Fields

		Amber 84	Amber 94/99	CHARMM19	CHARMM22/27	OPLS-UA	OPLS-AA	GROMOS96	BUFF
$\begin{aligned} & \mathbb{Q} \\ & \text { O} \\ & \text { 仓్ర } \\ & \text { © } \end{aligned}$	N	-0.463	-0.4157	-0.35	-0.47	-0.57	-0.50	-0.28	-0.749
	HN	0.252	$0.2719 \uparrow$	0.25	0.31	0.37	0.30	0.28	0.328
	CA	0.035	-0.0249	0.10	0.07	0.20	0.14	0.00	0.189
	HA	0.048	0.0843		0.09		0.06		0.048
	C	0.616	0.5973	0.55	0.51	0.50	0.50	0.38	0.828
	O	-0.504	-0.5679	-0.55	-0.51	-0.50	-0.50	-0.38	-0.679
	CB	0.018	0.2117	0.25	0.05	0.265	0.145	0.15	0.296
	HB	0.119	0.0352		0.09		0.06		0.006
	OG	-0.55	-0.6546	-0.65	-0.66	-0.70	-0.683	-0.548	-0.764
	HO	0.31	0.4275	0.40	0.43	0.435	0.418	0.398	0.491

All-atom force-fields appear to converge

Baumketner, BioSim, Lviv 2019

Problems, ways to improve

Intrinsic deficiencies

The ansatz of partial charges placed at positions of nuclei not always is appropriate. It may not yield proper permanent dipoles. This can be fixed by adding more charges. Also atom-based multipole moments.

Example: nitrogen molecule

the fixed-charge model has no moments so the first term is dispersion energy

Two additional charges=better

QM potential energy map

Problems, ways to improve

Polarization

Molecules in condensed-phase environment acquire additional moments. This is a very strong effect that is seen even in molecular geometry, Polarization causes N-C distance in peptide bond to shorten while that of C-O bond to lengthen.

Table 1. Comparison of Peptide Bond Geometries from QM and Experimental Methods.

	Experimental			MP2/6-31 G(d) ${ }^{\text {b }}$		
	Gas ${ }^{\text {c }}$	Crystal ${ }^{\text {d }}$	Survey ${ }^{\text {c }}$	Gas	$3 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{FM}$
Bonds						
$\mathrm{C}_{\mathrm{m}}-\mathrm{C}$	1.520 (5)	1.515 (3)	1.52 (1)	1.514	1.510	1.512
$\mathrm{C}-\mathrm{N}$	1.386 (4)	1.325 (3)	1.33 (1)	1.365	1.339	1.337
$\mathrm{N}-\mathrm{C}_{\mathrm{m}}$	$1.469(6)$	1.454 (3)	1.45 (2)	1.448	1.454	1.454
$\mathrm{C}=\mathrm{O}$	1.225 (3)	1.246 (2)	1.23 (1)	1.232	1.255	1.254
Angles						
$\mathrm{C}_{\mathrm{m}}-\mathrm{C}-\mathrm{N}$	114.1 (15)	116.3 (6)	116 (2)	115.3	117.1	116.6
$\mathrm{O}=\mathrm{C}-\mathrm{N}$	121.8 (4)	121.7 (6)	123 (1)	123.1	122.1	122.6
$\mathrm{C}_{\mathrm{m}}-\mathrm{C}=\mathrm{O}$	124.1	121.9 (6)	121 (4)	121.6	120.9	120.9
$\mathrm{C}-\mathrm{N}-\mathrm{C}_{\mathrm{m}}$	119.7 (8)	121.3 (6)	122 (1)	122.1	121.1	121.3

Polarization is taken into account implicitly by:

1) Errors in QM theory
2) Adding water molecules to the model compounds in QM calculations
3) Taking molecular geometry from crystal structures
4) Increasing the dipole moment of studied compounds by about 15%
5) Optimizing dihedral angles against NMR data in liquid state or proteins in solution

Still fixed-charge force-fields are only about $5-15 \%$ accurate. The chemical accuracy of $1 \mathrm{kCal} / \mathrm{mol}$ is out of reach.
Baumketner, BioSim, Lviv 2019

Polarization in local environment

Better parametrization is unlikely to improve fixed-charge models by much. The fundamental problem is that they include polarization in an average sense.

Polarization has to be included explicitly in order to make progress
Baumketner, BioSim, Lviv 2019

Polarizable force-fields

Three basic methods:

1) Fluctuating charge model
2) Drude oscillator
3) Induced dipole models

	Energy Model	cis-NMA	β-sheet	$\triangle \mathrm{E}$
Polarization seems to get the ordering of different structures right	OPLS-AA	-11.5	-16.9	-5.4
	CHARMM27	-11.6	-16.9	-5.3
	AMBER ff94	-11.3	-14.8	-3.5
	AMBER ff02	-13.5	-14.8	-1.3
	AMOEBA	-18.5	-12.6	$+5.9$
	SIBFA	-18.7	-17.1	+1.6
	MP2/(CEP)4-31G+(2d)	-20.5	-17.5	+3.0
	BP/DZVP (BSSE corrected)	-16.2	-8.4	+7.8

Two different types of physical processes, deterministic and stochastic

Deterministic behavior:

The outcome of an experiment can be predicted exactly. Applies to many laws of physics: Newton's laws, Maxwell equations etc.

Example: Dice

Stochastic behavior:

The outcome of an experiment cannot be predicted exactly. This could be an intrinsic property of the physical object - quantum mechanics. Or, the lack of knowledge about the object= statistical mechanics. Fundamentally, all processes in nature are stochastic.

1) The outcome of rolling dice "experiment" consists of 6 different realizations. It can be fully described by a discrete variable g that takes on 6 values:

$$
g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}
$$

2) Although the laws of solid body mechanics are known, there is no way of predicting exactly the outcome of any experiment. Too many unknowns are involved: asymmetry in the mass distribution in the dice, temperature/pressure fluctuations, convection etc

For quantitative description of stochastic processes one needs the concept of distribution.
Baumketner, BioSim, Lviv 2019

Distributions:

Are easiest to introduce for discrete variables. Averages:

$g_{1} \ldots g_{M} \quad$| possible realizations |
| :--- |
| of quantity g |

If after M experiments value g_{i} is seen $M p\left(g_{i}\right)$ times then
$p\left(g_{i}\right)=$ probability distribution function
Important properties:

$$
\begin{gathered}
<g>=\frac{1}{M} \sum_{\substack{k \\
k=\text { sum over different } \\
\text { experiments }}}^{M} g_{k}=\frac{1}{M}\left(g_{1}+g_{2}+g_{2}+g_{2}+g_{3}+\cdots\right)= \\
=\frac{1}{M} \sum_{i}^{N} M p\left(g_{i}\right) g_{i}=\sum_{i}^{N} p\left(g_{i}\right) g_{i} \\
\begin{array}{l}
i=\text { sum over different realizations } \\
\text { of variable } g
\end{array}
\end{gathered}
$$

$p\left(g_{i}\right)>=0$, always positive or zero
$\sum_{i=1}^{M} P\left(g_{i}\right)=1 \begin{aligned} & \text { has to be normalized, the } \\ & \text { sum is finite }\end{aligned}$
Most generally: $\quad P\left(g_{i}\right) \rightarrow \frac{P\left(g_{i}\right)}{\sum_{i=1}^{N} P\left(g_{i}\right)}$

$$
(A)=\sum_{i=1}^{\mu} f\left(g_{i}\right) \cdot P\left(g_{i}\right)
$$

For continuous variables sum are replaced with integrals:
$x \in[q, f] P(x) d x$ is the probability of seeing x in the interval $[x, x+s \mid x]$ $\varphi(x)=$ probability distribution function

Geometrical interpretation

$$
\begin{cases}\mu=\int x \cdot P(x) d x & \text { mean value } \\
\sigma^{2}=\int(x-\mu)^{2} P(x) d x & \begin{array}{l}
\text { standard } \\
\text { deviation }
\end{array} \\
\mu^{n}=\int(x-\mu)^{n} P(x) d x & \begin{array}{l}
\text { n-order moment } \\
\text { (may or may not } \\
\text { exist) }
\end{array}\end{cases}
$$

$\mu, 6$ can be estimated from sampling
Say we have a sequence of measurements:

$$
x_{1} \ldots x_{i} \ldots x_{n}
$$

Average over the sample will approximate the mean value

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \rightarrow \mu
$$

Square deviation from the average will approximate the standard deviation:

$$
S=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \rightarrow 6 \quad \begin{aligned}
& (n-1 \text { comes from Bessel } \\
& \text { correction for finite } n)
\end{aligned}
$$

Baumketner, BioSim, Lviv 2019

Error estimate
Independent measurements
$S E=\frac{S}{\sqrt{h}}$ sample error
$S D=\frac{6}{\sqrt{h}}$ standard error
Correlated measurements

$$
S E=\frac{S}{\sqrt{n}} \sqrt{\frac{1+(n-1) \cdot \rho}{1-\rho}}
$$

$l=\left(l_{i}\right)$ correlation coefficient
$\varphi=0$ - for independent events
Examples:

$$
P(x)=\sqrt{\frac{1}{26^{2} \pi}} e^{\frac{(x-\mu)^{2}}{26^{2}}} \quad \begin{aligned}
& \text { normal } \\
& \text { distribution }
\end{aligned}
$$

Relative error: $R \Omega=\frac{S P}{\Omega} \rightarrow \frac{6}{v^{\mu}} \frac{1}{\pi}$
declines as inverse square root of the number of $\sigma=\mu$ measurements. n must be large to achieve good accuracy

Accuracy of SE

n	$\%$
2	25
6	$\angle 5$

It's safe to use SE to estimate the error in the measurement for $n>10$

Wide distributions require larger number of steps to converge
$R E=\frac{1}{\sqrt{4}}$

h	$\%$
100	10
10,000	1

$\sigma=0,1 \cdot \mu$

Baumketner, BioSim, Lviv 2019

Transforming distribution functions
X - is a stochastic variable characterized by $P(x)$
$y=f(x) \quad$ Q: what is distribution $P(y)=?$

From the definition of the probability distribution:

$$
\begin{aligned}
& P(x) d x=P(y) \cdot d y \rightarrow \\
\rightarrow & P(y)=\frac{P(x(y))}{\left|\frac{d y}{d x}(y)\right| \quad \text { (probability density }} \quad \text { transformation theorem) }
\end{aligned}
$$

This can be written in a more convenient form :

$$
P(y)=\frac{P(x(y))}{\left|\frac{d}{d x}(x(y))\right|}=\int \delta(y-f(x)) P(x) d x=\langle\delta(y-4(x))\rangle
$$

change of variables rule for delta function

$$
\int_{\int} \delta(g(x)) f(g(x))\left|g^{\prime}(x)\right| d x=
$$

$$
y^{\prime}=f(x), d x=\frac{d y^{\prime}}{\left|\frac{d f}{d x}\left(x\left(y^{\prime}\right)\right)\right|}
$$

Examples of probability transformations

1) Normal distribution with zero mean and $\sigma=1$

$$
P_{n}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

Q: what is the distribution of the linear transformation of variable x ?

$$
y=\mu+6 \cdot x
$$

$$
\begin{aligned}
& x=\frac{y^{-\mu}}{6} \rightarrow P_{n}(x(y))=\frac{1}{\sqrt{2 \pi}} e^{\frac{\left(y v^{2}\right)^{2}}{2 \sigma^{2}}} \\
& y=\mu+6 \cdot x \rightarrow \quad \rightarrow \quad \frac{d y}{j x}=6 \\
& \langle x\rangle=\mu \\
& \text { The shape of the distribution } \\
& \text { doesn't change. But now it is } \\
& \text { characterized by new mean } \\
& \text { and variance } \\
& \rightarrow P(y)=\frac{1}{\sqrt{256^{2}}} \frac{(y-\mu)^{2}}{e^{26^{2}}} \\
& \text { Normal distribution with } \\
& \text { zero mean and unit } \\
& \text { standard deviation can } \\
& \text { be used to generate } \\
& \text { Gaussian with arbitrary } \\
& \text { mean and variance } \\
& \text { through linear } \\
& \text { transformation of the } \\
& \text { variable! }
\end{aligned}
$$

2) Uniform distribution:

$$
P(y) \cdot d y=P_{1}(x) d x
$$

$$
P_{1}(x)= \begin{cases}1 & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

$$
P(y)=\left|\frac{d x}{d y}(y)\right| \text { since } P_{1}=\text { cons }
$$

3) Exponential distribution: $P(y)=e^{-y} \quad$ arbitrary constant

$$
\left|\frac{x(x}{d x}\right|=e^{-y} \rightarrow x=e^{-y}+C \rightarrow y=-\log (x-C)
$$

Set $C=0$, to get $x(0)=1, x(+\infty)=0 \rightarrow y=-\log (x)$
4) Gaussian: $P(y) \sim e^{-y^{2}}$

$$
\frac{d x}{d y} \sim \vec{e}^{x(0)=0, x(+\infty)=1} \rightarrow x(y)=\frac{2}{\sqrt{\pi}} \int_{0}^{y} e^{y^{2}} y^{\prime n} d y^{\prime}=E_{2} f(y), y \geqslant 0
$$

$y=E \mathcal{F}^{-1}(x)$ will generate normally distributed positive numbers. inversion of the error function can be costly numerically
5) For distributions of arbitrary shapes: cumulative distribution transformation theorem $P(y), y \in\left[y_{1}, y_{2}\right]$ target distribution. Define: $F(y)=\int_{y_{1}}^{y} P\left(x^{\prime}\right) d x^{\prime} \quad$ cumulative dist.
$z=F^{-1}(x)$ $z=F^{-1}(x) \quad$ what's dist. for this variable $P_{n}(Z)$? $\stackrel{\uparrow}{\text { uniform }}[0,1]$ indeed, the desired distribution
$P_{n}(z) d z=1 d x \rightarrow \quad P_{n}(z)=\frac{d}{d z} x(z), x(z)=F(z), \frac{d x}{d z}=\frac{d F(z)}{d z}=P(z), P_{n}(z) \stackrel{\searrow}{=} P(z)$

Multivariate distributions

Multiple events can be observed simultaneously. For two variables x and y one introduces:

$$
\Gamma=(x, y) \quad \text { to denote a joint event }
$$

Joint distribution function $P(x, y)$ is introduced so that $P(x, y) d x d y$
is the probability of seeing x et $[x, x+\lambda x]$ and y at $[y, y+d y]$

Distributions for individual variables:

$$
P(x)=\int P(x, y) d y, \quad P(y)=\int p(x, y) d x
$$

Conditional probabilities
Assume 2-D for simplicity

Event $A: \quad[X, x+\delta x]$
Event $B: \quad[y, y+8 y]$
$M=$ total $\#$ of $2 D$ events

$M_{A}=\|$ of $A \quad M_{A B}=4$ of both A ind B occurring at the same time $\mu_{B}=$ 中 of B

$$
P(A, B)=\frac{M_{A B}}{M} \quad \text { joint probability }
$$

Define conditional probability:

$$
\begin{aligned}
& P(A \mid B)=\text { prob. of } A \text { once } B \text { occurred = } \\
& \begin{array}{l}
=\frac{M_{A B}}{M_{B}}=\frac{\mu_{A B} \mu_{A}}{\mu_{B} \mu_{B}}=\frac{P(A, B)}{P(B)} \\
=\frac{P(A, B)}{H_{A B}}=\frac{P(A \mid B)}{P(B \mid A)}=\frac{P(A)}{P(B)}
\end{array} \\
& P(B \mid A)=\frac{H_{A B}}{U_{A}}=\frac{P(A, B)}{P(A)} \\
& P(A \mid B)=P(B \mid A) \frac{P(A)}{P(B)} \quad \text { Bayes' theorem }
\end{aligned}
$$

Concept of independent events
Assume that event A is not conditioned upon event B. The conditional probability then is equal to the simple probability of event A :

$$
P(A \mid B)=P(A)
$$

The joint probability then becomes:

$$
P(A, B)=P(A) \cdot P(B)
$$

If this condition is met the events are known as independent. The distribution can be used to judge the degree of independence or correlation.

Quantitatively this can be measured by correlation coefficient:

$$
l=\frac{(\Delta x \cdot \Delta y)}{\sqrt{\Delta x^{2}} \sqrt{\left(\Delta y^{2}\right)}}
$$

where x and y are two stochastic variables and

$$
\Delta x=x-(x), \Delta y=\dot{y}-(y)
$$

Case 1: x and y are independent:

$$
\begin{aligned}
(\Delta x \cdot \Delta y)= & \iint(x-(x), y-(y)) \cdot P(x, y) d x d y= \\
& \left.\iint x \cdot y \cdot P(x) \cdot P(y) \cdot x x d y-(y) \cdot \int x \cdot P(x) \cdot P(y)\right) P x \Delta y- \\
& -(x) \int y \cdot P(x) \cdot P(y) \cdot d x d y+(x)(y) \int P(x) \cdot P(y) d x d y= \\
& =\int x \cdot P(x) \cdot d x \int y \cdot P(y) 8 y-2(x)(y)+(x)(y)= \\
& =(x)(y)-(x)(y)=0
\end{aligned}
$$

Case 2: x and y are fully correlated $x=\alpha y, \alpha>0$

$$
(\Delta x \cdot \Delta y)=\alpha \cdot\left(\Delta y^{2}\right), \quad l=\frac{\alpha \cdot\left(\Delta y^{2}\right)}{\sqrt{\alpha^{2}\left(\Delta y^{2}\right)} \sqrt{\left(\Delta y^{2}\right)}}=1
$$

Case 3: x and y are fully anti-correlated $x=-\alpha y, \alpha>0$

$$
\left.(\Delta x \Delta y)=-\alpha \cdot \Delta y^{2}\right), \quad \rho=\frac{-\alpha \cdot\left(\Delta y^{2}\right)}{\alpha \cdot\left(\Delta y^{2}\right)}=-1
$$

What multivariate distributions can be used for
Generation of normal distributions. Let x and y be random variables uniformly distributed between 0 and 1. Introduce new variables:

$$
\begin{aligned}
& x^{\prime}=\sqrt{-2 \log (x)} \cos (2 \pi y) \quad x^{12}+y^{12}=-2 \log (x) \rightarrow x=e^{-\frac{1}{2}\left(x^{12}+y^{\prime 2}\right)} \\
& y^{\prime}=\sqrt{-2 \log (x)} \sin (2 \pi y)
\end{aligned}
$$

Transformation of the joint distribution function:

$$
\begin{aligned}
& P(x)=P_{1}(x), P(y)=P_{1}(y) \\
& \begin{array}{l}
P\left(x^{\prime}, y^{\prime}\right) \partial x^{\prime} \partial y^{\prime}=P_{1}(x) \cdot P_{1}(y) \cdot \partial \left\lvert\, x d y \quad P\left(x^{\prime}, y^{\prime}\right)=\frac{1}{\left|\frac{\partial\left(x^{\prime}, y^{\prime}\right)}{\partial(x, y)}\right|}\right. \\
P\left(x^{\prime}, y^{\prime}\right)\left|\partial\left(x^{\prime}, y^{\prime}\right)\right| d x \partial m=d x d y
\end{array} \\
& p\left(x^{\prime}, y^{\prime}\right)\left|\frac{\partial\left(x^{\prime}, y^{\prime}\right)}{\partial\left(x, y^{\prime}\right)}\right| \cdot \lambda x \partial y=d x d y \\
& \text { Jacobian of the transformation } \\
& {\left[\begin{array}{ll}
\frac{\partial x^{\prime}}{\partial x}=-\frac{1}{\sqrt{2 \log (x)}} \frac{1}{x} \cos (2 \pi y), & \frac{\partial x^{\prime}}{\partial y}=\sqrt{2 \log (x)} 2 \pi \sin (2 \pi y) \\
\frac{\partial y^{\prime}}{\partial x}=-\frac{1}{\sqrt{2 \log (x)}} \frac{1}{x} \sin (2 \pi y), & \frac{\partial y^{\prime}}{\partial y}=-\sqrt{2 \log (x)} 2 \pi \cos (x y)
\end{array}\right]_{2 \pi}^{1 \times 1}} \\
& \text { two uniformly } \\
& \text { distributed numbers } \\
& x \text { and } y \\
& P\left(x^{\prime}, y^{\prime}\right)=\frac{1}{2 \pi} e^{-\frac{1}{2}\left(x^{\prime 2}+y^{\prime 2}\right)}=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{\prime 2}} \cdot \frac{1}{2 \pi} e^{-\frac{1}{2} y^{\prime 2}}=P_{n}\left(x^{\prime}\right) \cdot P_{n}\left(y^{\prime}\right)
\end{aligned}
$$

Statistical mechanics $=$ theory to extract macroscopic properties from microscopic variables

Microscopic description:
2N-D phase space:

Coordinates + momenta fully define the state of a system with N degrees of freedom
Measuring property $\mathrm{A}(\Gamma)$ always yields time average (take pressure in tires for example):

$$
\begin{aligned}
& \left.A_{\text {ohs }}=(A)_{\text {time }}=C A(r(t))\right)_{\text {time }}=\lim _{\text {in }} \frac{1}{t_{\text {os }}} \int^{\text {lobs }} A(r(t)) d t \\
& \text { real or virtual experiment }
\end{aligned}
$$

Observation time $t_{o b s}$ is always finite. Furthermore, in practice it is always discretized so that the integral can be carrier out.:

$$
t_{0 \Delta s}=\delta \delta \cdot T_{0 \text { obs }}-T_{0 b s}=\# \begin{aligned}
& \text { of steps/events in the } \\
& \text { observation }
\end{aligned}\left\{\begin{array}{l}
\text { enough to eliminate } \\
\text { dependence on the } \\
\text { initial conditions }
\end{array}\right.
$$

The expression for the observable now reads:

On one hand we have time evolution but on the other - different realizations of some random variables that can be described by certain distribution. Both descriptions lead to the same average. The one based on distributions is the subject of statistical mechanics.

The concept of ensembles
Time evolution of one system

The same state point Γ can be visited multiple times

Ensemble $=\quad$ Multiple copies of the system at time $t=0$

Baumketner, BioSim, Lviv 2019

At first glance the connection between time average and ensemble average appears to be straightforward. But there are important subtleties.

Let us consider N members of the ensemble, each corresponding to a gamma point Γi. Consider that in general the distribution function may have explicit dependence on time. See what happens in a certain volume $\delta \Gamma$ when the time changes from t to $t+d t$.

The balance equation for the number of points:

Baumketner, BioSim, Lviv 2019

Let's forget about momenta in Γ for the moment and focus on Cartesian coordinates only

Baumketner, BioSim, Lviv 2019

Putting the estimate into the balance equation:

$$
\begin{gathered}
N \delta \Gamma \frac{\partial}{\partial t} P_{\text {ens }}(\Gamma, t)=-N\left(\vec{v} \vec{\nabla} P_{\text {ens }}\right) \delta \Gamma \\
\downarrow \\
\frac{\partial}{\partial t} P_{\text {ens }}(\Gamma, t)+\left(\vec{v} \vec{\nabla} P_{\text {ens }}\right)=0 \\
\downarrow \\
\frac{\partial}{\partial t} P_{\text {ens }}(\Gamma, t)+\dot{\vec{r}} \frac{\partial}{\partial \vec{r}} P_{\text {ens }}=0
\end{gathered}
$$

If we add momenta back to the equation we will get (by analogy):

$$
\begin{array}{cl}
\frac{\partial}{\partial t} P_{\text {ens }}(\Gamma, t)+\dot{\vec{r}} \frac{\partial}{\partial \vec{r}} P_{\text {ens }}+\dot{\vec{p}} \frac{\partial}{\partial \vec{p}} P_{\text {ens }}=0 & \\
\downarrow & \begin{array}{l}
\text { Liouville equation }
\end{array} \\
\left(\frac{\partial}{\partial t}+\dot{\vec{r}} \frac{\partial}{\partial \vec{r}}+\dot{\vec{p}} \frac{\partial}{\partial \vec{p}}\right) P_{\text {ens }}(\Gamma, t)=0 & \begin{array}{l}
\text { The probability } \\
\text { distribution is constant } \\
\text { along any trajectory }
\end{array}
\end{array}
$$

Baumketner, BioSim, Lviv 2019

In equilibrium the probability distribution can not depend on time. Because otherwise the averages would depend on time as well. That contradicts the definition of "equilibrium". Therefore:

$$
\begin{gathered}
P_{\text {ens }}(\Gamma, t)=P_{\text {ens }}(\Gamma) \longrightarrow \frac{\partial}{\partial t} P_{\text {ens }}(\Gamma, t)=0 \\
N(\text { enter })-N(\text { leave })=0 \\
\begin{array}{l}
\text { for any point in the phase } \\
\text { space. The number of } \\
\text { points occupying it is } \\
\text { conserved. }
\end{array}
\end{gathered}
$$

The system is evolving in is such a way that

$$
P_{\text {ens }}(\Gamma)=\text { const } \text { at each point }
$$

As one point exits certain cell in the phase space, another point immediately enters it. As a result, all points are moving in concert in what resembles a Conga line.

The line snakes around the phase space as time passes by. How this happens has important consequences.

Option 1. The snakes passes through all points available in the phase space. The entire phase space is accessible. Ergodic behavior.

Option 2. There are regions in the phase space from which the snake cannot break out. It moves in a circular manner. Non-ergodic behavior.

Baumketner, BioSim, Lviv 2019

In ergodic systems, all phase points are visited multiple times during a simulation. Only in this case is the time average equal to ensemble average (with particular distribution function)

$$
A_{\text {obs }}=\langle A\rangle_{\text {time }}=\langle A\rangle_{\text {ens }}=\frac{\sum_{r} A(r) \cdot \rho_{\text {ens }}(r)}{\sum_{r} f_{\text {ens }}(r)}
$$

1) Determining whether or not a system is ergodic is not a trivial task. Rigorous proof exists only for a few model systems, such as coupled harmonic oscillators.
2) There are different reasons for non-ergodicity
a) Frustration - multiplicity of potential energy minima of the same depth prevents their thorough exploration
b) Low temperature. Creates very high barriers in the free energy landscape that can be overcome. The system becomes locked up in certain parts of the phase space. Glass transition is one example.
3) Certain models are known to be non-ergodic. For instance, certain lattice models of proteins
4) It's easy to design a non-ergodic system. All it takes is to arrange a circular movement in the phase space. Can be achieved through specific Monte Carlo moves.

Stat mech. .vs. thermodynamics

Normalization constant of the probability distribution is not needed to compute averages. Consider

$$
\rho_{e n s}(\Gamma) \quad \text { and another distribution proportional to it } \quad \rho_{e n s}^{\prime}(\Gamma)=\alpha \rho_{e n s}(\Gamma)
$$

According to the definition:

$$
\begin{gathered}
<\mathrm{A}>^{\prime}=\sum_{\Gamma} A(\Gamma) \rho_{e n s}^{\prime}(\Gamma) / \sum_{\Gamma} \rho_{e n s}^{\prime}(\Gamma)=\sum_{\Gamma} A(\Gamma) \alpha \rho_{e n s}(\Gamma) / \sum_{\Gamma} \alpha \rho_{e n s}(\Gamma)= \\
=\sum_{\Gamma} A(\Gamma) \rho_{e n s}(\Gamma) / \sum_{\Gamma} \rho_{e n s}(\Gamma)=<A>
\end{gathered}
$$

But this quantity is central to establishing link between microscopic description in terms of coordinates/momenta and macroscopic description in terms of thermodynamic functions

$$
\begin{gathered}
Q_{\text {ens }}=\sum_{\Gamma} \rho_{\text {ens }}(\Gamma) \leftarrow \begin{array}{c}
\text { partition function }= \\
\text { the sum of } \rho_{\text {ens }}(\Gamma) \\
\text { over all possible states }
\end{array} \\
<\mathrm{A}>_{\text {ens }}=\sum_{\Gamma} A(\Gamma) \rho_{\text {ens }}(\Gamma) / Q_{\text {ens }} \\
\Psi_{\text {ens }}=-\log \left(Q_{\text {ens }}\right)
\end{gathered} \begin{aligned}
& \begin{array}{l}
\text { Thermodynamic potential of the } \\
\text { given ensemble }
\end{array} \\
& \begin{array}{l}
\text { The function that reaches } \\
\text { minimum in equilibrium } .
\end{array}
\end{aligned}
$$

Baumketner, BioSim, Lviv 2019

Common ensembles

Microcanonical ensemble (NVE)

Distribution function:
all configurations with energy E are equiprobable

Physical equivalent= an isolated system

$$
\rho_{\mathrm{ens}} \sim \delta(E-H(\Gamma))
$$

Hamiltonian:

$$
H(\Gamma)=E_{k}+E_{p}=\sum_{i} \frac{{\overrightarrow{p_{i}}}^{2}}{2 m_{i}}+U\left(\vec{q}_{1}, \cdots, \vec{q}_{N}\right)
$$

Partition function:

$$
\begin{aligned}
& \qquad Q_{N V E}=\sum_{\Gamma} \delta(E-H(\Gamma)) \begin{array}{l}
\text { volume of the hypersurface } \\
\text { that corresponds to energy } E
\end{array} \\
& \text { proportionality constant first introduced on the grounds of } \\
& \text { dimensionalities. Then recognized as the Plank constant when } \\
& \text { QM came about }
\end{aligned}
$$

$$
Q_{N V E}=\frac{1}{N!h^{3 N}} \int d \vec{p} d \vec{q} \delta(E-H(\Gamma))
$$

takes care of the distinguishability of the particles
Thermodynamic potential:

$$
\Psi_{N V E}=-k \log \left(Q_{N V E}\right)=-S(N, V, E)
$$

Boltzmann's constant

Canonical ensemble (NVT)

Distribution function:

$$
\rho_{N V T}(\Gamma) \sim e^{-\beta H(\Gamma)}, \beta=\frac{1}{k T}
$$

external parameter that is associated with temperature
Partition function:

$$
\mathrm{Q}_{\mathrm{NVT}}=\sum_{\Gamma} e^{-\beta H(\Gamma)}=\sum_{\mathrm{E}} n\left(E \overleftarrow{e^{-\beta E}}\right. \text { states }
$$

separation of the partition function

$$
Q_{N V T}=\frac{1}{h^{3 N} N!} \int d \vec{p} d \vec{q} e^{-\beta H(\Gamma)}=\frac{1}{h^{3 N} N!} \int_{\nearrow} d \vec{p} e^{-\beta E_{K}} \int_{\uparrow} d \vec{q} e^{-\beta U(\vec{q})}=
$$

Physical equivalent= system exchanging heat with the environment

$$
Q_{N V T}^{i d} \times Q_{N V T}^{e x} \quad Q_{N V T}^{i d}=\frac{V^{N}}{N!\lambda^{3 N}}, \lambda=\sqrt{h^{2} / 2 \pi m k T} Q_{N V T}^{e x}=\frac{Z_{N V T}}{V^{N}}, Z_{N V T}=\int d \vec{q} e^{-\beta U(\vec{q})}
$$

Thermodynamic potential:

$$
\begin{gathered}
\Psi_{N V T}=F \underset{\sim}{(N, V, T)}=-k T \log \left(Q_{N V T}\right)=F_{i d}(N, V, T)+F_{\text {ex }}(N, V, T) \\
\text { Helmholtz free energy } \quad \text { ideal gas part excess part (due to interactions) }
\end{gathered}
$$

Baumketner, BioSim, Lviv 2019

Isothermal-isobaric ensemble (NPT)
Distribution function:

$$
\rho_{N P T}(\Gamma) \sim e^{-\beta(H(\Gamma, V)+P V)}
$$ external parameter

Partition function: associated with pressure

$$
\mathrm{Q}_{\mathrm{N} P \mathrm{~T}}=\sum_{V} \sum_{\Gamma} e^{-\beta(H(\Gamma, V)+P V)}=\sum_{\mathrm{V}} Q_{N V T} e^{-\beta P V}
$$

separation of the partition function

Physical equivalent= system under a piston

both energy and volume are allowed to change
$Q_{N P T}=\frac{1}{h^{3 N_{N}!V_{0}}} \int d V \int d \vec{p} d \vec{q} e^{-\beta(H(\Gamma, V)+P V)}=\frac{1}{h^{3 N_{N}!V_{0}}} \int d \vec{p} e^{-\beta E_{K}} \mathrm{X}$
$X \int d V e^{-\beta P V} \int d \vec{q} e^{-\beta U(q)}=\frac{1}{N!\lambda^{3 N} V_{0}} Z(\underset{\widetilde{N}}{N}, P, T)$
$Z(N, P, T)=\int d V e^{-\beta P V} Z_{N V T}$

Thermodynamic potential: ideal gas part excess part (due to interactions)

$$
\Psi_{N P T}=G(N, P, T)=-k T \log \left(Q_{N P T}\right)=G_{i d}(N, P, T)+G_{e x}(N, P, T)
$$

(both contain contributions from configuration integral)

Grand canonical ensemble ($\mu \mathrm{VT}$)

Distribution function:

Physical equivalent= system exchanging heat and particles with the environment

$$
\rho_{\mu V T}(\Gamma) \sim e^{-\beta(H(\Gamma, V)-\mu N)}
$$

external parameter associated with chemical
Partition function: potential

$$
\mathrm{Q}_{\mu V T}=\sum_{N} \sum_{\Gamma} e^{-\beta(H(\Gamma, V)-\mu N)}=\sum_{N} Q_{N V T} e^{\beta \mu N}
$$

no separation but the kinetic part can be integrated
explicitly

$$
\mathrm{Q}_{\mu V T}=\sum_{N} e^{\beta \mu N} Q_{N V T}^{i d} Q_{N V T}^{e x}=\sum_{N} e^{\beta \mu N} \frac{1}{N!\lambda^{3 N}} Z(N, V, T)
$$

key property to be evaluated
Thermodynamic potential:

$$
\begin{array}{cc}
\Psi_{\mu V T}=\Phi_{G}(\mu, V, T)=-k T \log \left(Q_{\mu V T}\right)=F-\mu N=-P V \\
\nwarrow< \\
\begin{array}{c}
\text { grand canonical } \\
\text { potential }
\end{array} & \uparrow \\
\text { chemical potential }
\end{array}
$$

Summary on ensembles/thermodynamic functions
Microcanonical (primary)

$$
\frac{S(N, V, E)}{k}=\log \left(Q_{N V E}\right)
$$

is not an ensemble. it contains only intensive variables some of which are related

Canonical

$$
F(N T V)=-k T \log (Q(N T V))=E-T S \quad \text { Helmholz free energy }
$$

Isobaric-isothermic

$$
G(N P T)=-k T \log (Q(N P T))=F+P V \quad \text { Gibbs free energy }
$$

Grand canonical

$$
\Phi(\mu T V)=-k T \log (Q(\mu T V))=F-\mu N=-P V
$$

Grand canonical or Hill free energy
Link to thermodynamics
Fundamental law:

$$
\begin{aligned}
& T d S=\underset{\downarrow}{d U}+p d V-\mu d N \quad G(N P T)=N f(P T) \longrightarrow f(P T)=\left.\frac{\partial G}{\partial N}\right|_{T P}=\mu \\
& d F=-p d V-s d T+\left.\mu d N \rightarrow \frac{\partial F}{\partial N}\right|_{T V}=\mu \\
& d G=V d p-s d T+\left.\mu d N \rightarrow \frac{\partial G}{\partial N}\right|_{T P}=\mu \\
& G(N P T)=N \mu \\
& \text { Baumketner, BioSim, Lviv } 2019
\end{aligned}
$$

Monte Carlo method

Monte Carlo - a class of algorithms that rely on random sampling to obtain numerical results
a) Developed by Ulam, von Nuemann and Metropolis in the 40's to model diffusion of neutrons in fissile material.
b) The term is the codename coined after Monte Carlo casino where Ulam's uncle used to borrow money to gamble.
c) Many flavors exist designed to address specific problems
d) Use in math: applied statistics - the inference problem, integration, optimization, inverse problems etc.
e) Under the name of Markov Chain Monte Carlo (MCMC), used widely in physics, chemistry, biology, finance, quantitative linguistics etc

The main idea: use stochastic methods (random sampling) to solve deterministic equations.

How is that possible? Why is that needed?
Example: Buffon's needle experiment

Two outcomes of the experiment:
a) Needle crosses the middle line
b) Needle doesn't cross the line

The state of the needle is defined by two variables:

a) x - the center of the needle
a) φ - the angle it makes with the vertical axis
x and φ are random variables, independently distributed.
$P(x), P(\varphi), P(x, \varphi)$: are all uniform distributions - no preferential x or φ.
$P(x, \varphi)=\frac{1}{\pi} \cdot \frac{1}{2 t}, \quad \int P(x, \varphi) d x d \varphi=1$

2D configuration space

$$
\left\{\begin{array}{l}
x \in[0,2 t] \\
\varphi \in[0, \pi]
\end{array}\right.
$$

The needle crosses the line when x coordinate of points 1 and 2 satisfies the following conditions:

$\mathrm{P}_{1 / 2}=\iint d x d \varphi P(x, \varphi)=\frac{1}{\pi 2 t} S_{c}(\Omega)=$
$=\frac{1}{\pi 2 t} 2 \frac{l}{2} \int_{0}^{\pi} \sin (x) d x=\frac{2 l}{\pi 2 t}=\frac{l}{\pi t}$
Baumketner, BioSim, Lviv 2019

Full probability:

$$
\mathrm{P}_{\text {crossing }}=2 \mathrm{P}_{1 / 2}=\frac{2 l}{\pi t}
$$

$+$

deterministic result=exact number

Lazzarini's experiment:3408 trials

Example: hit and miss integration
Throw particles(generate pairs of random numbers) on this square and count how many fall within the circle $r=1$. The goal is to compute π.
If particles are distributed uniformly then:
P_{A} - probability to hit circle
P_{B} - probability to square

$$
\begin{gathered}
\left\{\begin{array}{c}
P_{A} \approx S_{A}=\frac{\pi}{4} \\
P_{B} \approx S_{B}=1
\end{array}\right. \\
\quad \downarrow
\end{gathered}
$$

$$
\left\{\begin{array}{l}
S_{A}=\pi \eta^{2} / 4=\frac{\pi}{4} \\
S_{B}=\eta^{2}=1
\end{array}\right.
$$

If the number of particles hitting the circle is n_{A} and those hitting the square is n_{B} :

$$
\pi=\frac{4 n_{A}}{n_{B}}
$$

Accuracy estimates:
$\swarrow 10^{-4}$ accuracy
Hit \& miss: 3.14173 after 10^{7} shots
$\swarrow 10^{-3}$ accuracy
Needles: 3.140472 after 10^{7} shots

Conclusion: Lazzarini was able to compute π with 10^{-7} accuracy after $\sim 10^{4}$ shots so he:
a) cheated
b) had a VERY lucky afternoon with numbers!

Convergence tests

Needles: 3.140 472 akter 10 shots

Sample mean integration

Hit \& miss experiment is an example of the "sample mean" integration method.

Goal: compute $F=\int_{x_{1}}^{x_{2}} f(x) d x$
$\{\rho(x)$-arbitrary
Rewrite $F=\int_{x_{1}}^{x_{2}} f(x) d x=\int_{x_{1}}^{x_{2}} \frac{f(x)}{\rho(x)} \cdot \rho(x) d x=\{$ distribution function

If N_{τ} trials are performed to sample random variable ξ, distributed according to $\rho(\xi)$, then

Example:

$$
F=<\frac{f(\xi)}{\rho(\xi)}>_{\text {trials }}=\frac{1}{N} \sum_{i}^{N} \frac{f\left(\xi_{i}\right)}{\rho\left(\xi_{i}\right)} \longleftarrow_{\boldsymbol{t}}^{\text {the average is }} \begin{aligned}
& \text { taken over different } \\
& \text { trials }
\end{aligned}
$$

uniform distribution $\rho(x)=\left\{\begin{array}{ll}\frac{1}{x_{2}-x_{1}} & x_{2} \leq x \leq x_{1} \\ 0 & \text { otherwise }\end{array} \longrightarrow F=\frac{x_{2}-x_{1}}{N} \sum_{i}^{N} f\left(\xi_{i}\right)\right.$

Compute π number by the sample mean method:

$$
f(x)=\sqrt{1-x^{2}}, x \in[0,1], \int_{0}^{1} \sqrt{1-x^{2}} d x=\frac{\pi}{4}
$$

$\pi \approx 3.14 \sqrt[69]{69}$ for $N=10^{7}$

$$
10^{-4} \text { accuracy }
$$

Simpson's integration rule:

$$
\begin{aligned}
\pi=3.14159 & \text { after } 10^{4} \text { steps! } \\
\uparrow & 10^{-6} \text { accuracy }
\end{aligned}
$$

The cost of Simpson's rule (or similar quadrature method based on interpolation) is prohibitive for multi-dimensional integrals!
$D=n \longrightarrow \int f(\vec{x}) d x_{1} \ldots d x_{n} \quad n_{s}-\begin{gathered}\text { number of sample points per } \\ \text { dimension }\end{gathered} \quad n_{s}^{n}-\begin{gathered}\text { number of function } \\ \text { evaluations }\end{gathered}$
$\begin{cases}n=300 & \text { for an ensemble of } 100 \\ n_{s}=10 & \text { particles }\end{cases}$

10^{300}| function evaluations. That's an |
| :--- |
| astronomical number that no computer |
| can handle! |

Baumketner, BioSim, Lviv 2019

For integrals of high dimensionality stochastic methods remain the only viable option

Two steps involved in the integration using uniform ρ :
(in math this method is known as random Monte Carlo integration)

1) Pick a point in the configuration space ($\overrightarrow{r_{1}} \ldots \overrightarrow{r_{N}}$) by generating $3 N$ random numbers uniformly
2) Compute the potential energy $U\left(\overrightarrow{r_{1}} \ldots \overrightarrow{r_{N}}\right)$ and the integrand for select β

Repeat these steps N_{s} times and compute the configuration integral as:

$$
Z(N, V, T)=\frac{1}{N_{S}} \sum_{i=1}^{N_{S}} e^{-\beta U\left(\overrightarrow{r_{1}}(i) . . . \overrightarrow{r_{N}}(i)\right)}
$$

Problems with the uniform ρ :

1) N_{s} has to be VERY large. For most systems of practical interest in physics convergence is not attainable.

Focus on the configuration integral of the canonical ensemble.
$Z(N, V, T)=\int e^{-\beta U\left(\overrightarrow{r_{1}} \ldots \overrightarrow{r_{N}}\right)} d \overrightarrow{r_{1}} \ldots d \overrightarrow{r_{N}}$
Cartesian coordinates
the integral has to converge with N_{s}
for many evaluation points $e^{-\beta U} \sim 0$

2) Ensemble averages $<A>=\frac{\sum A_{i} e^{-\beta U_{i}}}{\sum e^{-\beta U_{i}}}$
meaningless
a number with large uncertainty in the denominator
Baumketner, BioSim, Lviv 2019

Importance sampling

To reduce the number of zeroes choose a distribution function $\rho(\Gamma)$ that has a strong overlap with the integrand.

For the canonical ensemble:

$$
\begin{gathered}
<A>_{N V T}=\frac{\int A(\Gamma) \rho_{N V T}(\Gamma) d \Gamma}{\int \rho_{N V T}(\Gamma) d \Gamma}=\frac{\left\langle A \rho_{N V T} / \rho>_{\text {trials }}\right.}{\left\langle\rho_{N V T /} \rho\right\rangle_{\text {trials }}} \\
\rho-\text { sampling distribution }
\end{gathered}
$$

Specific choice $\rho(\Gamma)=\rho_{N V T}(\Gamma)$ is known as importance sampling: $\quad\left\langle\frac{\rho_{N V T}}{\rho}\right\rangle_{\text {trials }}=\langle 1\rangle_{\text {trials }}=1$

$$
<A>_{N V T}=<A>_{\text {trials }}
$$

How does one generate a sequence of configurations $\Gamma_{1} \ldots \Gamma_{N}$ that satisfy the given distribution $\rho(\Gamma)$?

Answer: design a Markov chain of states whose limiting distribution is $\rho(\Gamma)$!
(the corresponding method is known as Markov Chain Monte Carlo (MCMC))

Markov chains

What does it mean "Markov chain"? Stochastic process in which:
a) there is a finite (countable) set of configurations in the phase space $\left\{\Gamma_{1} \ldots \Gamma_{N}\right\}$.
b) transition from state i to state j does not depend on the history prior to state i. There is no memory. Correlation only between neighboring sites.

Transition probabilities among states make a matrix $\hat{\pi}$:

$$
\begin{array}{ll}
\pi_{m n} & \text { probability of making a transition from state } m \text { to state } n . \\
\sum_{n \neq m} \pi_{m n} & \text { probability of transitioning to any state } \\
\pi_{m m} & \text { probability of remaining in state } m . \\
\hline \sum_{n} \pi_{m n}=1 & \text { consequence of the phase space finiteness }
\end{array}
$$

How are $\pi_{m n}$ and $\rho(\Gamma)$ related?
Example: prediction of computer's up time
Computer can be either up or down. So the phase space consists of two states | $\uparrow>$ and $\mid \downarrow>$

Transition matrix
Computer has: $\quad 60 \%$ chance of being up today if it was up the from day 1 to day 2

$$
\begin{aligned}
& \text { day before } \\
& 70 \% \text { chance of being down today if it was } \quad \hat{\pi}=\left(\begin{array}{ll}
\pi(\uparrow \uparrow) & \pi(\uparrow \downarrow) \\
\pi(\downarrow \uparrow) & \pi(\downarrow \downarrow)
\end{array}\right)=\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right)
\end{aligned}
$$ down the day before

Day 1: \quad computer is up, $\rho(\uparrow)=1, \rho(\downarrow)=0$

Day 3: $\quad \rho(\uparrow)=0.6 * 0.6+0.4 * 0.3=0.48$

$$
\rho(\downarrow)=0.4 * 0.7+0.6 * 0.4=0.52
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
0.48 & 0.52
\end{array}\right)=\left(\begin{array}{ll}
0.6 & 0.4
\end{array}\right)\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0.6 & 0.4 \\
0.3 & 0.7
\end{array}\right)^{2} \\
& \hat{\rho}(3)=\hat{\rho}(2) \cdot \hat{\pi}=\hat{\rho}(1) \cdot \hat{\pi} \cdot \hat{\pi}=\hat{\rho}(1) \cdot \hat{\pi}^{2}
\end{aligned}
$$

Day N:

$$
\hat{\rho}(N)=\hat{\rho}(1) \cdot \hat{\pi}^{N-1} \text { probability on day } N \text { depends on probability on day } 1
$$

Is there a limiting probability for large N in which the dependence on the initial state disappears?

$$
\lim _{N \rightarrow \infty} \hat{\rho}(N)=\bar{\rho} \quad \text { does this limit exist? }
$$

If it does, then the probability becomes independent of time so it is equal for day $N+1$ and day N :

However,

$$
\hat{\rho}(N+1)=\hat{\rho}(N)=\bar{\rho}
$$

$$
\hat{\rho}(N+1)=\hat{\rho}(N) \cdot \hat{\pi} \quad \longrightarrow \bar{\rho}=\bar{\rho} \cdot \hat{\pi}
$$

an equation for the limiting distribution

Eigenvector eigenvalue problem

$$
\begin{aligned}
\bar{\rho} & =\bar{\rho} \cdot \hat{\pi} \\
\rho_{n} & =\sum_{m} \rho_{m} \pi_{m n}
\end{aligned}
$$

$\hat{\pi}$ is a stochastic matrix - its rows sum up to 1 . We will also assume that it is an irreducible matrix which means that all states are accessible leading to ergodic behavior.
Perron-Frobenius theorem for stochastic irreducible matrices: The maximum eigenvalue is $\lambda(1)=1$. It's simple (non-degenerate). Its eigenvector is real. No other real eigenvector exists.
Consequences: a) limiting distribution $\bar{\rho}$ exists
b) eigenvalues $\lambda(n), n>1$ control the convergence rate to $\bar{\rho}$

Application to the canonical configuration integral

The transition matrix $\hat{\pi}$ is unknown. But we know the limiting distribution $\rho_{m}=\rho_{N V T}\left(\Gamma_{m}\right)$

Some rules for constructing $\hat{\pi}$
a) avoid the need to compute $Q_{N V T}=\sum_{m} \rho_{m}$

$\left\{\begin{array}{l}\stackrel{\text { \# transitioning from } n \text { to } m}{\longleftrightarrow} \\ \text { \# transitioning from } m \text { to } n\end{array}\right.$

Metropolis-Hastings method: asymmetrical solution

$$
\left\{\begin{aligned}
\pi_{m n} & =\alpha_{m n} \quad \rho_{n} \geq \rho_{m} \quad m \neq n \\
\pi_{m n} & =\alpha_{m n} \cdot \frac{\rho_{n}}{\rho_{m}} \quad \rho_{n}<\rho_{m} \quad m \neq n \\
\pi_{m m} & =1-\sum_{m \neq n} \pi_{m n} \longrightarrow \sum_{n} \pi_{m n}=1
\end{aligned}\right.
$$

$\alpha_{m n}=\alpha_{n m} \quad$ a symmetric stochastic matrix underlying Markov chain
Proof that the solution satisfies the detailed balance:

$$
(m \rightarrow n \text { for lower final } \rho)
$$

$$
\begin{aligned}
& \text { 「 } \rho_{n} \leq \rho_{m}: \quad \rho_{n} \pi_{n m}=\rho_{n} \alpha_{n m}=\rho_{m} \alpha_{n m} \frac{\rho_{n}}{\rho_{m}}=\rho_{m} \alpha_{m n} \frac{\rho_{n}}{\rho_{m}}=\rho_{m} \pi_{m n} \\
& \rho_{n}>\underset{(n \rightarrow m \text { for lower final } \rho \text {) })}{\rho_{m}: \quad \rho_{n} \pi_{n m}=\rho_{n} \alpha_{n m} \frac{\rho_{m}}{\rho_{n}}=\alpha_{n m} \rho_{m}=\alpha_{m n} \rho_{m}=\rho_{m} \pi_{m n}}
\end{aligned}
$$

Important point: $\pi_{n m}$ depends on the ratio ρ_{n} / ρ_{m} but not on these quantities individually
One needs to know ρ_{n} up to a multiplicative constant to arrange a Markov chain. The normalizing factor $Q_{N V T}=\sum_{n} \rho_{n}$ is not required.

Symmetric solution

$$
\left\{\begin{array} { l l }
{ \pi _ { m n } = \alpha _ { m n } \frac { \rho _ { n } } { \rho _ { n } + \rho _ { m } } } & { m \neq n } \\
{ \pi _ { m m } = 1 - \sum _ { n \neq m } \pi _ { m n } } & { \alpha _ { m n } = \alpha _ { n m } } \\
{ \begin{array} { l }
{ \text { a symmetrical } } \\
{ \text { stochastic matrix } }
\end{array} }
\end{array} \left\{\begin{array}{l}
\text { Wood \& Jacobson } 1954 \\
\text { Flinn \& McManus } 1961 \\
\text { Glauber } 1963(\text { Spin systems }) \\
\text { Barker 1965(liquids) }
\end{array}\right.\right.
$$

Proof that the solution satisfies the detailed balance:
$\rho_{n} \pi_{n m}=\rho_{n} \alpha_{n m} \frac{\rho_{m}}{\rho_{n}+\rho_{m}}=\rho_{m} \alpha_{m n} \frac{\rho_{n}}{\rho_{n}+\rho_{m}}=\rho_{m} \pi_{m n}$

Which solution is better?
Statistical inefficiency to measure the rate of convergence to the limiting distribution: low inefficiency=fast convergence
s is anti-correlated with the off-diagonal entries in $\hat{\pi}$ matrix
Asymmetrical
Symmetrical

$\rho_{n} \geq \rho_{m}$	$\alpha_{m n}$	$>$	$\alpha_{m n} \frac{\rho_{n}}{\rho_{n}+\rho_{m}}$
$\rho_{n}<\rho_{m}$	$\alpha_{m n} \frac{\rho_{n}}{\rho_{m}}$	$>$	$\alpha_{m n} \frac{\rho_{n}}{\rho_{n}+\rho_{m}}$

$s=\frac{\tau_{r u n} \sigma^{2}\left(<A>_{\text {run }}\right)}{\sigma^{2}(A)}$
$\left[\hat{\pi}_{1}\right]_{n m}>\left[\hat{\pi}_{2}\right]_{n m} m \neq n$ $s\left(\pi_{1}\right)<s\left(\pi_{2}\right)$

Metropolis algorithm has faster convergence rate

Baumketner, BioSim, Lviv 2019

MC in canonical ensemble

Let's see how Monte Carlo can be applied to simulate liquids, in particular Lennard-Jones liquid.

Configuration space:
Probability distribution:

$$
\begin{aligned}
& \Gamma=\left(\overrightarrow{r_{1}}, \ldots, \overrightarrow{r_{N}}\right) \\
& U(\Gamma)=\frac{1}{2} \sum_{i \neq j}^{N} U_{L J}\left(r_{i j}\right)
\end{aligned}
$$

$$
\rho_{N V T}(\Gamma) \sim e^{-\beta H(\Gamma)}, \beta=\frac{1}{k T}
$$

Periodic boundary conditions (PBC) are applied to remove the surface artifacts

infinite lattice

How to design MC moves

In order to run MC one needs to select the symmetric matrix $\hat{\alpha}$.
For simplicity the matrix $\alpha_{n m}=\alpha_{m n}=\alpha$ is assumed to be a constant
One possible choice for this constant is related to how new configurational states r_{n} are generated.

Assume new trial states are generated by random displacement of atoni by vector: $\delta \vec{r}=$ $\left(\xi_{1} \delta x, \xi_{2} \delta x, \xi_{3} \delta x\right)$ where δx is the maximum allowed displacement and $\xi_{i} \in[0,1]$ are random numbers

If the initial state is n, then the final states m will make a cube with side δx. This cube will contain a large but finite (on computers) number of points N_{k}.

Any one of these points will have an $\frac{1}{N_{k}}$ probability of being occupied upon transition.
Therefore random displacements occur with transition probability $\frac{1}{N_{k}}=\pi_{n m}=\alpha_{n m}$
A natural choice: $\quad \alpha=\frac{1}{N_{k}} \quad N_{k} \sim \delta x^{3} \quad\left\{\begin{array}{l}\text { so } \alpha \text { will be set by the } \\ \text { magnitude of } \delta x\end{array}\right.$
Baumketner, BioSim, Lviv 2019

Simulation scheme

The system is in an initial state n. Potential energy is available.
\longrightarrow Step 1: pick a random displacement vector. This will happen with probability α.
Step 2: If the resulting $\rho_{m}>\rho_{n}$, accept the move as this means $\pi_{n m}=\alpha$ transition probability.
Step 3: If the resulting $\rho_{m}<\rho_{n}$, accept the move with $\frac{\rho_{m}}{\rho_{n}}$ probability. This means

$$
\pi_{n m}=\alpha \frac{\rho_{m}}{\rho_{n}} \quad \text { transition probability }
$$

For $\rho_{n} \sim e^{-\beta E_{n}}$ and $\Delta E=E_{m}-E_{n}$, the algorithm can be written as follows:

$$
\text { Accept } \underline{n} \rightarrow \underline{m} \text { move with } \min \left\{1, e^{-\beta \Delta E}\right\} \text { probability }
$$

How to decide whether a given move should be accepted or rejected based on its desired probability P ?

The outcome is stochastic so it has to rely on a stochastic/random process. The simplest method is to flip a coin or roll a dice.

Coin example:

If we don't want/are unable to make a decision we leave it to chance.

> Decision is made with $P=\frac{1}{2}$

If we flip a coin, the positive outcome of the decision will have $1 ⁄ 2$ probability

If we roll a dice, the positive outcome of the decision may have probability $1 / 6$ or a number of other values

$$
P=\frac{1}{6}
$$

$$
\text { or } \quad P=\frac{2}{6}=\frac{1}{3}
$$

	$\begin{aligned} & \text { 응 } \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	m 0 0 0 0 0 0		0 0 0 0 0 0 0	

Baumketner, BioSim, Lviv 2019

In general, a dice with N sides may encode $N-1$ distinct probabilities:

$$
P=\frac{1}{N}
$$

$$
P=\frac{N-1}{N}
$$

	$\begin{aligned} & N \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \end{aligned}$	$\bullet \bullet \bullet$	

or

Generalization to continuous P :

$$
\begin{array}{ll}
\xi \in[0,1] & \text { a random number } \\
P_{1}(\xi) & \text { uniform distribution }
\end{array}
$$

The event that ξ is below P will occur with P probability Generate a random number ξ. If it is below P-accept the move, otherwise - reject it.

Baumketner, BioSim, Lviv 2019

Complete algorithm
\rightarrow Step 1: Generate new positions for particle k :

$$
\begin{aligned}
& \text { rxnew }=r x(k)+(2 \times \operatorname{rand}([0,1])-1.0) \times d x \\
& \operatorname{rynew}=r y(k)+(2 \times \operatorname{rand}([0,1])-1.0) \times d x \\
& \text { rznew }=r z(k)+(2 \times \underset{\sim}{\operatorname{rand}}([0,1])-1.0) \times d x \\
& \text { random number from } 0 \text { to } 1
\end{aligned}
$$

Step 2: Compute the resulting change in potential energy

small $\delta x\left\{\begin{array}{l}\text { large acceptance } \\ \text { probability } P_{\text {acc }} \\ \text { slow movement in } \\ \text { the phase space }\end{array}\right.$
large $\delta x\left\{\begin{array}{l}\text { small acceptance } \\ \text { probability } P_{\text {acc }} \\ \text { waste of computer } \\ \text { time }\end{array}\right.$
$30 \%<P_{\text {acc }}<50 \%$

$$
\begin{aligned}
\Delta E & =E_{m}-E_{n} \\
2 E & =\sum_{i \neq j} U_{L J}\left(r_{i j}\right)=\sum_{j \neq k} U_{L J}\left(r_{j k}\right)+\sum_{k \neq j} U_{L J}\left(r_{k j}\right)+\sum_{i \neq j, i \neq k, j \neq k} U_{L J}\left(r_{i j}\right)
\end{aligned}
$$

$$
2(\Delta E)=\sum_{j \neq k} U_{L J}\left(r_{j k}^{m}\right)+\sum_{k \neq j} U_{L J}\left(r_{k j}^{m}\right)-\sum_{j \neq k} U_{L J}\left(r_{j k}^{n}\right)-\sum_{k \neq j} U_{L J}\left(r_{k j}^{n}\right) \quad \begin{aligned}
& \text { only a sum of } \\
& O(N) \operatorname{not} O\left(N^{2}\right)
\end{aligned}
$$

Step 3: If $\Delta \mathrm{E}<0$, accept the move. Otherwise, generate $\xi \in[0,1]$

$$
\begin{array}{ll}
\text { If } \xi \leq w=e^{-\beta \Delta E} & \text { accept the move } \\
\text { If } \xi>w & \text { reject the move }
\end{array}
$$

Baumketner, BioSim, Lviv 2019

Implementation example in Fortran. One particle moves at a time
deltaE=Enew-Eold
deltab=deltaE/(k*T) guard against overflow
if (deltab.le.75) then
if (deltab.le.0.) then
 don't generate the random number if e=e+deltaE rx(k) =rxnew ry (k) =rynew rz(k) =rznew naccp=naccp+1 generate the random number else
[if (ranf().le.exp(-deltab)) then e=e+deltaE $\mathbf{r x}(\mathbf{k})=\mathbf{r x n e w} /$ reassign coordinates ry (k) = rynew rz (k) =rznew naccp=naccp+1 endif
endif

Extensions:

a) multiple-particle moves
b) all-particle moves

Isothermal-isobaric simulations

The goal is to reproduce the NTP ensemble. Volume now has to be treated as a dynamical variable.

Phase space: $\left.\left.\quad \overrightarrow{\left(r_{1}\right.} \ldots \overrightarrow{r_{N}}, V\right) \quad \overrightarrow{\left(r_{1}\right.} \ldots \overrightarrow{r_{N}}, V+\delta V\right)$

$\left.\overrightarrow{\left(r_{1}\right.} \ldots \overrightarrow{r_{N}}, V\right)$

After relaxation, particles will fill up the box

$$
\left.\overrightarrow{\left(r_{1}\right.} \ldots \overrightarrow{r_{N}}, V-\delta V\right)
$$

$P B C$ will return the particles to the main simulation box but there will be many steric clashes

Alternative approach: introduce scaled coordinates

$$
\begin{array}{ll}
\text { old variables: } & \text { new variables: } \\
\left.\overrightarrow{\left(r_{1} \ldots\right.} \overrightarrow{r_{N}}, V\right) & \overrightarrow{\left(s_{1} \ldots \overrightarrow{s_{N}}, V\right)} \\
\vec{r}=V^{\frac{1}{3}} \cdot \vec{s},\left(s_{x}, s_{y}, s_{z}\right) \in[0,1], d \overrightarrow{r_{i}}=V \cdot d \overrightarrow{s_{i}}
\end{array}
$$

The box will experience uniform expansion or contraction

Baumketner, BioSim, Lviv 2019
[How to compute NPT averages?

$$
d \overrightarrow{r_{i}}=V \cdot d \overrightarrow{s_{i}}
$$

$<A>_{N P T}=\frac{\int d V e^{-\beta P V} \int d \vec{r} e^{-\beta U(\vec{r})} A(\vec{r})}{\int d V e^{-\beta P V} \int d \vec{r} e^{-\beta U(\vec{r})}}=\frac{\int d V e^{-\beta P V} V^{N} \int d \vec{s} e^{-\beta U(\vec{s})} A(\vec{s})}{\int d V e^{-\beta P V} V^{N} \int d \vec{s} e^{-\beta U(\vec{s})}}=$
NVT average

$$
=\frac{\int d V d \vec{s} e^{-\beta U(\vec{s})} e^{-\beta P V} e^{N \log (V)} A(\vec{s})}{\int d V d \vec{s} e^{-\beta U(\vec{s})} e^{-\beta P V} e^{N \log (V)}}=\frac{\int d V d \vec{s} e^{-\beta(U(\vec{s})+P V-k T N \log (V))} A(\vec{s})}{\int d V d \vec{s} e^{-\beta(U(\vec{s})+P V-k T N \log (V))}}=<A>_{\mathrm{sV}}
$$

Sample from NVT ensemble for the extended system defined by phase space coordinates $\Gamma=\left(\overrightarrow{s_{1}} \ldots \overrightarrow{N_{N}}, V\right)$ with the limiting distribution function:

$$
\rho(\Gamma)=e^{-\beta(U(\vec{s})+P V-k T N \log (V))}
$$

Algorithm:

Simulation is conducted as in NVT ensemble except that now we have two types of moves.

1) Coordinate moves: $\quad \vec{s}_{i}^{m}=\vec{s}_{i}^{n}+\delta x(2 \cdot \xi-1) \quad \xi \in[0,1]$
2) Volume changes: $\quad V^{m}=V^{n}+\delta V(2 \cdot \xi-1)$
 these are expensive so should be attempted rarely

Moves accepted with the probability:

$$
P=\min \left\{1, e^{-\beta \Delta E}\right\}, \Delta E=E_{m}-E_{n}+P\left(V_{m}-V_{n}\right)-k \operatorname{Tlog}\left(\frac{V_{m}}{V_{n}}\right)
$$

Grand canonical ensemble

Both coordinates and the number of particles are allowed to change

It's more convenient to introduce dimensionless coordinates as this will make

Adsorption onto a porous surface

Very large system required
distribution function dimensionless as well. This is important when comparing systems with different number of particles, N and $N+\mu_{\text {reservoir }}$ 1 for instance, as they have different volumes of the phase space.

Parameters of the ensemble: μ, V, T

Phase-space variables: $\left(\overrightarrow{r_{1}} \ldots \overrightarrow{r_{N}}, N\right) \longrightarrow$ Scaled variables: $\left(\overrightarrow{s_{1}} \ldots \overrightarrow{s_{N}}, N\right)$

Ensemble averages:

$$
\begin{aligned}
& <A>_{\mu T V}=\sum_{N=1}^{\infty} \frac{1}{N!} e^{\beta \mu N} \frac{V^{N}}{\lambda^{3 N}} \int d \vec{s} e^{-\beta U(\vec{s})} A(\vec{s}) / Q_{\mu V T}= \\
= & \frac{\sum_{N=1}^{\infty} \int d \vec{s} e^{-\beta\left(U(\vec{s})-\mu N-k T N \log (V)+k T N \log \left(\lambda^{3}\right)+k T \log (N!)\right.} A(\vec{s} ; N)}{\sum_{N=1}^{\infty} \int d \vec{s} e^{-\beta\left(U(\vec{s})-\mu N-k T N \log (V)+k T N \log \left(\lambda^{3}\right)+k T \log (N!)\right.}}=
\end{aligned}
$$

de Broglie length
$\lambda=\sqrt{h^{2} / 2 \pi m k T}$

Limiting distribution in MC chain:

$$
\rho\left(\overrightarrow{s_{1}} \ldots \overrightarrow{s_{N}}, N\right)=e^{-\beta\left(U(\vec{s})-\mu N-k T N \log (V)+k T N \log \left(\lambda^{3}\right)+k T \log (N!)\right.}
$$

There are a number of implementations of GCMC that differ in how particles are added to/removed from the system

Baumketner, BioSim, Lviv 2019

Three types of moves:

1) Coordinate moves: $\quad \vec{s}_{i}^{m}=\vec{s}_{i}^{n}+\delta x(2 \cdot \xi-1) \quad \xi \in[0,1]$

$$
P=\min \left\{1, e^{-\beta \Delta U}\right\}
$$

2) Particle creation:

$$
P \sim \frac{\rho_{m}(\vec{s}, N+1)}{\rho_{n}(\vec{s}, N)}=\min \left\{1, e^{-\beta \Delta U+\log \frac{Z V}{N+1}}\right\}
$$

$$
\begin{gathered}
\Delta U=U(\vec{s}, N+1)-U(\vec{s}, N) \\
z=e^{\beta \mu} / \lambda^{3} \quad \text { activity }
\end{gathered}
$$

3) Particle destruction:

deletion of a random particle. Difficult in dense fluids because the particle may experience strong attraction in the media

$$
P \sim \frac{\rho_{m}(\vec{s}, N-1)}{\rho_{n}(\vec{s}, N)}=\min \left\{1, e^{-\beta \Delta U+\log _{z V} \frac{N}{V}}\right\}
$$

$\Delta U=U(\vec{s}, N-1)-U(\vec{s}, N)$

Direct computation of free energy in GCMC:

$$
A / N=\mu-\langle P\rangle_{\mu V T} V /\langle N\rangle_{\mu V T}
$$

averages obtained from simulation may not be accurate because of large fluctuation in $<N>$
for fastest convergence choose

$$
P_{1}=P_{2}=P_{3}=\frac{1}{3}
$$

insertion at a random positon. Difficult in dense fluids because of steric clashes

$$
5-2+2+2+
$$

Gibbs-ensemble sìmulations

This method is designed to simulate phase equilibria.

Liquid \quad| $P_{l}=P_{g}$ |
| :---: |
| $T_{l}=T_{g}$ |
| $\mu_{l}=\mu_{g}$ |

Gas

The best choice for these experimental conditions is $\mu_{\uparrow T}$ "ensemble"
One of the state variables has to be extensive (N or V)

Consider two coupled systems with the total V and N fixed:

V_{2} Exchange of particles and volume is allowed. This
N_{2} enables coexistence between two phases. The advantage is that there is no interface. Molecules in system 1 and 2 do not interact with one another.

Such ensemble does not exist!

If both N and V are allowed to change a simulation box can't be defined uniquely

Baumketner, BioSim, Lviv 2019

The partition function:

$$
\begin{aligned}
Q_{G}(N, V, T)= & \sum_{n_{1}=0}^{N} \frac{1}{V \lambda^{3 N} n_{1}!\left(N-n_{1}\right)!} \int_{0}^{V} d V_{1} V_{1}^{n_{1}}\left(V-V_{1}\right)^{N-n_{1}} \times \\
& \times \int d s_{1}{ }^{n_{1}} e^{-\beta U\left(s_{1}\right)} \int d s_{2}^{N-n_{1}} e^{-\beta U\left(s_{2}\right)}
\end{aligned}
$$

$$
\begin{gathered}
\text { Variables: } \\
\left(\overrightarrow{s_{1}} \ldots \overrightarrow{s_{n_{1}}}, n_{1}, V_{1}\right) \\
\left(\overrightarrow{s_{1}} \ldots \vec{s}_{N-n_{1}}\right)
\end{gathered}
$$

Distribution function:
scaled coordinates of system 2

$$
\rho\left(n_{1}, V_{1}, s_{1}, s_{2}\right)=\frac{V_{1}^{n_{1}}\left(V-V_{1}\right)^{N-n_{1}}}{n_{1}!\left(N-n_{1}\right)!} e^{-\beta\left(U\left(s_{1}\right)+U\left(s_{2}\right)\right)}
$$

MC process that samples from that distribution:

1) Coordinate moves applied in both systems independently:

Baumketner, BioSim, Lviv 2019
2) Volume change:

$$
P<10 \%
$$

$$
V_{2}^{m}=V_{2}^{n}-\delta V
$$

Probability of n to m transition :

$$
P=\min \left\{1, \frac{\left(V_{1}^{m}\right)^{n_{1}}\left(V-V_{1}^{m}\right)^{N-n_{1}}}{\left(V_{1}^{n}\right)^{n_{1}}\left(V-V_{1}^{n}\right)^{N-n_{1}}} e^{-\beta\left(\Delta U\left(s_{1}\right)+\Delta \mathrm{U}\left(s_{2}\right)\right)}\right\}
$$

3) Particle exchange:

$$
N_{1}^{m}=N_{1}^{n}-1
$$

$$
P<10 \%
$$

Probability of n to m transition : $\quad P=\min \left\{1, \frac{n_{1}\left(V-V_{1}\right)}{\left(N-n_{1}+1\right) V_{1}} e^{-\beta\left(\Delta U\left(s_{1}\right)+\Delta \mathrm{U}\left(s_{2}\right)\right)}\right\}$

Typical results:

After initial relaxation, densities in the two boxes will settle down to their equilibrium values

In the coexistence region $T<T_{c}$ there will be two distinct densities corresponding to two distinct phases.

In the supercritical region $T>T_{c}$ there will be only one density. Boxes may have different sizes and numbers of particles.

Large finite size effect for gas-lattice models. Minimal effects for continuous models. Systems with <100 particles are OK for LJ model in both 2D and 3D.

Electrostatics in biomolecular systems
Coculoub outewavons between trwo cheyge $U_{C}(2)=\frac{\eta_{1} y_{2}}{n}$
I_{t} cut-bte R_{C} a oursodrecs, us with $L J$ porenpral, the loupreye conerron is $\pi_{1} \operatorname{er} l \cdot \int_{k_{c}}^{+\infty} \hbar^{2} v_{c}(\tau) d z=w_{0} u \cdot l \cdot \int_{k_{c}}^{+\infty} n^{2} \cdot \frac{y_{1} y_{2}}{n} d r$ - ouregzel doverges
The loug-range pait is the forcusi al amayy is yreater than the shout-rage part.

Attraphue tozees between
Optoones'.

I) Trunobe the jotentoal at k_{c}

- Ber aurotacts
- Nroug results even on the loust $e_{c} \rightarrow+\infty$
Brample: effechive juteraction w(K)
berween two dron Jons.
For lange $R, \quad w(k) \sim \frac{y_{1} y_{2}}{\epsilon \cdot R,} \begin{gathered}\epsilon-\text { olelector } \\ \text { conatour }\end{gathered}$ Aftractive torces one seen at $R \sim R_{c}$

Froue 2. The potential of mean force, $m(R)$, for $\mathrm{Fe}^{3+}-\mathrm{Fe}^{*+}$ (dirclea) and
for $\mathrm{Fe}^{2 \omega+}-\mathrm{Fe}^{2+}$ (solid line) in water. The former is computed from for $\mathrm{Fe}^{2 N}-\mathrm{Fe}^{2 N}$ (solid lise) in sater. The former is computed from
simplations with truncated interactioes. The latter is computed from simulations with Ewild swms. The dashod line is the dielectric cootinown
potential of mean force. ($2 . \operatorname{se})^{1} / R t$, with $i=70$. Tie error bars are il
 (see Figure 3).

TI) Keactoon tield conrebious (KF methot)
Compute cont wbops ous of the truncates bony-racge port of U_{c} using contimun electrotrabirs models. For homogeneoon measa:

Atowir rejresentablon
continunm roprecentation

f-dielectivic constact of the mesoum

Electroctatics of changes in sphericel conjties.'
Poosson equatoon relabing potrentiol P and charge temsity ρ :

$$
\begin{cases}\Delta \Phi_{I}(\vec{n})=-4 \pi l(\vec{z}) & 2 \leq 4 \\ \Delta \Phi_{I I}(\vec{\imath})=0 & n) a\end{cases}
$$

5
3
3
3
3
3
3
3

 os continuous

For the potental insitse the canotry':

$$
\Phi_{ \pm}(i)=\frac{q}{\left|\eta_{2}-i_{s}\right|}+\Phi_{n}\left(2^{-1}\right)
$$

drect coulomb keacton toeld recultong potentoal
from the pelawzatoon of the idelestic medilu m

Induces charge senisty that creoks reactor pitentoal
$P_{n}(x)$-Legentre polyvonials

$$
\begin{aligned}
& P_{0}(x)=1, \quad P_{1}(x)=x \\
& P_{2}(x)=\left(3 x^{2}-1\right) / 2
\end{aligned}
$$

In the Coust of smale n :

$$
\Phi_{k}(\bar{z})=-\frac{q(t-1)}{u \cdot t}+\frac{y}{a^{3}} \frac{2(t-t)}{2 t+1} \tilde{z} \cdot \hat{n}_{s}+o\left(2^{2}\right)
$$

Two inpoorfact resulh that tollow trour thor expanjoun:

1) Bozu colouton evergy

Acsume that the charge is glaceat at the center $\tilde{z}_{<}=0$. The reaction potential of creata at the center or $-\frac{q(f-1)}{a-\epsilon}$

It woll tave dw $=\Phi_{k}(0)$.dy work againit that potential to atd fy charge at the center. The total worle acsociates woJt creatouy charge q charging aree eneryy, is then:

$$
A G_{B a x}=\int d w=-\int_{0}^{y} \frac{y(\epsilon-1)}{a \cdot t} \cdot d y=\frac{1}{2} \frac{y^{2}}{a}\left(\frac{1}{\epsilon}-1\right)
$$

$\Delta f_{B_{\text {onn }}}(t=1)=0$ - no chargony eneryf in verum $\left(G_{i}=\epsilon_{\text {eat }}\right)$
2) Onsager solvation of poort dijoles
place two charges y ount $-y$ at jostrows \hat{i}_{s} ans $-\hat{z}_{s}$ respectinely. charging tree eneryy can be comput ed in 2 Steps.'
v) Charge partscle $\$ 1$

$$
\begin{aligned}
\Delta G_{1} & =\int_{0}^{q_{k}} \phi_{s}\left(2_{s}\right) d q=\int_{0}^{q}\left(-\frac{q(t-1)}{a-t}+\frac{q}{a^{3}} \frac{2(t-t)}{2 t-1} 2 s\right) d y= \\
& =-\frac{1}{2} \frac{y^{2}(t-1)}{a-t}+\frac{1}{2} \frac{y^{2}}{a^{3}} \frac{2(t-t)}{2 f+1} 2 s^{2}
\end{aligned}
$$

bipole monent

$$
\vec{r}=-q_{1}-\vec{z}_{s}+y \cdot \vec{r}_{s}=2 q \cdot \overrightarrow{z_{s}}
$$

Pount topole! $25 \rightarrow 0, M=$ const
6) charge pqubicle tw?. Work has to be done ayounet its onv reacfon
tield:

$$
f G_{2}=\int_{0}^{-y}\left(-\frac{q(t-1)}{u-t}+\frac{y}{u^{3}} \frac{2(t-t)}{2 f t 1} 2_{s}^{2}\right) d y=-\frac{1}{2} \frac{y^{2}(t-1)}{a-t}+\frac{1}{2} \frac{y^{2}}{u^{3}} \frac{2(t-t)}{2(f+1} 2 s^{2}=\Delta G_{1}
$$

and against the reacaion sideld created by the trist particle:

$$
\begin{aligned}
\Delta G_{3} & =\int_{0}^{-y} P\left(-\vec{n}_{s}\right) d y^{\prime}=\int_{0}^{-y}\left(-\frac{q(t-1)}{u \cdot f}-\frac{y}{a^{3}} \frac{2(t-f)}{2 f+1} 2_{s}^{2}\right) d y^{1}= \\
& =\frac{y^{2}(f-1)}{a-f}+\frac{q^{2}}{a^{3}} \frac{2(t-f)}{2 f+1} 2 s^{2}
\end{aligned}
$$

Putting three terms toyepher: $\left.\Delta G=\Delta \theta_{1}+\Delta r_{2}+\Delta G_{3}=\frac{2 y^{2}}{6^{3}} \frac{2(1-t)}{2 t-1}\right)^{2} s^{2},\left(y^{2} s^{2}=\frac{m^{2}}{4}\right.$ In the lomit of poout olopole, $z_{s} \rightarrow 0, M=$ const:
$\Delta G_{0}=\frac{1}{a^{3}} \frac{1-G}{2 f+1} M^{2}-\quad$ hiyher-orden terus in h_{c} bissappear. ΔG_{0} is ruM solvation energy

- $\triangle G$ is dopalar approximatoon ot the changlary rrec eneryy It neess to be correctred tor non-poind duprobes.
As witl the Born energy for jous,
$\Delta G_{0}(\epsilon=1)=0$ tor djoles. Ho changing eneryy on vacuncy!

The chargory free enaryy can ulso be Drtenprotes oc Duteractoon of the bajobe worl its own reaction tield. Bleapic Ajelts creotes of the centen by a charge y at posstion \bar{z}_{5} :

$$
\vec{F}(\vec{z})=-\frac{\partial \Phi_{R}\left(\overrightarrow{z^{2}}\right)}{\partial r^{\prime 2}}=-\frac{q^{3}}{u^{3}(t-t)} \vec{z}_{s}+o(\mid \vec{z} 1)
$$

If there's more than ore charge, η_{i}, \hat{z}_{i} :

$\vec{B}(\overrightarrow{2})=-\frac{1}{a^{3}} \frac{2(x-t)}{2 t+1} \sum_{i} y_{i} \vec{z}_{i}=-\frac{1}{a^{3}} \frac{2(1-t)}{2 t+1} \vec{A}-\vec{M}$ dople mowent of a yrayp
Let's assume nov that the fiels os creoret by a pair of charges $-y,-\vec{r}_{s}$ and $y, \overrightarrow{2}$ so that at the center toesult agent on their locatoon $F_{n}=2 q \cdot \overrightarrow{2}_{s}$. Adobing -dy and dy anounsts of change to these fartoctes woll cost $\quad d \varphi=-d \vec{A} \cdot \vec{E}=-2 \cdot \vec{h}_{s} \cdot d y \cdot \vec{E} \quad$ electrostatic emeryy, Creatony these charges Arom zero wore regure work:

$$
\int d \varphi=-\prod_{0} 2 \hat{z}_{s} \cdot \frac{1}{a^{3}} \frac{2(t-1)}{2 f+1} \cdot 2 \hat{z}_{s} q^{\prime} \cdot d y^{\prime}=-\frac{4 \cdot 2^{2} y^{2}}{2} \frac{1}{a^{3}} \frac{2(f-1)}{2 f+1}=\frac{1}{a^{3}} \frac{1-t}{2 f+1} \cdot r^{2}=\Delta f_{0}
$$

Onseye solvation eneryy

Why $\pi \triangle G$ caller "solvation" eneryg?
assume x semoto contoguraforn of ons udearle of juberest. Itc evengy du Nacuum or $U_{v}(x)$. Probaboloty of seing x

$$
P(x) \sim e^{-\beta V_{v}(x)}
$$

If the uolecule is placet on a mesoum,
 u solvenf:

$$
\begin{aligned}
p(x) & =\int e^{-\beta U_{v}(x)} \cdot e^{-\beta E(x, y)} d \gamma \\
& =e^{-\beta U_{M}(x)} / Q
\end{aligned}
$$

of rrecdou

$$
Q \text { - pootstion tunetion }
$$

$$
U_{\text {Ma }}(x) \text { - potrentoul uncryy it the molecale }
$$ on the cuessum

Entrobuce $\operatorname{Vef}(x)=-u T \log \int e^{-\beta E(x, y)} d y$-etfecfove porentoal gre to the cavesiven $U_{M}(x)=U_{V}(x)+U_{e f f}(x)$ - totel potentsal is vacaum $+U_{\text {ett }}(x)$

Nhat's the physical meaning of $\operatorname{Vet}(x)$?
Letls outrotuce a scolong vasiable x that will "turn on" the nestum"
qrae encrigy of tuaning on the mediun is the eftectove potential: Baumketner, BioSim, Lviv 2019

$$
\begin{aligned}
& Q(\pi)=\int e^{-\beta V_{v}(x)} e^{-\beta \cdot x \cdot r_{2}(x, y)} d y \text { - partotoon tuncorgon } G(x)=\text {-win loy } Q(x) \text { - Aree } \\
& \text { thed deqperts a } 1 \\
& \text { encryy. } \\
& x=0 \text { - vacunm } \\
& G_{v}(x)=-k T \log Q(n=0)=U_{v}(x)-\text { vacaun, } \\
& G_{\text {ra }}(x)=-k \sigma \operatorname{Cog} Q(x=1)=
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {ett }}(x)=G_{\text {pr }}(x)-G_{V}(x) \\
& U_{M}(x)=U_{v}(x)+\Delta G(x)
\end{aligned}
$$

ENed of doelectior contonnum
potention encengy in racunm

Vacunm
$1 \Delta G_{2}=-u_{4}(x)$
$0 \quad 0$
besign a changony /re charyony
park: a) reckamory on vecunm b) placing nentral particles into a canoty, c) chandong the particles du the meainum

$$
\Delta f=\Delta G_{0}+g G_{b}+\Delta G_{C}=\Delta G_{A}(x)-U_{V}(x)
$$

botal potectial wozr ayainst the potential
ousode the carotyg, creotes by other partocles work ayainst the zeation rielt

$$
\Delta G_{x}(x)=\int d q^{\phi}=\int d y \phi_{v}+\int d y \cdot \Phi_{\text {er }} k \text { thre os what we calles ncheryong }
$$

$$
=U_{u}+\underset{\downarrow}{ } \int_{d y} \varphi_{k z}
$$

Aree eweryy" sor poout supole

$$
\Delta G=\int d y \cdot \Phi_{k p}
$$

Solvation eneryy $=$ the eneryy that neek to the abded to the potential on sacno to usimil the $r^{2 e s e n c e}$ of cavent

Mosoug bountary reaction tield neethod
le se the konkmoot eoprancion to compute ebector tivels creates at the couth by a source change y_{i} :

$$
\vec{E}_{R}(\vec{\imath}=0)=-\left.\frac{\partial}{\partial} \vec{z}_{12}(\vec{\imath})\right|_{i=0}=\frac{q_{i}}{a^{3}} \frac{2(f-1)}{2 f+1} \vec{z}_{s}
$$

Fance expreziences by the probe charge y_{i} at the centen tue to polarizatoon is:

$\vec{F}=y_{i} \vec{E}_{k}(\vec{i}=0)=\frac{y_{i} y_{i}}{a^{3}} \frac{2(t-1)}{2 t+1} \vec{z}_{s}$ (torce trom ots own polewzation or zero) This torce can be modeles by introducing an ettective pobreatial ectong befween purtides $\underset{i}{ }$ ans \underline{j} : $u_{e f t}\left(z_{s}\right)=\frac{y_{i} y_{j}}{a^{3}} \frac{t-1}{2 f+1} \cdot 2_{s}^{2}$

$$
\vec{F}_{i}=-\vec{F}_{i}=\frac{\partial}{\partial \vec{z}_{s}} \vec{U}_{e} f_{f}\left(z_{c}\right)=\frac{y_{i} \xi_{i}}{a^{3}} \frac{2(t-1)}{2 \epsilon+1} \vec{z}_{s}
$$

The total tronce actong between charges gs aut q_{j} of $n<a \quad{ }^{s}$:

$$
U_{R E}(2)=U_{c}(2)+U_{e f t}(2)=\frac{y_{i} y_{j}}{n}+\frac{y_{i} y_{j}}{a^{3}} \frac{t-1}{2 f+1} \cdot \eta^{2}=\frac{y_{i} y_{i}}{n}\left(1+\frac{t-1}{2 t+1}\left(\frac{n}{a}\right)^{3}\right)
$$

The readion toeld results in a mosstoes Conloub potertsor of $a=k_{c}$. In well othe agjets somulatsom ame the save.
a) Meshot is applocable to horogenson syereence oubly.

The cerea outside cut-ats sphere This arfrotcomaboin:
has to be honogeneom contournm.)

Apploes to some

boesn't apply to mart solvent atome!

6) The unditues potential is stoll long-nauges.

$$
U_{R R}\left(2=k_{c}\right)=\frac{\eta_{i} y_{j}}{n_{c}} \frac{3 f}{2 f+1} \approx \frac{3}{2} \frac{\eta_{i} y_{j}}{k_{c}}=\frac{3}{2} U_{c}\left(k_{0}\right)
$$

The fotestoal os stoll sognditant at the cut-ott dortance. The torce is surcontimous at k_{c} oe were. This reyivies large the to undiumze the controbutoon at the
 truncoter part.
() Regesson-tield correstion unver o bog dottrererer. Solration of a $\mathrm{Ma}_{\mathrm{a}}^{+} \mathrm{Cl}^{-}$ions

T unnevan leats to unplyy aical repulsoon that persosts of large Re

Reacbon Ajels remoser that repulesen

d) En molecular systems, the way truncaboon is ompletwenter unaes a boy sottereace

Group-bacet truneofion

Atom-baced truncation

Atom-bases trunceroon $\xrightarrow{n_{c}}$ Ot $^{0 t}$ eocludes changes
the site bt the sivmlatson boto

I2wald sumunatson
To avois trunationg the potentioal, concibler the ontinite battoce on which particler on the cental sivulifion box onferect wosth all thed pesidsc Junages:

$$
\bar{z}_{w}=\sum_{i, j, \vec{k}_{n}}^{\prime} \frac{y_{i} y_{i}}{\left|\bar{z}_{i}-\vec{z}_{j}+\vec{R}_{n}\right|} \quad \begin{aligned}
& \text { pwiwe rears } \\
& i \neq i \text { of } \vec{R}_{n}=0
\end{aligned}
$$

	0		0		0	
	\bullet	0		R_{h}	0	

Thas sum or conbiotoonally converpent, weanng the vesulf woul ógrend on
 grom the lattoce trom all dorecfores juts intonity: Ditomite latsoce certrol cell
 mogl rest couvergel.

"exprantong by cerbes" soll counempe

The summation can be pertorned sorecty unfoll connempere ta each domic coutoguration. But thos weshos or extrencly onefficient.

Baumketner, BioSim, Lviv 2019

The ditficerleng a that for ever faid of i oub j droms, an ontaite (very large) unuber bt terms tave to be congbsenct. The situabion could be souplofies of sobe of these terus were suall, or were mabe surall. Thor can be achiened of insteat at Coulomb, sore short-racye potential were consiberet.
Each change in the Brals sum Duteracts woth the ontivite lattore:
change y_{i} change crediry the riveled

Only a limites nurber A \hat{R}_{n} vectars will contribate to screend pottential eneryy
Assumc that some compensabouy charge dortwbutoon $l_{f}(i)$ can be odstet to eech y_{i} so that ots pitentiol becoves short-range $\Phi_{s c}\left(r^{-}\right)$. The potentivel crebtes Ag that change or $\bar{P}_{f}(\bar{\tau})=P_{s c}(\bar{i})-q_{c}(\bar{i})$-protental of backepround

$$
\frac{1}{2} \varepsilon_{i, i,}^{1}, \vec{k}_{n} y_{i} \varphi_{c}\left(\bar{z}_{i j}+\vec{R}_{n}\right)=\frac{1}{2} \sum_{i, j, \bar{R}_{n}}^{1} y_{i} \varphi_{s c}\left(\bar{z}_{i j}+\vec{R}_{n}\right)-\frac{1}{2} \sum_{i, j, \vec{R}_{n}}^{1} y_{i} \Phi_{f}\left(\bar{z}_{i j}+\hat{R}_{n}\right)
$$

Ewals everyy short-zauge outeradions Lony-rame intenactoon easy to comprete

Baumketner, BioSim, Lviv 2019

The sum on the long-nange point can be supplemented by the $i=j, \bar{R}_{5}=0$ team

$$
\left.\frac{1}{2} \sum_{i, i, \vec{k}_{n}}^{\prime} y_{i} \Phi_{b}\left(\vec{z}_{i j}+\bar{r}_{n}\right)=\frac{1}{2} \sum_{j_{1} j, \bar{e}_{n}} y_{i} \Phi_{6}\left(\bar{z}_{i}\right)+\vec{z}_{n}\right)-\frac{1}{2} \sum_{i} y_{i} \cdot \phi_{b}(\infty) \leftarrow \text { self - energy }
$$

The tonal every then: easy to compute
ency to comprise

Change density of the central
B_{f} " - beckegrouns every. cell $\quad l_{i}(\vec{z})=\sum_{i} y_{i} f\left(\vec{z}-\vec{\nu}_{i}\right)$

$$
\left.V=L_{x} \cdot L_{y} \cdot L_{z} \quad \underset{L_{x}}{\stackrel{\vdots}{\vdots \ddots}} \begin{array}{|c}
\vdots \vdots .
\end{array} \right\rvert\,
$$

$$
E_{b}=\frac{1}{2} \sum_{i, j, \bar{k}_{n}} y_{i} \varphi_{b}\left(\bar{z}_{i j}+\overrightarrow{1}_{n}\right)=\frac{1}{2} \int_{V} d \tilde{z}^{\prime} l_{i}(\bar{i}) \cdot \psi_{b}(\bar{z}) d \bar{i}, \psi_{b}\left(\hat{z}^{-1}\right)=\sum_{j, \bar{E}_{n}} \varphi_{b}\left(\overrightarrow{z^{-1}}-\vec{z}_{j}+\vec{R}_{n}\right)
$$

$\psi_{1}(\Sigma)$ and its associates change dortoobution $l_{b}(\Sigma)$ are relates bo the Parson en.

$$
\Delta \psi_{b}(i)=-45 l_{b}(\hat{z})
$$

Poisson equation veabr:

$$
\begin{aligned}
& k^{2} \psi_{b}(\vec{k})=-4 \bar{\pi} l_{1}(\vec{k}) \rightarrow \\
& \text { wave rictor } \psi_{i} \in[-\infty,+\infty]
\end{aligned}\left\{\begin{array}{l}
\psi_{b}(\vec{k})=-\frac{4 \pi l_{b}(\vec{k})}{k^{2}} \text { of }|\vec{k}|=0 \\
\psi_{6}(\vec{k}=0)=\int \psi_{6}(\vec{z}) \text { ar - hoe to }
\end{array}\right.
$$

\vec{k} - wave acdor $u_{i} \in[-\infty,+\infty]$
$\psi_{6}(\vec{k}=0)=\int_{1} \psi_{6}(\bar{i}) 2^{2}$ - hae to be trouns
$k_{x}=\frac{\pi}{L_{x}} \cdot u_{x}, k_{y}=\frac{2 \pi}{L_{y}} u_{y}, k_{z}=\frac{\pi \pi}{L_{z}} k_{z}$
o $\lim _{|\vec{E}|=0}-\frac{\hat{M}}{k}, \hat{\rho}_{l}|\bar{k}|$. It may becoure undefoned.
$E_{6}=\frac{1}{2} \int_{V} l_{i}(\vec{\imath}) \psi_{b}(\vec{\imath}) g \tilde{z}=\frac{1}{2} \int_{V} d i \sum_{i} y_{i} f\left(\hat{z}-\bar{z}_{i}\right) \psi_{6}(\vec{z})=\frac{1}{2} \sum_{i} y_{i} \psi_{b}\left(\overrightarrow{z_{i}}\right)=$

$$
=\frac{1}{2} \sum_{i} y_{i} \cdot \sum_{\vec{k}} \cdot \psi_{b}(\vec{k}) e^{-i \vec{\varepsilon} \vec{z}_{i}}=-\frac{1}{2} \sum_{i, \vec{k}} \eta_{i} \cdot \frac{4 \pi}{k^{2}} l_{b}(\vec{k}) \cdot e^{-i \vec{v} \vec{z}_{i}}
$$

$\hat{k}=0$ weod spacial
IA $l_{b}(\bar{k})$ decays rapodely woth $|\bar{k}|$ haudrong
the sum may be eary to conjuse
Assume that the beckyround charge sensoty or Garssian. For ead charge y_{i} :

$$
\begin{aligned}
& l_{i}(\bar{\tau})=-\eta_{i}\left(\frac{\alpha}{\sigma}\right)^{3 / 2} e^{-\alpha \bar{\tau}^{2}} \\
& \Delta \theta_{f}(\hat{\imath})=-4\left(\pi l_{f(i)}^{0}+\varphi_{b}(\tilde{v})=-y_{i}| | \frac{\alpha_{\pi}^{\pi}}{n} \int^{n} e^{-\alpha \cdot x^{2}} d x\right. \\
& \phi_{s c}(2)=\frac{y_{i}}{n}-y_{i} \left\lvert\, \frac{E}{\pi} \frac{2}{n} \int_{0}^{n} e^{-\alpha x^{2}} d x\right., \operatorname{lom}_{n \rightarrow+\infty} Q_{s}(n)=0 \\
& \left.P_{1}(2=0)=-\varphi_{i} 2 \sqrt{\frac{\Sigma}{\pi}}\right] \text { - to be uses } D_{n} E_{w}
\end{aligned}
$$

For the outarite lattice ot bacugrouerd change!

$$
\begin{aligned}
& l_{f}(\hat{z})=\sum_{j, E_{n}} l_{f}^{0}\left(\hat{i}-\bar{z}_{j}+\hat{r}_{n}\right)=-\left(\frac{\alpha}{\pi}\right)^{3 / 2} \sum_{i, \bar{x}_{n}} y_{j} e^{-\alpha\left(\vec{i}-\bar{z}_{j}+\vec{r}_{n}\right)^{2}} \\
& \rho_{b}(\vec{v})=-\frac{1}{v}\left(\frac{\alpha}{\pi}\right)^{\beta_{2}} \int_{v} \sum_{j, \vec{b}_{4}} y_{j} \cdot e^{-\alpha\left(\hat{i}-\hat{z}_{j}+\vec{E}_{4}\right)^{2}} e^{i \vec{k} \overrightarrow{2}} d \hat{z}= \\
& \begin{array}{l}
\int_{v}+\sum_{E_{n}} F\left(\hat{\imath}+\hat{E}_{n}\right)=\int \operatorname{din} F(\hat{\imath}) \\
\text { all space }
\end{array} \\
& =-\mathcal{L}\left(\frac{\alpha}{\pi}\right)^{\gamma / 2} \sum_{j} \eta_{j} \int_{\text {all space }} e^{-\alpha\left(\vec{z}-\hat{z}_{j}\right)^{2}} e^{i \vec{k} \cdot \vec{\imath}} d \vec{z}= \\
& =-\frac{1}{V}\left(\frac{\alpha}{\pi}\right)^{3 / 2} \sum_{i} y_{j} \int_{\text {all . pace }} e^{-\alpha \cdot \tilde{z}^{-12}} e^{i \vec{k} z^{-1}} \alpha \vec{z}^{-1} \cdot e^{i \vec{k} \cdot \vec{z}_{j}}= \\
& =\sum_{j} \rho_{B, i}^{0}(\vec{k}) \cdot e^{i \vec{k} \vec{z}_{j}}=-e^{-\frac{k^{2}}{4 \alpha}} \frac{1}{v} \cdot \sum_{i} y_{j} e^{i \vec{k} \vec{z}_{j}}
\end{aligned}
$$

$$
\begin{aligned}
& l_{f}(\vec{k})=-e^{-\frac{k^{2}}{4 \alpha}} \ell_{i}(\vec{k}) \quad F_{6}=-\frac{1}{2} \sum_{i, \vec{k}} \eta_{i} \frac{4 \pi}{k^{2}} l_{6}(\vec{k}) \cdot e^{-i \vec{k} \vec{v}_{i}}=2 \pi \vee \sum_{\vec{k}} \frac{1}{k} \cdot l_{i}(-\vec{k}) l_{6}(\vec{k})= \\
& =2 \pi \vee \sum_{\vec{k}} \frac{1}{k^{2}} e^{-\frac{k^{2}}{4 \alpha}} l_{i}|\vec{k}| \cdot \ell_{i}(-\vec{k})=\pi^{-} \vee \sum_{\vec{k}} \frac{1}{k} \cdot e^{-\frac{k^{2}}{4 \alpha}}\left|l_{i}(\vec{k})\right|^{2}
\end{aligned}
$$

Beckgrount charge contributoon can be computer on the Forvier space:

$$
E_{6}=\text { in } v \sum_{\vec{k}} \frac{1}{k}, e^{-\frac{k^{2}}{4 \alpha}}\left|l_{i}(\vec{k})\right|^{2}
$$

It $l_{i}(\vec{b})$ ure avoilable, the sum woll be rapodly converging woth $|\vec{k}|$ she to the exponentiul decary of $e^{-k^{2} / a \alpha}$
E6 contains one tezur $\vec{k}=0$ which neers sepanate treatement. It ve int roduce $G(\vec{k})=\frac{1}{k}, e^{-\frac{k}{4} \alpha}\left|l_{i}(\vec{k})\right|^{2}, \quad \Sigma_{6}=2 \bar{n} V \cdot f(0)+2 \pi v \cdot \sum_{\vec{k} \neq 0} f(\vec{k})$

$$
f(0)=\operatorname{lom} G(\hat{k})
$$

a) lonit does nat exart. The Enwals sum is disengent aut shouls not the uses
b) Whit exortc. Tels can be detailujues uniquely
c) Wuit is conobtional. Eb can be betezuibuer uy to a constant
$r_{2 x p}$ pant $G(\vec{k})$ on powers of $|\vec{k}|$ crount $|\vec{k}|=0$. Chobse vector $\left(k_{x}, 0,0\right)$ A or simplocotry!

$$
\begin{aligned}
& l_{i}(\bar{k})=\frac{1}{v} \sum_{i} g_{i}\left(1+i k_{x} \cdot x_{i}-\frac{1}{2} k_{x}^{2} \cdot x_{i}^{2}+\ldots\right) \\
& \left|\ell_{i}(\bar{k})\right|^{2}=\frac{1}{v^{2}} \sum_{\left.i_{1}\right)} y_{i}\left(1+i k_{x} \cdot x_{i}-\frac{1}{2} k_{x}^{2} \cdot x_{i}^{2}+.\right) y_{i}\left(1-d k_{x} \cdot x_{j}-\frac{1}{2} k_{x}^{2} x_{j}^{2}+\ldots\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left\lvert\, l_{i}\left(\vec{k}| |^{2}=\frac{1}{y^{2}}\left(\left(\varepsilon_{i} y_{i}\right)^{2}+k_{x}^{2}\left(\sum_{i} y_{i} x_{i}\right)^{2}-k_{x}^{2} \sum_{i} y_{i} \sum_{j} y_{j} x_{j}^{2}\right)+o\left(k_{x}^{4}\right)\right.\right. \\
& \left.G(\hat{k})=\frac{1}{v^{2}} e^{-\frac{k^{2}}{4 \alpha}} \sum_{k}\left(\left(\sum_{i} y_{i}\right)^{2}+k_{x}^{2}\left(\sum_{i} y_{i} x_{i}\right)^{2}-k_{x}^{2} \sum_{i} y_{i} \sum_{i} y_{i} x_{j}^{2}\right)\right)+o\left(k_{x}^{n}\right)
\end{aligned}
$$

Assume cluezgernential cimulation cell $\sum_{i} \eta_{i}=0$.

$$
G(\vec{k})=\frac{1}{v^{2}} e^{\frac{-k^{2}}{a \alpha}} \frac{1}{k^{2}}\left(k_{x}<\left._{i} q_{i} x_{i}\right|^{2}=\frac{1}{v^{2}} e^{-\frac{k^{2}}{4 \alpha}} \frac{1}{k^{2}} \cdot(\vec{k} \cdot \vec{M})^{2}, \quad \vec{M}=\sum_{i} y_{i} \vec{z}_{i}\right.
$$

The louit segents on directoon trom whoch ϕ is apdroachet! the simelatoon cell

$G(\vec{k})$ is non-anelytocal at $\hat{k}=0$. Thos as the consequerve of $B_{\text {wals }}$ sumneatoon bany ouby consotionally converyent!
The tygre of summation we euplogges os when lattoce groms in all 3 sorectoous simultatoonsly. Thos jmplies that vinimam $k_{x}=\frac{25}{L_{x}}, k_{y}=\frac{2 \pi}{L_{y}}, k_{z}=\frac{2 \pi}{L_{z}}$ ulso hare to change out the save tive ans at the same zate: $k_{x}-k_{y}=k_{2}$ (cubre too)

In other worbs, \vec{k} should change celony the ilduyonal to be abrropwate for the chosen sunmation neethad. But there's wore than I doayomal on the \hat{k}-syacel. $f(\hat{k})$ uwses in the coubent of Founder transtorus. There ure mbes d. Fouvien anolzsis tor Laudlong dorcontimious tunctoons

4 equivaled dwoy youal direction abing $\vec{k}=0$ can be reacher. which one to fick!

Consider $1-0$ case:
$k=0$ can be zaches trom 2 swrectors

$$
\text { tho }=\frac{1}{25} \int_{-\infty}^{+-\infty} t(k) e^{-i k x} d k=\frac{1}{2 \pi}\left[\int_{0}^{+\infty} A(-k) e^{i k x} d k+\int_{0}^{+\infty} t(b) e^{-i k x} d k\right]
$$

 soccontiueoty

$$
\int_{-\infty}^{+\infty} h(k) d k=\lim _{\Delta k=0}\left(h(0)+\sum_{k \neq 0} h(k)\right) d k
$$

$$
\int_{-\infty}^{+\infty} h(k) d c=\lim _{\Delta k \rightarrow 0}\left(\frac{h(+0)+h(-0)}{2}+\sum_{k \neq 0} h(k)\right)_{d k}
$$

The lourit has to de taken on all equivelant directons aud the zesut uvereyed.

In 30 there are 8 dragouale to reach $\hat{\mathbb{E}}=0$. Set p a wayboy panaveter
$\vec{k}=p / \sqrt{3}(\pm 1, \pm 1, \pm 1)$ - would gove all 8 diayomals
For outance, $\quad \bar{x}_{1}=\frac{p}{v_{3}}(1,1,-1), \quad k_{1}^{2}=p^{2}, \operatorname{lom}_{\vec{x}_{1} \rightarrow 0} G\left(\vec{k}_{1}\right)=\frac{1}{3 x^{2}}\left(M_{x}+a_{y}+\mu_{z}\right)^{2}$
Takong all 8 louits: $\quad G(0)=\frac{1}{8} \lim \sum_{i=1}^{8} G\left(\vec{k}_{i}\right)=\frac{1}{3 V^{2}}\left(m_{x}^{2}+M_{y}^{2}+M_{7}^{2}\right)$ Thos yoves to the backgrouns eneyy'.

$$
E_{1}=\frac{2 \bar{u}}{3 v} \cdot\left(\sum_{i} q_{i} \vec{\nu}_{i}\right)^{2}+2 \bar{u} \sum_{\vec{k} \neq 0} \frac{1}{k} \cdot e^{-\frac{k^{2}}{4 \alpha}}\left|l_{i}(\vec{k})\right|^{2}
$$

putting wll terus togetten:

$$
\begin{aligned}
& z_{v}=\frac{1}{2} \sum_{i, j, \vec{r}_{4}}^{1} u_{s c}\left(\vec{\eta}_{j}+\vec{k}_{n}\right)+2 \bar{m} v \sum_{\bar{k} \neq 0} \frac{1}{k^{2}} e^{-\frac{k^{2}}{u \alpha}}\left|l_{i}(\bar{k})\right|^{2}-\sum_{i} \eta_{i} \sqrt{\frac{\alpha}{\sigma}}+ \\
& +\frac{2 \pi}{3 v}\left(\sum_{i} y_{i} \vec{z}_{i}\right)^{2}, \quad l_{i}(\bar{b})=\sum_{i} \sum_{i} y_{i} e^{j \bar{\varepsilon} \bar{\Sigma}_{l}} \\
& \text { u } \\
& \frac{2 \pi}{3 k} \hat{\Gamma a}^{2}
\end{aligned}
$$

Assume thet the simulotes cyetren ds consideces dn a siveleasic medum ant cot on sacunur. Pendidi jurage st the central cell will gradually poll up space on apfrobivatcly sphewial shapes. T hey woll yenerate reaction Avelt which woll contwbite to the solvation twee eweryy of the central $c M A G$. Since on the n ersol lomit the centrae call woll stwak
 to a point, ore can use dipole opproximatoon:

$$
\text { rf }=-\int_{0}^{\bar{a}} d \hat{M} \cdot \sqrt{2}
$$

\bar{E}_{2} - vevetron tield
dIM- supole moment
$\hat{r}_{2}=-\frac{1}{R^{3}} \frac{2(1-\epsilon)}{2(-+)} \hat{a}_{f}, \quad \hat{M}_{f}$ - ojpole moment ot the intinite lattice encapsulates insise the sylese
 $\frac{4 \pi}{3} R^{3}=H \cdot V, V$ - volume of the sim. cell. $\quad \vec{E}=-\frac{4 \pi}{3} \pm \frac{2(1-G)}{2(E+1)} \hat{M}$

$$
\Delta f=\frac{4 \pi}{3 v} \frac{1-f}{2(-\alpha)} \overrightarrow{N T}^{2}
$$

The solvation ereyp can be coublones woth the $\vec{b}=0$ enty to gove

$$
\begin{aligned}
\pi_{v}=\frac{1}{2} & \left.\sum_{i, 5, R_{n}}^{1} \varphi_{S C}\left(\bar{\eta}_{j}+\hat{R}_{n}\right)+\pi v \sum_{\hat{k}=0} \frac{1}{k^{2}} e^{-\frac{k^{2}}{42}}\left|l_{i}\right| \vec{k}\right)\left.\right|^{2}-\sum_{i} y_{i}^{2} \cdot \frac{\sigma_{\pi}^{\pi}}{\pi}+ \\
& +\frac{\pi}{4(26+1)}\left(\sum_{i} y_{i} \hat{\eta}_{i}\right)^{2}
\end{aligned}
$$

Boulubley conditoons:

1) "Axyusked". I chould be set equal to the Delectur courtant so the simalotes material

21 Vacunm $\quad \epsilon=1$
3) "Tintool" on neveralloc $\epsilon=+\infty$. He solvation on $\hat{\varepsilon}-0$ T term most often used. Whoch bounding os better os stou debated

Accuracy and complesity
one atjustable parameter - α
The enzon is coutrollet by how many terus ure retannes in the real out dnverce parts. Assuke i_{c} cutolf is ontwances tor the eal gart, and K_{c} ror the inverse fart. $k_{c}=2 \pi / L \cdot h_{c}$. The erroxe con then be esturabed!

$$
\begin{aligned}
& \delta k_{n} \approx Q \cdot \| \frac{n_{c}}{2 L^{3}} \frac{1}{\left(\beta k_{c}\right)^{2}} e^{-\beta^{2} k_{c}^{2}} \\
& \left.S B_{c} \approx Q \cdot \frac{\sqrt{n_{c}}}{\beta \cdot L^{2}} \frac{1}{\left(\pi n_{c} / \beta \cdot L\right)^{2}} e^{-\left(\frac{\pi n_{c}}{\beta} \cdot L\right)^{2}}\right\} \quad a=\sum_{i} y_{i}^{2}
\end{aligned}
$$

B.th δB_{k} ous δB_{p} are deterained b the sarve runctoon $e^{-x^{2}} / x^{2}$. Let's impose an accurocy $\varepsilon=e^{-s^{2}} / s^{2}$ on bath terucs.

$$
\begin{aligned}
& R_{c}=\frac{s}{\beta}, n_{c}=\frac{s \cdot L \cdot \beta}{\pi} \rightarrow \delta R_{n} \approx Q \sqrt{\frac{s}{\beta \cdot L^{3}}} e^{-s^{2}} / s^{2}, \delta R_{F}=Q \sqrt{\frac{s}{2 \beta} L^{3}} e^{-s^{2}} / s^{2} \\
& R_{c}, \varepsilon
\end{aligned} \delta \rightarrow\left\{\begin{array}{l}
\beta \\
n_{c}
\end{array}\right.
$$

these two quatition wees to be rioes areas of tome

Conjuifats shal ettort

Total compurtarional experes:

$$
T=T_{h} \cdot \mu_{R}+T_{F} \cdot \mu_{F}
$$

ten - nurube of davir onterecorous to 1 e evoureates withon k_{c}
T_{n}-tome weetes to evaluate outaredrous son a jaur of jartocles
T_{F} - tome neehes to enaluare the founler jart jer partucle ous ger vector \hat{y}

$$
\mu_{h}=H_{c} \cdot H=\frac{4 \pi}{3} \cdot R_{c}^{3} \cdot l \cdot \mu=\frac{4 \pi}{3} \frac{s^{3} H^{2}}{\beta^{3} \cdot L^{3}}
$$

M_{F} - uumber of terass on the Fouver senies wost V_{c} cut oft

$$
M_{1}=M_{c}^{*} \cdot H=\frac{4}{3} \pi \frac{s^{3} \beta^{3} L^{3}}{\pi^{3}} H
$$

Mownal re $\tau(\beta): \quad \frac{\gamma \pi}{\gamma \beta}=0$

$$
\alpha=\left(\frac{\tau_{k} \pi^{3} \mu^{6}}{T_{E} \cdot L^{6}}\right)^{V_{6}}, \quad \tau=\frac{8 \sqrt{\tau_{k} \tau_{k}} \mu^{3 / 2} \cdot s^{3}}{3 \sqrt{\pi}}=\overline{0\left(\mu^{3 / 2}\right)}
$$

T_{h} / T_{F} natoo can be beten unjues on short sjume cations

Poisson-Boltzmann (PB) model

In canonical ensemble:

$$
\begin{array}{r}
\rho_{N V T}(\Gamma) \sim e^{-\beta H(\Gamma)}, \beta=\frac{1}{k T} \\
Q_{N V T}^{i d}=\frac{V^{N}}{N!\lambda^{3 N}}, \lambda=\sqrt{h^{2} / 2 \pi m k T}
\end{array}
$$

Partition function:

$$
Q_{N V T}=\frac{1}{h^{3 N} N!} \int d \vec{p} d \vec{q} e^{-\beta H(\Gamma)}=\stackrel{\downarrow}{Q_{N V T}^{i d}} \times Q_{N V T}^{e x} \downarrow
$$

$$
Q_{N V T}^{e x}=\frac{Z_{N V T}}{V^{N}}, Z_{N V T}=\int d \vec{q} e^{-\beta U(\vec{q})}
$$

Free energy splits into two parts as well:

$$
F=-k T \log Q_{N V T}=F^{i d}+F^{e x}
$$

Gibbs free energy: $\quad G=F+P V=F^{i d}+F^{e x}+\left(P^{i d}+P^{e x}\right) V=G^{i d}+G^{e x}$
Chemical potential: $\quad \mu=\frac{G}{N}=\mu^{i d}+\mu^{e x} \quad$ where
excess part due to interactions among particles
$\mu^{i d}=k T \log \left(\lambda^{3}\right)+k T \log (\rho)=k T \log \left(\frac{\rho}{n_{Q}}\right) \quad$ particle density $\quad \stackrel{\downarrow}{\downarrow} \quad \mu^{e x}=U^{e x}-T S^{e x}+\stackrel{P^{e x} V}{\downarrow}$

$$
n_{Q}=\lambda^{-3}
$$

Baumketner, BioSim, Lviv 2019

Assume the following approximation for the ions solvated near a charged wall:
number density of ions

$$
\mu \xrightarrow{\mu=U^{e x}+\mu^{i d}=q \varphi+k T \log \left(\frac{\rho}{n_{Q}}\right)}
$$ approximated by the electrostatic potential. The potential needs calibration.

Consider system of ions confined between two surfaces. All properties depend on coordinate x.
In the state of equilibrium, or more generally stationary state, the chemical potential should not depend on x to avoid exchange of particles between different parts of the system.

$$
\begin{gathered}
\mu(x)=\text { const } \\
\downarrow \\
q \varphi(x)+k \log \left(\frac{\rho(x)}{n_{Q}}\right)=\mathrm{const} \\
\downarrow \\
\rightarrow \rightarrow(x)=\rho^{0} e^{-\beta q \varphi(x)}
\end{gathered}
$$

Boltzmann distribution prescribing how density of ions will change depending on the potential

$$
\begin{gathered}
\varphi(x=0)=0 \\
\rho(x=0)=\rho^{0}
\end{gathered}
$$

calibration conditions

Density and the potential are connected by laws of electrostatics:

In polarizable media:

$$
\vec{D}(x)=\epsilon(x) \vec{E}(x)=-\epsilon(x) \vec{\nabla} \varphi(x)
$$

For vacuum: $\quad-\vec{\nabla} \vec{E}(x)=\Delta \varphi=-4 \pi q \rho(x) \longleftarrow$ Poisson equation for computing potential

$$
-\vec{\nabla} \vec{E}(x)=\Delta \varphi=-4 \pi q \rho(x) \longleftarrow \begin{gathered}
\text { Poisson equation for comp } \\
\text { created by charge density }
\end{gathered}
$$

$$
\frac{d^{2} \Delta \varphi}{d x^{2}}=-4 \pi q \rho^{0} e^{-\beta q \varphi(x)}
$$

$$
\varphi(x=0)=0 \quad \sigma_{s}=\text { const } \quad \begin{aligned}
& \text { constant charge } \\
& \text { boundary }
\end{aligned}
$$

boundary
condition

$$
\begin{aligned}
& \sigma_{s}=f(\varphi) \\
& \text { constant "potential" } \\
& \text { boundary condition }
\end{aligned}
$$

PB gives ion density, potential and electric field at any point within the system

How well does the PB model work?

Analytical solution:

$$
\begin{aligned}
& \rho(x)=\rho_{0} e^{-q \beta \varphi(x)}=\rho_{0} / \cos ^{2}(K x) \\
& -\frac{2 K}{\beta q} \tan \left(\frac{K D}{2}\right)=\sigma_{s} \quad \text { equation for } K
\end{aligned}
$$

The agreement is remarkably good for concentrations in the range up to 16M!
$P B$ underestimates the density at the surface

Extension to mixtures

Assume that we have a mixture of ions with varying valency. The condition on the constancy of the chemical potential has to be satisfied for each component.

$$
\mu_{i}=q_{i} \varphi+k \operatorname{Tog}\left(\frac{\rho_{i}}{n_{Q}}\right) \quad \rho_{i}(x)=\rho_{i}^{0} e^{-\beta q_{i} \varphi(x)}
$$

Poisson equation

$$
\Delta \varphi=-4 \pi \sum_{i} q_{i} \rho_{i}(x) \longrightarrow \Delta \varphi=-4 \pi \sum_{i} q_{i} \rho_{i}^{0} e^{-\beta q_{i} \varphi(x)} \quad \text { PB equation }
$$

Linearize the RHS

$$
\begin{aligned}
& e^{-\beta q_{i} \varphi(x)}=1-\beta q_{i} \varphi(x)+\cdots \\
& 4 \pi \sum_{i} q_{i} \rho_{i}^{0} e^{-\beta q_{i} \varphi(x)}=4 \pi \sum_{i} q_{i} \rho_{i}^{0}\left(1-\beta q_{i} \varphi(x)+\cdots\right)=4 \pi \sum_{i} q_{i} \rho_{i}^{0}-4 \pi \sum_{i} q_{i}^{2} \rho_{i}^{0} \beta \varphi(x)+\cdots \\
& \approx-\kappa^{2} \varphi \\
& \kappa=\sqrt{4 \pi \beta \sum_{i} q_{i}^{2} \rho_{i}^{0} \quad \text { Zero for electrically neutral systems }}
\end{aligned}
$$

After putting everything together:

$$
\Delta \varphi-\kappa^{2} \varphi=0
$$

linear PB (LPB) for multicomponent systems

Limitations of the PB model

The key approximation: $\quad \mu=U^{e x}+\mu^{i d}=q \varphi+k T \log \left(\frac{\rho}{n_{Q}}\right)$

1) The total energy is approximated by the electrostatic component only. What's neglected:
a) other energy contributions, excluded volume, vdW etc. The size of the ions is missing b) the electrostatic energy is included at the mean-field level. Approximated by the average value. lon-ion correlations are missing
2) Full entropy is approximated by its ideal part. Effect of particle-particle interactions on the excess entropy is neglected. In particular:
a) steric effects are missing
3) Discreetness of surface charge. May contribute additional attraction when discrete surface charges are mobile.

How can PB model be used for biomolecules?

Extension of the Poisson equation to multiple media with fixed and mobile charges:

Electric field in the continuum approximation:

$$
\begin{gathered}
\vec{D}(\vec{r})=\epsilon(\vec{r}) \vec{E}(\vec{r}) \\
\downarrow \\
\vec{\nabla}(\epsilon(\vec{r}) \vec{E}(\vec{r}))=-4 \pi\left(\rho_{f}(\vec{r})+\rho_{m}(\vec{r})\right) \\
\downarrow \\
\vec{\nabla}(\epsilon(\vec{r}) \vec{\nabla} \varphi(\vec{r}))=-4 \pi\left(\rho_{f}(\vec{r})+\sum_{i} q_{i} \rho_{i}^{0} e^{-\beta q_{i} \varphi(\vec{r})}\right) \\
\downarrow \\
\vec{\nabla}(\epsilon(\vec{r}) \vec{\nabla} \varphi(\vec{r}))-\kappa^{2}(\vec{r}) \varphi(\vec{r})=-4 \pi \rho_{f}(\vec{r})
\end{gathered}
$$

sum over fixed-charge points that make up the interior of the solute molecule

LPB equation

LPB can be solved numerically subject to specific boundary conditions (constant charge):

$$
\begin{array}{lcc|}
\epsilon_{I} \Delta \varphi_{I}(\vec{r})=-4 \pi \rho_{f}(\vec{r}) & \left.\varphi_{I}\right|_{\Omega}=\left.\varphi_{I I}\right|_{\Omega} & \text { continuity of } \\
\epsilon_{I I} \Delta \varphi_{I I}(\vec{r})-\kappa^{2} \varphi_{I I}(\vec{r})=0 & \left.\epsilon_{I} \frac{\partial \varphi_{I}}{\partial n}\right|_{\Omega}=\left.\epsilon_{I I} \frac{\partial \varphi_{I I}}{\partial n}\right|_{\Omega} & \text { displacemential }
\end{array}
$$

Boundary between two media: Ω

Computation of the charging free energy

Recall that the potential in solvent (continuum approximation) is :

$$
U_{M}(\Gamma)=U_{V}(\Gamma)+\Delta G(\Gamma) \quad \text { where }
$$

$\Delta G(\Gamma)$ is the free energy associated with turning the solvent "on".
$U_{V}(\Gamma) \quad$ electrostatic energy in vacuum
Also recall that $\quad \Delta G(\Gamma)=\Delta G_{c h}(\Gamma)-U_{V}(\Gamma)$

$$
\Delta G_{c h}(\Gamma)=\int d q \varphi \quad \begin{array}{ll}
\text { charging free energy. Work needed to create charge in a } \\
\text { medium }
\end{array}
$$

Since the PBL equation is linear: $\quad \Delta G_{c h}(\Gamma)=\frac{1}{2} \sum_{i} q_{i} \varphi_{s o l}(i)$
potential acting on charge qi obtained
for particular solute in solvent with $\quad \epsilon=80$

Potential energy in vacuum:

$$
U_{V}=\frac{1}{2} \sum_{i} q_{i} \varphi_{v a c}(i)
$$

Combining the formulas:

The approach that combines certain force-field with PB equation for solvation energy is known as PB/MM model

Limitations of the $\mathrm{PB} / \mathrm{MM}$ model

1) All that apply to $P B$ equation.
2) Error due to continuum approximation for water. Model breaks down on length scales comparable to the size of water molecule.
3) Missing non-polar solvation forces
4) High computational cost

Fine structure of the potential is due to the finite size of water molecules

All implicit solvent models are missing local minima, including GB which is parameterized against $P B$

Baumketner, BioSim, Lviv 2019

Generalized Born (GB) model

Numerical solutions of PB for real molecular shapes are very costly. Much faster implicit solvation models are needed.

Draw an analogy with the Born solvation energy: $\quad \Delta G_{\text {Born }}=\frac{1}{2}\left(\frac{1}{\epsilon}-1\right) \frac{q^{2}}{a}$
Approximate solvation energy for a molecule:

$$
\Delta G_{G B}=\frac{1}{2}\left(\frac{1}{\epsilon}-1\right) \sum_{i, j} \frac{q_{i} q_{j}}{f_{i j}}
$$

Empirical function:

$$
f_{i j}=\sqrt{r_{i j}^{2}+R_{i} R_{j} e^{-r_{i j}^{2} / 4 R_{i} R_{j}}} \longleftarrow \begin{aligned}
& \text { Still's formula } \\
& R_{i} \begin{array}{l}
\text { is the effective Born } \\
\text { radius for atom } i
\end{array}
\end{aligned}
$$

If there's only one atom in the system:

$$
f_{i j}=R_{i}, \quad \Delta G_{G B}=\frac{1}{2}\left(\frac{1}{\epsilon}-1\right) \frac{q_{i}^{2}}{R_{i}}=\Delta G_{B o r n}
$$

Born energy for particle with radius Ri

For two charges at a large separation: $r_{12} \geq R_{1}, r_{12} \geq R_{2}, \quad f_{i j} \approx r_{i j}$

$$
\Delta G_{G B}=\frac{1}{2}\left(\frac{1}{\epsilon}-1\right) \frac{q_{1}^{2}}{R_{1}}+\frac{1}{2}\left(\frac{1}{\epsilon}-1\right) \frac{q_{2}^{2}}{R_{2}}+\left(\frac{1}{\epsilon}-1\right) \frac{q_{1} q_{2}}{r_{12}}
$$

Baumketner, BioSim, Lviv 2019

Full electrostatic interaction then is:

$$
U_{\text {ele }}\left(r_{12}\right)=\frac{q_{1} q_{2}}{r_{12}}+\Delta G_{G B}=\frac{1}{2}\left(\frac{1}{\epsilon}-1\right) \frac{q_{1}^{2}}{R_{1}}+\frac{1}{2}\left(\frac{1}{\epsilon}-1\right) \frac{q_{2}^{2}}{R_{2}}+\frac{q_{1} q_{2}}{\epsilon r_{12}}
$$

To retain their physical meaning, Born radii are introduced via charging free energy:

$$
R_{i}=\frac{2 \Delta G_{c h}}{q_{i}^{2}} \frac{\epsilon}{1-\epsilon}
$$

No atoms except number i have charge

Coulomb field approximation for the Born radii

Another way to compute electrostatic work is via scalar product of the displacement vector with the vector of electric field:

$$
W=\frac{1}{8 \pi} \int \mathbf{E} \cdot \mathbf{D} d V
$$

Assume that the displacement vector created by charge qi retains its Coulomb form even outside of the solute molecule:

$$
\mathbf{D}_{i} \approx \frac{q_{i} \mathbf{r}}{r^{3}}
$$

Work needed to move charge qi from infinity to its proper location:

$$
W=\frac{1}{8 \pi} \int(\mathbf{D} / \varepsilon) \cdot \mathbf{D} d V \approx \frac{1}{8 \pi} \int_{\text {in }} \frac{q_{i}^{2}}{r^{4}} d V+\frac{1}{8 \pi} \int_{\text {out }} \frac{q_{i}^{2}}{r^{4} \varepsilon} d V
$$

To compute electrostatic solvation energy one needs to subtract the same quantity evaluated at

$$
\varepsilon=1 \longrightarrow \Delta G_{c h}=\frac{-1}{8 \pi}\left(1-\frac{1}{\varepsilon}\right) \int_{\text {out }} \frac{q_{i}^{2}}{r^{4}} d V
$$

One then arrives at the following formula:

$$
R_{i}^{-1}=\frac{1}{4 \pi} \int_{\text {out }} r^{-4} d V
$$

Baumketner, BioSim, Lviv 2019

The Born radius in CF approximation can be evaluated exactly for the spherical geometry. The integral can be taken analytically to yield:

$$
R_{C F}=\frac{4 \pi}{\int_{\text {out }} r^{-4} d V}=2 a\left(\frac{1}{1-p^{2}}+\frac{1}{2 p} \ln \frac{1+p}{1-p}\right)^{-1}, p=\frac{r_{s}}{a}
$$

The spherical geometry has an exact solution. In particular, the reaction field is a sum of the field created by Kelvin image and a charged ray:
charged line that extends to infinity

$$
\varphi_{R F}(\vec{r})=\varphi_{K}(\vec{r})+\varphi_{\text {line }}(\vec{r})
$$

terms of order 1
and $1 / \epsilon$
terms of orders higher than $\quad 1 / \epsilon$

Kelvin charge image. $\vec{r}_{K}=\frac{q^{2}}{r_{S}} \quad q_{K}=\gamma \frac{a q}{r_{S}} \quad \gamma=\frac{1-\epsilon}{1+\epsilon}$
Reaction filed at the location of the source charge: $\quad \varphi_{R F}\left(\vec{r}_{S}\right)=\frac{q_{K}}{r_{K}-r_{S}}=\frac{1-\epsilon}{1+\epsilon} \frac{a q}{a^{2}-r_{S}^{2}}$
Charging free energy: $\quad \Delta G_{c h}=\int d q \varphi_{R F}=\frac{1}{2} \frac{1-\epsilon}{1+\epsilon} \frac{a q^{2}}{a^{2}-r_{s}^{2}}=\frac{1}{2}\left(\frac{1}{\epsilon}-1\right) \frac{q^{2}}{R_{K}}$

GB radius in the Kelvin approximation then is:

$$
R_{K}=\frac{1+\epsilon}{\epsilon} a\left(1-p^{2}\right) \approx a\left(1-p^{2}\right) \stackrel{\swarrow}{\substack{\text { good } \\ \text { approximation for } \\ \text { water with } \\ \text { eps }=80}}
$$

Exact radius for arbitrary dielectric constant:

$$
\frac{1}{R_{i}}=\frac{1-\gamma}{2}\left(\frac{1}{a\left(1-p^{2}\right)}+\frac{1}{a} \sum_{n=0}^{\infty} \frac{(1+\gamma) p^{2 n}}{1-\gamma+2 n}\right)
$$

Kelvin solution also leads to a better expression for the Born energy of multiparticle systems:
$f_{i j}=\sqrt{r_{i j}^{2}+R_{i} R_{j}}$
\longleftarrow Grycuk's formula
$f_{i j}=\sqrt{r_{i j}^{2}+R_{i} R_{j} e^{-r_{i j}^{2} / 4 R_{i} R_{j}}} \leftarrow$ Still's formula

CF works well for atoms near the center of the sphere.

For atoms near the molecules boundary, the CF approximation overestimates the Born radius 2 times

To evaluate Born radius for non-spherical objects, an empirical formula is proposed:

this is still an approximation. Works exactly only for a sphere in high-dielectric constant medium. Perform tests for everything else!

Uniformly good performance for any location of the source

Deterioration of quality for charges buried inside the

J. Chem. Phys., Vol. 119, No. 9, 1 September 2003

Baumketner, BioSim, Lviv 2019

Comparison for varying dielectric constant in the context of a protein

1) CFA is not accurate for any eps
2) $R 6$ is accurate for interior dielectric of 1 but much worse for dielectric=20

3) Small shift of inverse R can improve the agreement with PB a lot. Reason - unknown

$$
\frac{1}{R_{i}}=\frac{1}{R_{i}}+0.028 \AA^{-1}
$$

Baumketner, BioSim, Lviv 2019

Non-polar solvation

Non-polar molecules tend to minimize exposure to solvent. As a result, configurations with minimal surface area are assumed. Solvation free energy is assumed to be proportional to the surface area exposed to solvent:
solvation energy of the molecule
with all non-polar groups hidden with all non-polar groups hidden from water
$\Delta G_{n p}=\gamma(S A)+b$
empirical parameter. May depend on the curvature of the solvent molecule. Typical value

$$
\gamma=72 \mathrm{cal} \mathrm{~mol}^{-1} \AA^{-1}
$$

SASA constructed as the surface area of a figure swept by the center of a probe molecule rolled on the surface of the solute molecule

$$
R_{p}=1.4 \AA \quad \text { typically used for water }
$$

with the probe radius set to zero

1) Parametrizations by many groups (Sitkoff, Sheraga etc.)
2) Only part or the whole molecule can be treated as non-polar. Separate parameters can be introduced for polar and non-polar groups.
3) Several definitions of "accessible surface" are in use.

$$
\Delta G=\Delta G_{P B / G B}+\gamma \Delta S \quad \text { common models } P B / S A \text { or } G B / S A
$$

Baumketner, BioSim, Lviv 2019

Weighted histogram analysis method (WHAM)

Assume that we have a number K of different simulations, each performed at a separate temperature $\quad \beta_{k}, k=1, K$

The number of sampled conformations for each temperature is N

Each simulation produces an energy histogram

$$
h_{k}(E)
$$

where the bin size is $\quad \Delta \mathrm{E}$
Energy binned into a histogram

Conformation 1
Conformation N

The energy can be obtained at a discrete set of temperatures
Q: How do we compute energy (and other functions) at intermediate temperatures? Is there new information hidden in these data?

Sampled histograms can be used to estimate density of states:
 energy levels close
f_{k} is the free energy at temperature β_{k} to $\langle E\rangle_{\beta_{k}}$

Let us combine histograms at all temperatures in order to obtain a more accurate estimate of the density of states:

$$
n(E)=\sum_{i=1}^{K} w_{i} n_{i}(E)
$$

some weight
coefficients for each temperature

If the density of states is known, energy distribution at any temperature can be computed as follows

$$
P_{\beta}(E)=\frac{n(E) e^{-\beta E}}{\sum_{E} n(E) e^{-\beta E}}
$$

Energy binned into a histogram

Temperature

Let us estimate the error in the density of states and try to minimize it. This will produce an optimal set of weights.

If we perform multiple experiments = sets of measurements, the resulting energy histograms will fluctuate. This will lead to fluctuations in the estimate of the density of states.

$$
n_{k}(E)=\frac{h_{k}(E)}{N} e^{\beta_{k}\left(E-f_{k}\right)} \longrightarrow \underset{\uparrow}{ } \delta n_{k}(E)=\frac{\delta h_{k}(E)}{N} e^{\beta_{k}\left(E-f_{k}\right)}
$$

The average of fluctuations across many experiments is zero

$$
<\delta n_{k}(E)>_{\text {exp }}=0
$$

Fluctuation of the weighted density of states:

$$
\delta n(E)=\sum_{i=1}^{K} w_{i} \delta n_{i}(E) \longrightarrow<\delta n(E)>=\sum_{i=1}^{K} w_{i}<\delta n_{i}(E)>=0
$$

Baumketner, BioSim, Lviv 2019

The error can be estimated from fluctuation squared:

$$
\begin{aligned}
& (\delta n(E))^{2}=\sum_{i=1, j=1}^{K} w_{i} w_{j} \delta n_{i}(E) \delta n_{j}(E) \longrightarrow<(\delta n(E))^{2}>=\sum_{i=1, j=1}^{K} w_{i} w_{j}<\delta n_{i}(E) \delta n_{j}(E)>= \\
& \left.\quad \sum_{i=1}^{K} w_{i}^{2}<\left(\delta n_{i}(E)\right)^{2}\right)>
\end{aligned} \begin{aligned}
& \text { since measurements at } \begin{array}{l}
\text { different temperatures are } \\
\text { uncorrelated }
\end{array}
\end{aligned}
$$

Average fluctuations in the density of states at fixed temperatures can be estimated as follows:

$$
\left(\delta n_{k}(E)\right)^{2}=\frac{\left(\delta h_{k}(E)\right)^{2}}{N^{2}} e^{2 \beta_{k}\left(E-f_{k}\right)} \longrightarrow<\left(\delta n_{k}(E)\right)^{2}>=\frac{<\left(\delta h_{k}(E)\right)^{2}>}{N^{2}} e^{2 \beta_{k}\left(E-f_{k}\right)}
$$

Let us rewrite the squared fluctuation of the histogram in explicit form:

$$
<\left(\delta h_{k}(E)\right)^{2}>=<h_{k}^{2}(E)>-<h_{k}(E)>^{2}
$$

By definition:
$h_{k}(E)=\sum_{i=1}^{N} \delta_{E, E_{i}}$ where $\delta_{E, E_{i}}=\frac{1}{2}\left(\Theta\left(E_{i}-E\right)+\Theta\left(E+\Delta E-E_{i}\right)\right)= \begin{cases}1 & \text { if } \quad E \leq E_{i} \leq E+\Delta E \\ 0 & \text { otherwise }\end{cases}$

The square then is

$$
\begin{aligned}
& <\sum_{i=1}^{\downarrow} \delta_{E, E_{i}}>\sum_{i \neq j}^{\downarrow}<\delta_{E, E_{i}}>\ll \delta_{E, E_{j}}> \\
& <h_{k}(E)>=N g \\
& \text { For canonical distribution, quantity g can be evaluated directly: }
\end{aligned}
$$

$$
g=\frac{\int_{E}^{E+\Delta E} \delta_{E, E_{i}} n(E) e^{-\beta E} d E}{\int n(E) e^{-\beta E}} \approx n(E) e^{-\beta(E-F(\beta))} \Delta E \quad \text { so } \quad \lim _{\Delta E \rightarrow 0} g=0
$$

Average square:

$$
<h_{k}(E)>^{2}=<\sum_{i=1}^{N} \delta_{E, E_{i}}><\sum_{j=1}^{N} \delta_{E, j}>=N^{2} g^{2}
$$

The difference then is

$$
\begin{aligned}
& <\left(\delta h_{k}(E)\right)^{2}>=<h_{k}^{2}(E)>-<h_{k}(E)>^{2}=N g+N(N-1) g^{2}-N^{2} g^{2}=N g-N g^{2} \\
& \approx N g=<h_{k}(E)>
\end{aligned}
$$

$$
\text { if } \quad g^{2} \ll g
$$ which can always be achieved by making an appropriate choice for ΔE

Going back to the estimate of error in the density of states:

$$
<\left(\delta n_{k}(E)\right)^{2}>=\frac{<\left(\delta h_{k}(E)\right)^{2}>}{N^{2}} e^{2 \beta_{k}\left(E-f_{k}\right)}=\frac{<h_{k}(E)>}{/ N^{2}} e^{2 \beta_{k}\left(E-f_{k}\right)}
$$

The best estimate of the average histogram can be obtained from the improved density of states:

$$
<\left(\delta h_{k}(E)\right)^{2}>=g_{k}<h_{k}(E)>
$$

more general expression where the g factor may include the effect of energyenergy correlations

The error in the improved density of states finally:
$\left.<(\delta n(E))^{2}>=\sum_{i=1}^{K} w_{i}^{2}<\left(\delta n_{i}(E)\right)^{2}\right)>=\sum_{i=1}^{K} w_{i}^{2} \frac{n(E)}{N} e^{\beta_{i}\left(E-f_{i}\right)}$

Let us consider the relative error in the density of states estimate:

$$
F\left(w_{1}, \ldots, w_{K}\right)=\frac{<\left(\delta n_{k}(E)\right)^{2}>}{n(E)}+\lambda \sum_{i=1}^{K} w_{i}=\sum_{i=1}^{K} w_{i}^{2} \frac{1}{N} e^{\beta_{i}\left(E-f_{i}\right)}+\lambda \sum_{\uparrow=1}^{K} w_{i}
$$

Minimize the cost function:

$$
\begin{gathered}
\frac{\partial F\left(w_{1}, \ldots, w_{K}\right)}{\partial w_{l}}=\frac{2 w_{l}}{N} e^{\beta_{l}\left(E-f_{l}\right)}+\lambda=0 \quad l=1, K \\
\downarrow \\
w_{l}=-\frac{\lambda N}{2} e^{-\beta_{l}\left(E-f_{l}\right)}
\end{gathered}
$$

undefined coefficient designed to enforce the normalization constraint on weight factors

Use the constraint to determine λ

The best estimate of the density of states:

$$
n_{i}(E)=\frac{h_{i}(E)}{N} e^{\beta_{i}\left(E-f_{i}\right)}
$$

$$
n(E)=\sum_{i=1}^{K} w_{i} n_{i}(E)=\frac{\sum_{i}^{K} n_{i}(E) e^{-\beta_{i}\left(E-f_{i}\right)}}{\sum_{i}^{K} e^{-\beta_{i}\left(E-f_{i}\right)}}=\frac{\sum_{i}^{K} n_{i}(E) e^{-\beta_{i}\left(E-f_{i}\right)}}{\sum_{i}^{K} e^{-\beta_{i}\left(E-f_{i}\right)}}=\frac{\sum_{i}^{K} p_{i}(E)}{\sum_{i}^{K} e^{-\beta_{i}\left(E-f_{i}\right)}} \quad \begin{aligned}
& p_{i}(E)=h_{i}(E) / N \\
& \begin{array}{l}
\text { normalized } \\
\text { energy } \\
\text { histogram }
\end{array}
\end{aligned}
$$

Density of states can be evaluated from energy histograms at all temperatures and free energies.

By definition:

$$
e^{-\beta_{i} f_{i}}=\sum_{E} n(E) e^{-\beta_{i} E}
$$

Then one obtains a set of coupled equations:

$$
\begin{align*}
& n(E)=\frac{\sum_{i}^{K} p_{i}(E)}{\sum_{i}^{K} e^{-\beta_{i}\left(E-f_{i}\right)}} \tag{1}\\
& e^{-\beta_{i} f_{i}}=\sum_{E} n(E) e^{-\beta_{i} E} \tag{2}
\end{align*}
$$

Reweighting: $\quad P_{\beta}(E)=\frac{n(E) e^{-\beta E}}{\sum_{E} n(E) e^{-\beta E}}$

WHAM equations can be solved by iterations:
Step 1: Adopt some values for the free energies $f_{1} \ldots f_{K}$
Step 2: Compute the density of states using eq. (1)
Step 3: Obtain more accurate free energy from eq. (2)
Step 4: Go back to step 1. Continue until convergence.
Non-iterative WHAM: JCP 135 (2011) 061103
WHAM with faster convergence: Mol Sim 42 (20016) 1079
Outcome:

1) Relative free energy for a set of temperatures. $f 1$ has to be fixed.
2) Density of states so energy dist. for any temperature Pitfalls:
3) Temperatures have to be narrowly spaced for energy distributions to overlap
4) Energy distributions have to be converged. Problems at low temperature may arise in some systems

Baumketner, BioSim, Lviv 2019

Two-dimensional WHAM

Imagine that it's some structural parameter X for which we seek temperature dependence.
To obtain reweighted function one needs to consider joint distribution of that parameter with E

$$
\begin{aligned}
& P_{i}(E, X)=\frac{n_{i}(E, X) e^{-\beta_{i} E}}{\sum_{E, X} n_{i}(E, X) e^{-\beta_{i} E}}=n_{i}(E, X) e^{-\beta_{i}\left(E-f_{i}\right)} \longrightarrow n_{i}(E, X)=P_{i}(E, X) e^{\beta_{i}\left(E-f_{i}\right)} \\
& \sum_{E, X} P_{i}(E, X)=1 \quad 2 D \text { density of states free energy } \\
& \quad \begin{array}{l}
\text { histograms at certain } \\
\quad \text { temperature }
\end{array} \\
& \begin{array}{l}
\text { Following the WHAM procedure, build a } \\
\text { better estimate of the density of states: }
\end{array} \\
& \quad n(E, X)=\sum_{E} P_{i}(E, X) \\
& w_{i} n_{i}(E, X) \longrightarrow w_{l}=\frac{e^{-\beta_{l}\left(E-f_{l}\right)}}{\sum_{k=1}^{K} e^{-\beta_{k}\left(E-f_{k}\right)}}
\end{aligned}
$$

2D WHAM equations:

$$
\begin{aligned}
& n(E, X)=\frac{\sum_{i}^{K} P_{i}(E, X)}{\sum_{i}^{K} e^{-\beta_{i}\left(E-f_{i}\right)}} \\
& e^{-\beta_{i} f_{i}}=\sum_{E, X} n(E, X) e^{-\beta_{i} E}
\end{aligned}
$$

Distribution function at any temperature by reweighting:

$$
\begin{gathered}
P_{\beta}(X)=\frac{\sum_{E} n(E, X) e^{-\beta E}}{\sum_{E, X} n(E, X) e^{-\beta E}} \\
<X>_{\beta}=\sum_{X} X P_{\beta}(X),<X^{2}>_{\beta}=\sum_{X} X^{2} P_{\beta}(X)
\end{gathered}
$$

$\left\langle X^{2}>_{\beta}-<X\right\rangle_{\beta}^{2}$

Baumketner, BioSim, Lviv 2019

Umbrella sampling
The idea of combining multiple trajectories can be used to obtain distributions along selected degrees of freedom with the help of biased simulations.

Recall that for a degree of freedom X :
Not normalized distribution function

Imagine that we apply external potential to bias the value of coordinate X sampled in simulations

$$
\begin{gathered}
E \rightarrow E+\frac{\alpha}{2}\left(X-X_{i}\right)^{2} \\
\uparrow \\
\quad \text { biasing "umbrella" potential }
\end{gathered}
$$

Distribution in the umbrella simulation:

$$
P_{i}(X)=\sum_{E} n(E, X) e^{-\beta E} e^{-\beta \frac{\alpha}{2}\left(X-X_{i}\right)^{2}} e^{f_{i}} \begin{gathered}
f_{i} \\
\text { some normalization constant specific to } X i
\end{gathered} \quad P_{0}(X) e^{-\beta \frac{\alpha}{2}\left(X-X_{i}\right)^{2}} e^{f_{i}} \quad \sum_{X} P_{i}(X)=1
$$

Baumketner, BioSim, Lviv 2019

Unbiased distribution can be recovered as follows:

$$
P_{0}^{i}(X)=P_{i}(X) e^{\beta \frac{\alpha}{2}\left(X-X_{i}\right)^{2}} e^{-f_{i}} \longrightarrow \sum_{X} P_{0}^{i}(X) e^{-\beta \frac{\alpha}{2}\left(X-X_{i}\right)^{2}}=e^{-f_{i}}
$$

this is normalized histogram from biased simulation

Let us now conduct multiple biasing simulations to obtain improved distribution:

$$
P_{0}(X)=\sum_{i} w_{i} P_{0}^{i}(X) \quad \sum_{i} w_{i}=1
$$

Follow the WHAM procedure to estimate the error and then minimize it:

$$
\begin{aligned}
\left(\delta P_{0}^{i}(X)\right)^{2} & =\left(\delta P_{i}(X)\right)^{2} e^{2 \beta \frac{\alpha}{2}\left(X-X_{i}\right)^{2}} e^{-2 f_{i}}=P_{0}(X) e^{\beta \frac{\alpha}{2}\left(X-X_{i}\right)^{2}} e^{-f_{i}} \\
\left(\delta P_{0}(X)\right)^{2}=\sum_{i} w_{i}^{2}\left(\delta P_{0}^{i}(X)\right)^{2} & =\sum_{i} w_{i}^{2} e^{\beta \frac{\alpha}{2}\left(X-X_{i}\right)^{2}} e^{-f_{i}} P_{0}(X)
\end{aligned}
$$

The function to be minimalized:

$$
F=\sum_{i} w_{i}^{2} e^{\beta \frac{\alpha}{2}\left(X-X_{i}\right)^{2}} e^{-f_{i}}+\lambda \sum_{i} w_{i} \longrightarrow \quad w_{l}=\frac{e^{-\beta \frac{\alpha}{2}\left(X-X_{l}\right)^{2}+f_{l}}}{\sum_{i} e^{-\beta \frac{\alpha}{2}\left(X-X_{i}\right)^{2}+f_{i}}}
$$

$$
\begin{aligned}
& \begin{array}{l}
P_{0}(X)=\frac{\sum_{i} P_{i}(X)}{\sum_{i} e^{-\beta \frac{\alpha}{2}\left(X-X_{i}\right)^{2}+f_{i}}} \\
e^{-f_{i}}=\sum_{X} P_{0}(X) e^{-\beta \frac{\alpha}{2}\left(X-X_{i}\right)^{2}}
\end{array} \\
& P(X)=\int \delta(X-X(\Gamma)) e^{-\beta U} d \Gamma Z^{-1}=\frac{\int e^{-\beta U} d \Gamma_{X}}{\int e^{-\beta U} d \Gamma}=\frac{Z(X)}{Z} \\
& \text { The average force that corresponds to the coordinate. } \\
& \text { Reweighting: } \\
& P(X)=\frac{P_{0}(X)}{\sum_{X} P_{0}(X)} \\
& \begin{array}{l}
\text { conditional } \\
\begin{array}{l}
\text { average. } \\
\text { Coordinate } X \\
\text { is fixed }
\end{array} \uparrow F_{X}>_{X}
\end{array} \\
& \text { Potential of mean force (PMF): } \\
& F(X)=-k T \log (P(X)) \\
& \text { function that can be used as } \\
& \text { generalized potential along } \\
& \text { degree of freedom } X \\
& \text { free energy profile } \\
& \text { along one variable } \\
& Z(X)=P(X) Z \\
& \begin{array}{l}
=\frac{1}{\beta} \frac{1}{\int e^{-\beta U} d \Gamma_{X}} \frac{\partial}{\partial X} \int e^{-\beta U} d \Gamma_{X} \\
=\frac{1}{\beta} \frac{1}{Z(X)} \frac{\partial}{\partial X} Z(X)=-\frac{\partial}{\partial X}-k T \log (Z(X))
\end{array} \\
& =-\frac{\partial}{\partial X}\{-k T \log (P(X))-k T \log Z\} \\
& =-\frac{\partial}{\partial X} F(X)
\end{aligned}
$$

Free energy estimation

Key thermodynamic function that helps to describe stability of condensed matter systems

1) Phase equilibria, transitions
2) Binding strength for macro complexes ...

By definition:

$$
F_{i d}(N, V, T)=\frac{N}{\beta} \log (\rho)+\frac{N}{\beta} \log \left(\frac{1}{\lambda^{3}}\right)-\frac{N}{\beta}, \quad \rho=\frac{N}{V}
$$

$$
F_{e x}(N, V, T)=-k T \log \left(Q_{N V T}^{e x}\right) \quad Q_{N V T}^{e x}=\frac{Z_{N V T}}{V^{N}}
$$

Configuration integral

Not formulated as an average over ensemble so difficult to estimate in simulations

1) Hit and miss method
$Z_{N V T} \quad$ is an integral in multidimensional space. The most efficient integration method is sample mean.

$$
\left.Z_{N V T}=\int e^{-\beta U(\Gamma)} d \Gamma=<\frac{e^{-\beta U(\Gamma)}}{\rho(\Gamma)}\right\rangle_{\rho} \int \rho(\Gamma) d \Gamma
$$

The scheme can have multiple realizations:

1) Uniform distribution in the phase space $\quad \rho=\frac{1}{V^{N}}, \quad \int d \Gamma \rho(\Gamma)=1$

$$
\left.Z_{N V T}=V^{N}<e^{-\beta U(\Gamma)}\right\rangle
$$

Configurations are generated by randomly displacing particles anywhere in the available volume V

Due to overlaps between particles, very few entries in this sum will be non-zero. The sum will never converge

Baumketner, BioSim, Lviv 2019
2) Non-uniform distribution in the phase space
$\rho=e^{-\beta U(\Gamma)}$

$$
\begin{gathered}
1=\frac{\int e^{-\beta U(\Gamma)} e^{\beta U(\Gamma)} d \Gamma}{V^{N}}=\frac{\int e^{-\beta U(\Gamma)} e^{\beta U(\Gamma)} d \Gamma}{V^{N}} \frac{\int e^{-\beta U(\Gamma)} d \Gamma}{\int e^{-\beta U(\Gamma)} d \Gamma}=\frac{\left\langle e^{\beta U(\Gamma)}>_{\rho} Z_{N V T}\right.}{V^{N}} \\
Z_{N V T}=\frac{V^{N}}{\left\langle e^{\beta U(\Gamma)}\right\rangle}
\end{gathered}
$$

The weight function is non-zero where $U(\Gamma)$ is large and negative. But exp(beta $U(\Gamma))$ is zero precisely at those points!

No overlap between the weight function and the integrand
2) Thermodynamic integration

1) Integration over density

$$
d F=-P d V-S d T \longrightarrow P=-\left(\frac{\partial F}{\partial V}\right)_{T}
$$

$$
F(V)-F\left(V_{0}\right)=-\int_{V_{0}}^{V} P(V) d V=N \int_{\rho_{0}}^{\rho} d \rho \frac{P(\rho)}{\rho^{2}} \longleftarrow d V=-\frac{N}{\rho^{2}} d \rho
$$

$$
F(\rho)=F(
$$

Free energy has to be known exactly for this density

Certain density for which free energy is supposed to be known

Let's pick density sufficiently low so that the system can be approximated by ideal gas

$$
F\left(\rho_{0}\right)=F_{i d}\left(\rho_{0}\right)=\frac{N}{\beta} \log \left(\rho_{0}\right)+\frac{N}{\beta} \log \left(\frac{1}{\lambda^{3}}\right)-\frac{N}{\beta}
$$

Then the ideal part at low density can be written in terms of the ideal part at any density:

$$
\begin{aligned}
& F_{i d}\left(\rho_{0}\right)=\frac{N}{\beta} \log (\rho)-\frac{N}{\beta} \log (\rho)+\frac{N}{\beta} \log \left(\rho_{0}\right)+\frac{N}{\beta} \log \left(\frac{1}{\lambda^{3}}\right)-\frac{N}{\beta}=F_{i d}(\rho)+\frac{N}{\beta} \log \left(\rho_{0}\right)-\frac{N}{\beta} \log (\rho) \\
& F_{i d}\left(\rho_{0}\right)=F_{i d}(\rho)-\frac{N}{\beta} \int_{\rho_{0}}^{\rho} d \rho \frac{1}{\rho} \\
& F(\rho)=F\left(\rho_{0}\right)+N \int_{\rho_{0}}^{\rho} d \rho \frac{P(\rho)}{\rho^{2}}=F_{i d}(\rho)-\frac{N}{\beta} \int_{\rho_{0}}^{\rho} d \rho \frac{1}{\rho}+N \int_{\rho_{0}}^{\rho} d \rho \frac{P(\rho)}{\rho^{2}}=F_{i d}(\rho) \\
& +N \int_{\rho_{0}}^{\rho} d \rho \frac{\beta P-\rho}{\beta \rho^{2}}=F_{i d}(\rho)+N \int_{\rho_{0}}^{\rho} d \rho \frac{P^{e x}(\rho)}{\rho^{2}}=F_{i d}(\rho)+N \int_{0}^{\rho} d \rho \frac{P^{e x}(\rho)}{\rho^{2}} \\
& P^{e x}=P-\frac{\rho}{\beta} \quad \text { the integral converges in the limit of low density } \\
& F_{e x}(\rho)=N \int_{0}^{\rho} d \rho \frac{P^{e x}(\rho)}{\rho^{2}}
\end{aligned}
$$

Baumketner, BioSim, Lviv 2019
2) Integration over temperature

$$
\begin{aligned}
& Q_{N V T}^{e x}=\frac{1}{V^{N}} \int d \Gamma e^{-\beta U(\Gamma)} \longrightarrow \frac{\partial Q_{N V T}^{e x}}{\partial \beta}=-\frac{1}{V^{N}} \int d \Gamma U(\Gamma) e^{-\beta U(\Gamma)}=-<U>Q_{N V T}^{e x} \\
& \frac{\partial \log \left(Q_{N V T}^{e x}\right)}{\partial \beta}=-<U>(\beta) \longrightarrow \log \left(Q_{N V T}^{e x}(\beta)\right)=\log \left(Q_{N V T}^{e x}\left(\beta_{0}\right)\right)-\int_{\beta_{0}}^{\beta} d \beta<U> \\
& \beta F(\beta)=\beta_{0} F\left(\beta_{0}\right)+\int_{\beta_{0}}{ }^{\beta} d \beta<U>(\beta) \\
& \longleftarrow \quad \begin{array}{l}
\text { free energy difference } \\
\text { between two temperatures }
\end{array}
\end{aligned}
$$

a) Integration from high temperature

$$
\lim _{\beta_{0} \rightarrow 0} \beta_{0} F\left(\beta_{0}\right)=0 \quad F(\beta)=\frac{1}{\beta} \int_{0}^{\beta} d \beta<U>(\beta)
$$

For potentials that diverge at zero, the average energy will diverge at high temperature/low beta

For potentials bound at the origin the average energy will also be bound

b) Integration from low temperature

$$
F(\beta)=\frac{\beta_{\max }}{\beta} F_{0}\left(\beta_{\max }\right)-\frac{1}{\beta} \int_{\beta}^{\beta_{\max }} d \beta<U>(\beta)
$$

Free energy in harmonic approximation. Involves Hessian matrix. Easy to compute for a single structure, for instance in crystals. For liquids, an ensemble of local minima has to be considered
ground state energy
Thermodynamic integration: integration paths should not cross phase boundaries!

Suggested paths to determine absolute free energy in liquid and solid states

Baumketner, BioSim, Lviv 2019

3) Thermodynamic perturbation

Assume that we want to measure free energy difference between two different systems described by Hamiltonian A and B

$$
\begin{gathered}
U_{A} U_{B} \\
Z(B)=\int d \Gamma e^{-\beta U_{B}(\Gamma)}=\int d \Gamma e^{-\beta U_{A}(\Gamma)} e^{-\beta\left(U_{B}(\Gamma)-U_{A}(\Gamma)\right)}=\left\langle e^{-\beta \Delta U}>_{A} Z(A)\right. \\
\downarrow \\
-\beta F(B)=-\beta F(A)+\log \left\langle e^{-\beta \Delta U}>_{A}\right.
\end{gathered}
$$

Free energy of system B is expressed in terms of free energy of system A and some average obtained in ensemble A

1) Only trajectory for one system A is required to compute free energy difference
2) Energy difference has to be small in order for the average to converge
3) A path between two states A and B can be constructed that contains intermediate states with mutual overlap
4) "Artificial" thermodynamic integration

Let's consider the same problem with two different systems A and B. $U_{A} \quad U_{B}$
Introduce a variable that transforms one system into another $\quad U(\lambda)=U_{A}+\lambda\left(U_{B}-U_{A}\right)=U_{A}+\lambda \Delta U$

$$
U(\lambda=0)=U_{A}, \quad U(\lambda=1)=U_{B}
$$

Partition function that depends on λ

$$
\begin{aligned}
& Z(\lambda)=\int d \Gamma e^{-\beta\left(U_{A}+\lambda \Delta U\right)} \longrightarrow \frac{\partial Z(\lambda)}{\partial \lambda}=\int d \Gamma-\beta \Delta U e^{-\beta\left(U_{A}+\lambda \Delta U\right)}=-\beta<\Delta U>_{\lambda} Z(\lambda) \\
& d \log (Z(\lambda))=-\beta<\Delta U>_{\lambda} d \lambda \longrightarrow \log (Z(\lambda))=\log (Z(0))-\beta \int_{0}^{\lambda}<\Delta U>_{\lambda} d \lambda
\end{aligned}
$$

$$
F(B)=F(A)+\int_{0}^{1}<\Delta U>_{\lambda} d \lambda
$$

The most reliable and widely used method

1) Integral has to be evaluated for a number of intermediate points. Each point has to be computed in a separate simulation
2) May have issues with integrand not being smooth enough
3) Applied to a large variety of tasks, for instance mutations

Perturbation and artificial integration are equivalent when the difference between the systems is small.
Free energy for a small λ^{*}

$$
\left.\left.F\left(\lambda^{*}\right)=F(A)+\int_{0}^{\lambda^{*}}<\Delta U\right\rangle_{\lambda} d \lambda=F(A)+<\Delta U\right\rangle_{A} \lambda^{*} \quad \text { if } \lambda^{*} \sim 0
$$

In perturbation theory:

$$
U_{B^{\prime}}=U_{A}+\lambda^{*}\left(U_{B}-U_{A}\right) \longrightarrow \Delta U^{\prime}=U_{B^{\prime}}-U_{A}=\lambda^{*}\left(U_{B}-U_{A}\right)=\lambda^{*} \Delta U
$$

$$
F\left(B^{\prime}\right)=F(A)-\frac{1}{\beta} \log <e^{-\beta \Delta U^{\prime}}>_{A}=F(A)-\frac{1}{\beta} \log <e^{-\beta \lambda^{*} \Delta U}>_{A} \approx F(A)+\lambda^{*}<\Delta U>_{A}
$$

$$
\log \left(1-\beta \lambda^{*}<\Delta U>_{A}+\cdots\right)=\beta \lambda^{*}<\Delta U>_{A}
$$

5) Method of Einstein crystal

Can be used to compute absolute free energy of crystals
The system is defined by a set of positions on a lattice

Introduce an artificial Hamiltonian that will drive the system into a state with known free energy

$$
\begin{array}{ll}
U(\lambda)=\lambda U+(1-\lambda) U_{H} \\
U(\lambda=0)=U_{H} & \begin{array}{l}
\text { system where particles are } \\
\text { held at their positions by } \\
\text { harmonic potentials }
\end{array} \\
U(\lambda=1)=U & \text { actual system }
\end{array}
$$

$$
U_{H}(\Gamma)=\frac{1}{2} \alpha \sum_{i}^{N}\left(\overrightarrow{r_{i}}-\overrightarrow{r_{i}^{0}}\right)
$$

$$
F(\lambda)=F(0)+\int_{0}^{\lambda}<U-U_{H}>_{\lambda} d \lambda
$$

6) Widom's particle insertion method accessible in simulation through virial Free energy can be computed from the chemical potential: $\quad F(N V T)=G-P V=N \mu-P V$

According to the definition:
$G(N, T P)=N \mu \longrightarrow \mu=G(N+1, P T)-G(N, P T)$
$G(N, P T)=-k T \log (Q(N P T)) \longrightarrow \mu=-k T \log \left(\frac{Q(N+1, P T)}{Q(N, P T)}\right)$

Volume distribution function:

$$
P(V)=\frac{e^{-\beta P V} Z(N V T)}{\int d V e^{-\beta P V} Z(N V T)}
$$

Recall the definition of the partition function in NPT ensemble:
$Q(N, P T)=\frac{1}{N!\lambda^{3 N} V_{0}} Z(N, P T), \quad Z(N, P T)=\int d V e^{-\beta P V} Z(N V T) \longleftarrow \underset{\text { integral }}{\substack{\text { canonical } \\ \text { configuration }}} \int d q_{1} d q_{2} \ldots d q_{N} e^{-\beta U\left(q_{1} \ldots q_{N}\right)}$

Evaluate the $N+1$ term first:

$$
\begin{aligned}
& Q(N+1, P T)=\frac{1}{(N+1)!\lambda^{3(N+1)} V_{0}} Z(N+1, P T)=\frac{1}{(N+1)!\lambda^{3(N+1)} V_{0}} \int d V e^{-\beta P V} \int d q_{1} \ldots d q_{N+1} e^{-\beta U}=\begin{array}{l}
\text { average over } \\
\text { configurations of } N \\
\text { particles starting from } \\
2 .
\end{array} \\
& \frac{1}{(N+1)!\lambda^{3(N+1)} V_{0} \int d V e^{-\beta P V} \int d q_{1} e^{-\beta U_{1}} d q_{2} \ldots d q_{N+1} e^{-\beta U\left(q_{2} \ldots q_{N N}\right)}=\frac{1}{(N+1)!\lambda^{3(N+1)} V_{0}} \int d V e^{-\beta P V} \int d q_{1}<e^{-\beta U_{1}}>Z(N V T)=} \begin{array}{ll}
\text { interaction of the first }
\end{array} \\
& \begin{array}{l}
\text { this quantity is the same for } \\
\text { particle with the } \\
\text { remaining } N \text { particles }
\end{array} \\
& U_{1}=U(N+1)-U(N) \\
& \text { all particles and independent } \\
& \text { of their position. So the }
\end{aligned}
$$

$$
\frac{1}{(N+1)!\lambda^{3(N+1)} V_{0}} \int d V e^{-\beta P V} V<e^{-\beta U_{1}}>Z(N V T)
$$

Similar expression for the N -particle term:
$Q(N, P T)=\frac{1}{N!\lambda^{3 N} V_{0}} \int d V e^{-\beta P V} Z(N V T)$
Combining them one obtains:
average over $P T$ ensemble with N particles
$U_{1} \quad$ is evaluated by adding a particle to the system at random position

$$
\mu=-k T \log \left(\frac{N!\lambda^{3 N}}{(N+1)!\lambda^{3(N+1)}} \frac{\int d V e^{-\beta P V} V<e^{-\beta U_{1}}>Z(N V T)}{\int d V e^{-\beta P V} Z(N V T)}\right)=-k T \log \left(\frac{1 \searrow}{(N+1) \lambda^{3}}<V e^{-\beta U_{1}}>\right)=
$$

$$
-k T \log \left(\frac{V}{(N+1) \lambda^{3}}\right)-k T \log \left(\frac{<V e^{-\beta U_{1}}>}{V}\right)
$$

$$
\mu^{e x}=-k T \log \left(\frac{<V e^{-\beta U_{1}}>}{V}\right)
$$

$$
\mu^{i d}=-k T \log \left(\frac{1}{\rho \lambda^{3}}\right)
$$

pressure evaluated in the ensemble with N particles

Chemical potential can be evaluated from simulations in canonical ensemble:
$\mu^{e x}=G^{e x}(N+1, P T)-G^{e x}(N, P T)=F^{e x}(N+1, T V)-F^{e x}(N, T V)+\left(P^{e x}(N+1)-P^{e x}(N)\right) V$
$F^{e x}(N V T)=-k T \log (Q(N V T)) \longrightarrow \quad F^{e x}(N+1, V T)-F^{e x}(N, V T)=-k T \log \left(\frac{Q(N+1, V T)}{Q(N, V T)^{\prime}}\right)$ average in canonical ensemble with N particles

Configuration integral explicitly:

$$
-k T \log \left(<e^{-\beta U_{1}}>\right)
$$

$Q(N+1, V T)=\frac{1}{V^{N+1}} Z(N+1, V T)=\frac{1}{V^{N+1}} \int d q_{1} e^{-\beta U_{1}} d q_{2} \ldots d q_{N+1} e^{-\beta U\left(q_{2} \ldots q_{N+1}\right)}=\frac{1}{V^{N}}<e^{-\beta U_{1}}>Z(N V T)=<e^{-\beta U_{1}}>Q(N V T)$

Pressure contribution:

$$
\rho^{\prime}-\rho=\frac{1}{V}
$$

$$
\begin{gathered}
P^{e x}(N+1)=P^{e x}\left(\rho^{\prime}=\frac{N+1}{V}\right) \approx P^{e x}\left(\rho=\frac{N}{V}\right)+\frac{d P^{e x}(\rho)}{d \rho}\left(\rho^{\bullet}-\rho\right)=P^{e x}(N)+\frac{K^{e x}}{\rho} \frac{1}{V} \\
\text { bulk modulus } \quad K^{e x}=\rho \frac{d P^{e x}(\rho)}{d \rho}=a \rho^{2}+b \rho^{3}+\ldots \\
\text { from virial expansion }
\end{gathered}
$$

Two terms together:

$$
\mu^{e x}=-k T \log \left(<e^{-\beta U_{1}}>\right)+\frac{K^{e x}}{\rho} \swarrow_{\text {thic cummand }}^{a \rho+b \rho^{2}+\ldots}
$$

this summand vanishes at low densities but doesn't disappear when N tends to infinity
At low densities:
infinity

$$
\mu^{e x} \approx-k T \log \left(<e^{-\beta U_{1}}>\right)=F^{e x}(N+1, V T)-F^{e x}(N, V T)=\left.\frac{F^{e x}(N+1, V T)-F^{e x}(N, V T)}{N+1-N} \approx \frac{\partial F^{e x}(N V T)}{\partial N}\right|_{V T}=\mu^{e x}
$$

the original Widom's formula. Due to large fluctuations it applies only at low densities.
So it's safe to use it there. At high densities, large variations in U_{1} resulting from particle overlaps hinder convergence.

7) Chemical potential from the Gibbs ensemble simulations

Two boxes in GEMC simulations are maintained at constant temperature and pressure. The Widom formula for the NPT ensemble can be used to estimate chemical potential during the transfer move.

The volume and the number of particles change so the average includes both of them:

$$
\mu=-k T \log \left(\frac{1}{(N+1) \lambda^{3}}<V e^{-\beta U_{1}}>\right) \longrightarrow \mu=-k T \log \left(\frac{1}{\lambda^{3}}<\frac{V_{1} e^{-\beta U_{1}}}{n_{1}+1}>\right)
$$

$$
N P T
$$

Gibbs ensemble

1) The identity of box 1 can't change during chemical potential evaluation. If it's vapor it has to remain vapor to the end of the simulation. Similarly for liquid. This is easy to achieve unless the system is near critical point.
2) If box 1 contains all particles of the system (the other box is empty) one should still attempt to add a particle to it to evaluate U_{1}. This step is not executed in normal GEMC.

8) Multiple Bennett acceptance ratio (MBAR) method

Imagine that we have a number of trajectories simulated at a set of temperatures. WHAM can be used to combine the energy histograms and obtain a) density of states and b) relative free energies. The relevant equations are:

$$
\begin{aligned}
& n(E)=\frac{\sum_{i}^{K} p_{i}(E)}{\sum_{i}^{K} e^{-\beta_{i}\left(E-f_{i}\right)}} \\
& e^{-\beta_{i} f_{i}}=\sum_{E} n(E) e^{-\beta_{i} E}
\end{aligned}
$$

Histograms are built assuming certain size of the bins ΔE. The bin size has to be a) small so that the density of states is constant within $[E, E+\Delta E]$ and b) large so that reasonable statistics of $n(E)$ is obtained. The finite size of ΔE introduces errors. If only the free energies are of interest, the error can be minimized by taking the limit $\lim \Delta E \rightarrow 0$. The WHAM equations then can be reduced to a simpler form.

Let us introduce an indicator function which is unity if energy of a given configuration k is within ΔE of E and zero otherwise:

$$
\delta_{E, E_{k}}=\frac{1}{2}\left(\Theta\left(E_{k}-E\right)+\Theta\left(E+\Delta E-E_{k}\right)\right)= \begin{cases}1 & \text { if } \quad E \leq E_{k} \leq E+\Delta E \\ 0 & \text { otherwise }\end{cases}
$$

The energy histogram for temperature i is

$$
p_{i}(E)=\sum_{k} \delta_{E, E_{k}}
$$

The density of states then can be re-written:

$$
n(E)=\frac{\sum_{i}^{K} p_{i}(E)}{\sum_{l}^{K} e^{-\beta_{l}\left(E-f_{l}\right)}}=\frac{\sum_{i}^{K} \sum_{j} \delta_{E, E_{j}}}{\sum_{l}^{K} e^{-\beta_{l}\left(E-f_{l}\right)}}
$$

for sufficiently small ΔE the indicator function will kill the summation over E
Let us substitute this expression into the second WHAM equation:

$$
\begin{aligned}
& e^{-\beta_{s} f_{s}}=\sum_{E} \frac{\sum_{i}^{K} \sum_{j} \delta_{E, E_{j}}}{\sum_{l}^{K} e^{-\beta_{l}\left(E-f_{l}\right)}} e^{-\beta_{s} E}=\sum_{i} \sum_{E} \frac{\sum_{j} \delta_{E, E_{j}}^{k} e^{-\beta_{s} E}}{\sum_{l}^{K} e^{-\beta_{l}\left(E-f_{l}\right)}}=\sum_{J_{i}^{i}} \sum_{j} \frac{e^{-\beta_{s} E_{j}}}{\sum_{l}^{K} e^{-\beta_{l}\left(E_{j}-f_{l}\right)}} \\
& \text { summation over }
\end{aligned} \begin{gathered}
\text { summation over all } \\
\text { all trajectories }
\end{gathered} \quad \begin{aligned}
& \text { conformations in trajectory } \\
& \text { i. }
\end{aligned}
$$

$$
\beta_{s} f_{s}=-\log \left\{\sum_{i} \sum_{j} \frac{e^{-\beta_{s} E_{j}}}{\sum_{l}^{K} e^{-\beta_{l}\left(E_{j}-f_{l}\right)}}\right\}
$$

1) Non-linear set of equations for f_{i}
2) Can be solved by iterations
3) No binning is required
4) Solution is not unique. Only relative free energies are obtained

Other methods:

9) Grand canonical ensemble (covered)
10) Methods for approximate evaluation of the free energy: chemical Monte Carlo, lamba dynamics, linear response theory,

MC simulations in generalized (nonBoltzmann) ensembles

Outline

- Introduction
- Generalized ensembles:
-multicanonical ensemble
-Tsallis statistics
-Wang-Landau method
-1/k ensemble
-J-walking algorithm
-expanded-ensemble method
- Replica-exchange (REX) approach
- Applications:
-replica-exchange simulations of peptide aggregation
-folding of a short β-peptide in explicit water

Introduction

\bullet Why do we need generalized ensembles?

- Two ingredients of a successful simulation:
(I) accurate representation of the system and solvent
(II) adequate sampling of the conformational space

Simulation times must be at least 10 times longer than the relevant relaxation time!

Time scales

Brute force approach

Y. Duan \& P. Kollman, Science 282,(1998),740, "Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution"

- Villin headpiece subdomain,256 CPUs of Cray T3E.

$$
\underline{\mathbf{U}} \rightarrow \underline{\underline{1}} \not \underline{\mathbf{N}}
$$

Baumketner, BioSim, Lviv 2019

Rugged potential energy landscapes

- Why are the relaxation times so long?
-number of local potential energy minima grows exponentially with N

$\tau=\tau_{0} \exp \left(\Delta \mathrm{G} / \mathrm{K}_{\mathrm{b}} \mathrm{T}\right) \quad \tau_{0} \sim 1 \mathrm{ps}$

$1 \mathrm{kcal} / \mathrm{mol}: \sim 1.2 \mathrm{ps}$
$3 \mathrm{kcal} / \mathrm{mol}: \sim 1.5 \mathrm{~ns}$ 10kcal/mol:~1 ms and longer
-each minimum acts as a kinetic trap. The relaxation time is determined by the escape time from the minima

Generalized ensembles

Baumketner, BioSim, Lviv 2019

Multicanonical ensemble

- sampling on a "deformed" potential energy surface $W(E)$:

$$
\begin{equation*}
P^{*}(E) \sim n(E) e^{-\beta W(E)} \tag{1}
\end{equation*}
$$

- flat energy distribution for multicanonical ensemble:

$$
P^{*}(E)=P_{\mu}(E) \sim \text { const }
$$

$$
W_{\mu}(E)=?
$$

- equation (1) can be rewritten as a non-linear equation in $W_{\mu}(E)$ (valid up to a constant which drops during normalization):

$$
\begin{equation*}
W_{\mu}(E)=\frac{1}{\beta}\left[\ln n(E)-\ln P_{\mu}(E)\right]=\frac{1}{\beta} \ln n(E) \tag{2}
\end{equation*}
$$

- density of states is estimated from a simulation. It depends (as a functional) on $W_{\mu}(E)$ and simulation parameters: $n(E)\left[W_{\mu} ;\right.$ param $]$. Simplest solution to equation (2) is given by successive iterations:

$$
\begin{equation*}
W_{\mu}^{n+1}(E)=\frac{1}{\beta} \ln n^{n}(E) \tag{3}
\end{equation*}
$$

Multicanonical ensemble

- final result: $\quad W_{\mu}{ }^{n+1}(E)=W_{\mu}{ }^{0}(E)+\frac{1}{\beta} \ln \left[P_{\mu}{ }^{0}(E) \cdots P_{\mu}{ }^{n}(E)\right]$
- an example: $\quad W_{\mu}{ }^{0}(E)=E \quad$, zero energy distribution $P_{\mu}{ }^{0}(E)$ is canonical and equation (4) is the standard multicanonical recursion:

$$
\begin{equation*}
W_{\mu}^{n+1}(E)=E+\frac{1}{\beta} \ln \left[P_{\beta}(E) \cdots P_{\mu}^{n}(E)\right] \tag{5}
\end{equation*}
$$

- canonical distribution can be recovered from $P_{\mu}(E)$ through a reweighting procedure:

$$
\begin{equation*}
P_{\beta}(E) \sim P_{\mu}(E) e^{\beta\left(W_{\mu}(E)-E\right)} \tag{6}
\end{equation*}
$$

- three steps of a multicanonical simulation:
(i) generating $W_{\mu}(E)$ in successive iterations
(ii) equilibrium sampling
(iii) recovering canonical expectations for various observables

Baumketner, BioSim, Lviv 2019

Monte Carlo studies of spin glasses

- B. A. Berg \& T. Neuhaus, PRL 68,(1992),9, "Multicanonical ensemble: A new approach to simulate first-order phase transitions"
- B. A. Berg \& T. Celik, PRL 69,(1992),2292, "New approach to spinglass simulations" - multicanonical recursions
- 2D 10-state Potts model
- No exponential increase in the tunneling time between two free energy minima
- Speedup up to 2 orders of magnitude compared to standard simulations

FIG. 2. Multicanonical action density distribution $P_{70}(s)$ together with its reweighted distribution $P_{70}(s)$.

Molecular dynamics simulations

- U. H. E. Hansmann, Y. Okamoto and F. Eisenmenger, Chem. Phys. Lett 259,(1996),321, "Molecular dynamics, Langevin and hybrid Monte Carlo simulations in a multicanonical ensemble"
- N. Nakajima, H. Nakamura and A. Kidera, J. Phys. Chem. B 101, (1997), 817, "Multicanonical ensemble generated by molecular dynamics simulations for enhanced conformational sampling"
- Equations of motion:

$$
\begin{aligned}
& \dot{q}_{i}=\frac{d q_{i}}{d t}=\frac{p_{i}}{m_{i}} \\
& \dot{p}_{i}=f_{i}^{\mu}-\stackrel{\text { "multicanonical" }}{\text { force }} \begin{array}{l}
\text { for } p_{i}^{\mu} \\
\underbrace{}_{\begin{array}{l}
\text { factor to keep } \\
\text { kinetic energy } \\
\text { constant }
\end{array}}=-\frac{\partial W_{\mu}(E)}{\partial q_{i}}=-\frac{d W_{\mu}(E)}{d E} \frac{\partial E}{\partial q_{i}}=-\frac{d W_{\mu}(E)}{d E} f_{i} \\
\end{array} \quad \xi=\frac{\sum f_{i}^{\mu} \cdot \dot{q}_{i}}{2 \sum p_{i}^{2} / 2 m_{i}}
\end{aligned}
$$

- The only modification is in how forces are calculated !

Simulations of met-enkephalin

- The amino acid sequence of metenkephalin is TYR-GLY-GLY-PHE-MET. Enkephalins belong to the family of endorphins that are expressed in reproductive organs. Their precise function is not well understood.
multicanonical

Baumketner, BioSim, Lviv 2019

Summary

- Advantages:

(i) multicanonical simulations do not get trapped in local minima
(ii) various thermodynamic quantities are obtained as a function of temperature from a single run. No need to run multiple simulations at different temperatures

- Disadvantages:
(i) the energy transformation function $W_{\mu}(E)$ is non-analytical. Several preliminary simulations are needed to generate it
(ii) these simulations can not be run in parallel
(iii) convergence is sensitive to the details of numerical implementation. Can be quite poor if $P_{\mu}{ }^{0}(E)$ is not accurately determined

Tsallis energy transformation

- U. H. E. Hansmann \& Y. Okamoto, PRE 56, (1997), 2228, "Generalized-ensemble Monte Carlo method for systems with rough energy landscape "
- analytical form for the multicanonical weight factor. Non-exponential falloff at large E :

$$
w_{T}(E)=\left[1+x \beta\left(E-E_{0}\right)\right]^{-\frac{1}{x}} \xrightarrow[x \rightarrow 0]{ } e^{-\beta\left(E-E_{0}\right)}
$$

- energy transformation:

$$
W_{T}(E)=\frac{1}{x \beta} \ln \left[1+x \beta\left(E-E_{0}\right)\right]
$$

- at low temperature the density of states can be calculated in harmonic approximation:

$$
n(E) \sim\left(E-E_{0}\right)^{\frac{N_{F}}{2}}
$$

- if low-energy states are to be populated:

$$
x<x_{c}=2 / N_{F}
$$

- optimal value for x :

$$
x_{0}=0.5 x_{c}
$$

Applications

- progressive broadening of the potential energy distribution of a metenkephalin model as x is reduced
- same x_{0} does not work for all systems!
- simulations of HT protein model [AB \& Y. Hiwatari, JPSJ, 71, (2002), 1001]. MMD iterations

Baumketner, BioSim, Lviv 2019

Wang-Landau method

- F. Wang \& D. P. Landau, PRL 86, (2001), 2050, "Efficient, multiplerange random walk algorithm to calculate the density of states"
- Acceptance probability of a Monte Carlo move $i \rightarrow j: \min \left\{n\left(E_{i}\right) / n\left(E_{j}\right), 1\right\}$
- Algorithm:

0) $n(E)=1$ for all $E, f \sim 3$
1) every time an energy level E is visited, $n(E)=f n(E)$
2) simulation is continued until energy histogram $H(E)$ is "flat". $H(E)$ for all E is not less than 80% of $\langle H(E)\rangle$
3) change the factor $f_{i+1}=\sqrt{f_{i}}$
4) if $f_{i+1}>f_{c}(\sim 1.001)$ set $H(E)=0$ and return to step 1

- Detailed balance is satisfied at $f=1$
- Applicable to large systems. The desired energy interval can be broken into smaller pieces which are simulated in parallel
- Caveat: Make energy intervals large enough to avoid trapping !

- Application to proteins: [A. Cavalli et al.,Biophys J. 88, (2005),3158]

1/k ensemble

- B. Hesselbo \& R. B. Stinchcombe, PRL 74, (1995), 2151, "Monte Carlo simulation and global optimization without parameters"
- Acceptance probability of a Monte Carlo move $i \rightarrow j: \min \left\{w_{j} / w_{i}, 1\right\}$

Metropolis (canonical distribution)

$$
\begin{array}{ll}
w_{i}=e^{-\beta E_{i}} & \\
w_{i}=1 / k_{i,} & k_{i}=n\left(E_{i}\right) \\
w_{i}=1 / k_{i,} & k_{i}=\int_{E \subset E_{i}} d E n(E)
\end{array}
$$

Multicanonical, Wang-Landau
1/k ensemble

- Definitions of entropy:
$S(E)=k \log (n(E)) S^{*}(E)=k \log \left(\int_{E^{\prime}<E} d E^{\prime} n\left(E^{\prime}\right)\right)$ are equivalent in the therm. limit:
$S^{*}(E)=S(E)+O(\log (N)), N \rightarrow \infty$
Differ for finite N. Energy distribution is not flat.

Baumketner, BioSim, Lviv 2019

J-walking algorithm

- D. D. Frantz, D. L. Freeman and J. D. Doll, JCP 93, (1990), 2769, "Reducing quasi-ergodic behavior in Monte Carlo simulations by Jwalking: Applications to atomic clusters"
- It's easier to overcome potential
energy barriers at high \boldsymbol{T} (low β)!

Low- β distribution provides an "intrinsic" size of a global move !

- two types of Monte Carlo moves: local to sample free energy minima and global to transition among minima
- J-walks (global moves) are generated at high T
[too high T = low acceptance rate
too low $T=$ ergodicity problems

Expanded-ensemble concept

- E. Marinari \& G. Parisi, Eur. Phys. Lett. 19, (1992), 451, "Simulated tempering: a new Monte Carlo scheme"
- A. P. Lyubartsev et al., JCP 96, (1992), 1776, "New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles"
- temperature β is treated as a dynamical variable. Canonical ensembles for each β are treated as sub-ensembles of a larger, expanded ensemble. Distribution function in this larger ensemble is defined through a supplementary function $\alpha(\beta)$:

$$
P^{*}(\beta, \Gamma)=\frac{\exp (\beta \alpha(\beta)-\beta H(\Gamma))}{Z^{*}}, \quad Z^{*}=\sum_{\beta} \exp (\beta \alpha(\beta)) Z(\beta), \quad Z(\beta)=1 / N!\int d \Gamma \exp (-\beta H(\Gamma))
$$

- probability to occupy states with temperature β :

$$
P^{*}(\beta)=\exp (\beta \alpha(\beta)) Z(\beta) / Z^{*}
$$

- free energy difference for two temperatures:

$$
\begin{aligned}
& \beta_{2} F\left(\beta_{2}\right)-\beta_{1} F\left(\beta_{1}\right)=\beta_{1} \alpha\left(\beta_{1}\right)-\beta_{2} \alpha\left(\beta_{2}\right)-\log \left\{P^{*}\left(\beta_{1}\right) / P^{*}\left(\beta_{2}\right)\right\} \\
& \text { given by the model } \\
& \text { Baumketner, BioSim, Lviv } 2019
\end{aligned}
$$

$$
\underset{\longleftarrow}{\text { main result }}
$$

- MC algorithm:
(I) Standard Metropolis moves for fixed $\beta . \quad p=\min \{\exp (-\beta \Delta E), 1\}$
(II) Temperature swaps: $\beta_{1} \rightarrow \beta_{2}$ with probability:

$$
p=\min \left\{\exp \left(\left(\beta_{1}-\beta_{2}\right) E+\beta_{2} \alpha\left(\beta_{2}\right)-\beta_{1} \alpha\left(\beta_{1}\right), 1\right\}\right.
$$

(III) Total time spent at each temperature is accumulated in histograms and used for estimating $P^{*}(\beta)$

- Random walk in temperature is realized for:

$$
\alpha(\beta)=F(\beta)=1 / \beta \log (Z(\beta))
$$

- $\alpha(\beta)$ are determined in successive iterations
- For each β canonical distributions are recovered!
- The algorithm is also known as simulated tempering

Replica-exchange algorithm

- R. H. Swendsen \& J.-S. Wang, PRL 57, (1986), 2607, "Replica Monte Carlo simulation of spin-glasses"
- M. C. Tesi et al., J. Stat. Phys. 82, (1996), 155, "Monte Carlo study of the interacting self-avoiding walk model in three dimensions"
- K. Hukushima \& K. Nemoto, JPSJ, 65, (1996), 1604, "Exchange Monte Carlo method and application to spin glass simulations"
- U. H. E. Hansmann, Chem. Phys. Lett., 281, (1997), 140, "Parallel tempering algorithm for conformational studies of biological molecules"
- Y. Sugita \& Y. Okamoto, Chem. Phys. Lett., 314, (1999), 141, "Replica-exchange molecular dynamics method for protein folding"

Replica-exchange $($ REX $)=$ parallel tempering $=$ multiple Markov chain method

Replica-exchange algorithm

- the method is based on the expanded-ensemble idea $P^{*}(\beta, \Gamma) \sim \exp (\beta \alpha(\beta)-\beta H(\Gamma))$
- \boldsymbol{N} independent replicas are considered (parallel tempering)
- double-jumps are attempted

- uniform distribution over sampled temperatures (one replica per temperature condition)
- canonical distribution for each considered temperature β

Baumketner, BioSim, Lviv 2019

Practical points

- Four parameters need to be set: $T_{\text {max }}, T_{\text {min }}, N, \tau_{0}$
$T_{\max }$ _ the higher the better $(\sim 500-700 \mathrm{~K})$. Typical relaxation time at this temperature should be ~1-100ps
$T_{\text {min }}$ _ the temperature of your interest (300K?)
N - large enough to ensure 1050\% acceptance probability for swaps between replicas

$$
N \sim \frac{\delta E}{\Delta E} \sim \frac{N_{F}}{\sqrt{C_{v}}} \sim \frac{N_{F}}{\sqrt{N_{F}}} \sim \sqrt{N_{F}}
$$

τ_{0} _ the longer the better. Typically 100-1000 simulation time steps

- What to look out for:
(i) replica-exchange acceptance ratio is more than 10%
(ii) each replica visits Tmin and Tmax at least several times

Nadler[PCL B 112 (2008) $10338{ }^{1} 6.594 \sqrt{C} \ln T_{\text {max }} / T_{\text {min }}$
(iii) all relevant order parameters undergo sufficient relaxation

Kinetic data from REX simulations

- There is no physical kinetics in the REX simulations. A number of approaches to extract kinetic information:

Andrec [PNAS 102 (2005) 6801]
van der Spoel [PRL 96 (2006) 238102]
Yang[JMB 372 (2007) 756]
Buchete[JPC B 112 (2008) 6057
Muff [JPC B 113 (2009) 3218]
Chodera[JCP 134 (2011) 244107]

- Most approaches rely on the following ingredients:
a) discretization of the available configuration space
b) obtaining rates of transition between the identified states
c) solving master equation to generate reaction time
$\left\{\begin{array}{l}\text { Very difficult to get a representative } \\ \text { ensemble }\end{array}\right.$
$\left\{\begin{array}{l}\text { Most often in straight MD simulations. } \\ \text { Not reliable }\end{array}\right.$

Relies on assumption on how transition rates depend on temperature

Example: ETNA of Muff and Caflisch
Folding time for a β-sheet peptide predicted for varying temperature over a range that spans an order of magnitude

Replica-exchange flavors

- REX coupled with Tsallis energy deformation function:
- Muticanonical REX and REX multicanonical:
- REX in constant pressure (CPT) ensemble:
- Mutidimensional REX:
- Ab initio Monte Carlo REX:
- Hamiltonian REX:
[Hansamann, Chem. Phys. Lett, 281(1997) 140
- Jang et al., PRL, 91 (2003) 058305

Sugita \& Okamoto, Chem. Phys. Lett, 329 (2000) 261

Okabe et al. Chem. Phys. Lett, 335 (2001) 435

Sugita, Kitao \& Okamoto, JCP, 114 (2000) 6042

Ishikawa et al.,,Chem. Phys. Lett., 333 (2001) 199

Fukunishi, Watanabe \& Takada, JCP, 116 (2002) 905

Replica-exchange flavors

- REX coupled with RISM:
- Local REX:
- Non-equilibrium switches REX:

Cheng et al., J. Phys. Chem. B, 109 (2005) 8220

Mitsutake et al., J. Phys. Chem. B, 108 (2004) 19002

Ballard and Jarzynski, PNAS, 106 (2009) 12224

- Further reading:

1) Review paper by K. Tai, Biophys. Chem., 107 (2004) 213
2) Special issue of J. Mol. Graph. Mod., 22, (2004) 317

Multiple-histogram reweighting technique

- A. M. Ferrenberg \& R. H. Swendsen, PRL 63, (1989), 1195, "Optimized Monte Carlo data analysis"
- Chodera et al, JCTC 3, (2007), 26, "WHAM for REX simulations"
- $i=1, m$ temperatures, N_{i} samples, $H_{i}(E)$ energy histograms

$$
P_{i}(E)=H_{i}(E) / N_{i}=n(E) \exp \left(-\beta_{i}\left(E-f_{i}\right)\right)
$$

- by definition, free energy: $\left.\exp \left(-\beta_{i} f_{i}\right)\right)=\sum_{E_{k}} n\left(E_{k}\right) \exp \left(-\beta_{i} E_{k}\right)-\mathrm{P}(\mathrm{E})$
- inaccurate estimate of the density of states from simulation at temperature i :

$$
n_{i}(E)=P_{i}(E) \exp \left(\beta_{i}\left(E-f_{i}\right)\right)
$$

- improved density of states: $n(E)=\frac{\sum_{i} g_{i} n_{i}(E)}{\sum_{i} g_{i}}$
- $\delta n(E)^{2} / n(E) \quad$ is minimized with respect to weighting g_{i} coeff.
- set of non-linear equations in $f_{i}: n(E)=\frac{\sum_{i} P_{i}(E)}{\sum_{i} \exp \left(-\beta_{i}\left(E-f_{i}\right)\right)}$

Baumketner, BioSim, Lviv 2019

T

Summary

- Why is replica exchange the method of choice in biomolecular simulations?
- Parallelism
- No empirical parameters or fitting involved
- Access to low free energy minima through accelerated relaxation
- Availability of all thermodynamical properties as a function of temperature through histogram reweighting techniques

